JPH0114484B2 - - Google Patents

Info

Publication number
JPH0114484B2
JPH0114484B2 JP25121783A JP25121783A JPH0114484B2 JP H0114484 B2 JPH0114484 B2 JP H0114484B2 JP 25121783 A JP25121783 A JP 25121783A JP 25121783 A JP25121783 A JP 25121783A JP H0114484 B2 JPH0114484 B2 JP H0114484B2
Authority
JP
Japan
Prior art keywords
vaporization
fuel
heat
resistant paint
paint film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP25121783A
Other languages
Japanese (ja)
Other versions
JPS60142110A (en
Inventor
Masaru Ito
Katsuhiko Yamamoto
Yasushi Hirata
Mitsuhiro Imajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25121783A priority Critical patent/JPS60142110A/en
Publication of JPS60142110A publication Critical patent/JPS60142110A/en
Publication of JPH0114484B2 publication Critical patent/JPH0114484B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/44Preheating devices; Vaporising devices
    • F23D11/441Vaporising devices incorporated with burners

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Evaporation-Type Combustion Burners (AREA)
  • Spray-Type Burners (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は液体燃料を気化するとともに燃焼用空
気と混合し、燃焼部へ混合気を供給する気化装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a vaporizer that vaporizes liquid fuel, mixes it with combustion air, and supplies an air-fuel mixture to a combustion section.

従来例の構成とその問題点 従来のこの種の気化装置を第1図に示す。ヒー
タ1によつて加熱されるつぼ状の気化筒2の側壁
には、給油ポンプ3および燃焼フアン4にそれぞ
れ接続された給油管5および給油管6が開口して
いる。また気化筒2の上部開口部には混合気通路
7を開設した混合板8と、炎口9が形成されてい
るバーナーヘツド10が配設されており、気化筒
2と混合板8とによつて気化室11が区画され、
混合板8とバーナーヘツド10との間には混合室
12が区画されている。上記構成において、ヒー
タ1に通電されて気化筒2が加熱され、所定温度
まで達すると給油ポンプ3および燃焼フアン4が
作動して、液体燃料および燃焼用空気を気化室1
1に供給する。気化室11に入つた液体燃料は気
化筒2の内壁面にて気化し、燃焼用空気と混合し
て混合気通路7を通つて混合室12に入る。混合
室12に入つた混合気は、そこでさらに均一に混
合されてバーナーヘツド10の炎口9から噴出
し、点火装置(図示せず)により点火され燃焼が
行なわれる。
Structure of a conventional example and its problems A conventional vaporizer of this type is shown in FIG. A refueling pipe 5 and a refueling pipe 6, which are connected to a refueling pump 3 and a combustion fan 4, respectively, are opened in the side wall of a pot-shaped vaporizing cylinder 2 heated by a heater 1. Further, a mixing plate 8 in which a mixture passage 7 is formed and a burner head 10 in which a burner port 9 is formed are arranged at the upper opening of the vaporizing cylinder 2. The vaporization chamber 11 is divided,
A mixing chamber 12 is defined between the mixing plate 8 and the burner head 10. In the above configuration, the heater 1 is energized to heat the vaporization tube 2, and when the temperature reaches a predetermined temperature, the fuel pump 3 and combustion fan 4 are activated to supply liquid fuel and combustion air to the vaporization chamber 2.
Supply to 1. The liquid fuel that has entered the vaporization chamber 11 is vaporized on the inner wall surface of the vaporization cylinder 2, mixed with combustion air, and enters the mixing chamber 12 through the mixture passage 7. The air-fuel mixture that has entered the mixing chamber 12 is further mixed uniformly there, is ejected from the flame port 9 of the burner head 10, and is ignited by an ignition device (not shown) to cause combustion.

ところが、上記従来例においては燃料の気化・
蒸発速度の速い核沸騰状態で気化を行なうために
気化壁温度は230℃〜280℃程度と低く、変質油や
重質油等のタール化しやすい燃料を気化させると
気化筒2の内壁にタールが付着し、点火しにくか
つたり消火後の臭気が強くなる問題点があつた。
However, in the above conventional example, fuel vaporization and
Because vaporization is carried out in a nucleate boiling state with a high evaporation rate, the temperature of the vaporization wall is as low as 230°C to 280°C, and when fuel that easily turns into tar, such as denatured oil or heavy oil, is vaporized, tar forms on the inner wall of the vaporization cylinder 2. There was a problem that the flames adhered to each other, making it difficult to ignite and emitting a strong odor after the fire was extinguished.

また、従来例においては気化面が核沸騰条件に
なつているために、給油管5より気化室11に送
出された燃料は気化筒2との衝突面13において
大部分が気化され、この部分にタールの生成・付
着が集中してしまつていた。さらに、時間経過と
ともにタールは増加し、衝突面13の外周に土手
状に堆積して燃料の拡散を妨げてしまい、ついに
は液溜りを発生するようになる。これにより点火
時の気化遅れによる未燃気化ガス(白煙)の発
生・定常燃焼時の脈動気化による立炎等の不安定
燃焼・消火時の強い臭気を発生する問題点があつ
た。
In addition, in the conventional example, since the vaporization surface is under nucleate boiling conditions, most of the fuel sent from the fuel supply pipe 5 to the vaporization chamber 11 is vaporized at the collision surface 13 with the vaporization tube 2, and the fuel is vaporized at this portion. The generation and adhesion of tar was concentrated. Further, as time passes, the tar increases and accumulates in a bank-like manner around the outer periphery of the collision surface 13, impeding the diffusion of the fuel and eventually causing a pool of liquid. This resulted in problems such as generation of unburned vaporized gas (white smoke) due to vaporization delay during ignition, unstable combustion such as standing flames due to pulsating vaporization during steady combustion, and strong odor when extinguished.

一方、燃料中のタール化し易い成分は高沸点成
分であり、気化壁温度を燃料の膜沸騰温度以上の
ような高温にすればタールの生成・付着を防止で
きるが、上記従来例では気化壁温度を高めると安
定した気化ができなかつた。すなかち、給油管5
から送出された燃料は衝突面13に衝突するが、
壁面が高温であるために一部が気化するのみで大
部分は微粒子となつて分散し、気化筒底面へ落下
して気化される。そころが、底面も高温の膜沸騰
条件下にあるため、落下した燃料粒子は気化底面
との境界層に形成される蒸気層上に浮かびながら
転がり、相互に合体して巨大粒子となりやすい。
そのため気化が不規則になり安定した気化が行な
われず、バーナーヘツド10における燃焼につい
ても立炎したり極端な場合には失火したりするこ
ともあつた。
On the other hand, the components in fuel that easily turn into tar are high boiling point components, and the formation and adhesion of tar can be prevented by setting the vaporization wall temperature to a high temperature, such as the film boiling temperature of the fuel or higher. When the temperature was increased, stable vaporization was not possible. In the meantime, oil supply pipe 5
The fuel sent out collides with the collision surface 13, but
Due to the high temperature of the wall surface, only a portion of the gas is vaporized, and most of it is dispersed as fine particles, which fall to the bottom of the vaporization cylinder and are vaporized. Since the bottom surface is also under high-temperature film boiling conditions, the fallen fuel particles roll while floating on the vapor layer formed in the boundary layer with the vaporization bottom surface, and tend to coalesce into giant particles.
As a result, vaporization becomes irregular and stable vaporization is not achieved, and combustion in the burner head 10 may also cause flames or, in extreme cases, misfires.

発明の目的 本発明は従来例における上記問題点を解消する
もので、変質油や重質油の気化に対してタールの
生成・付着を防止して気化装置の長寿命化を図る
とともに、安定した気化状態を得ることを目的と
する。
Purpose of the Invention The present invention solves the above-mentioned problems in the conventional example, and aims to prolong the life of the vaporizer by preventing the formation and adhesion of tar during the vaporization of denatured oil and heavy oil. The purpose is to obtain a vaporized state.

発明の構成 この目的を達成するために、本発明は気化筒の
気化面において、給油管から送出される燃料との
衝突面の熱伝導率よりも、他の気化筒での熱伝導
率を小さくするとともに衝突面を燃料の膜沸騰温
度以上に保持したものである。
Composition of the Invention In order to achieve this object, the present invention makes the thermal conductivity of the vaporizing surface of the vaporizing tube smaller than the thermal conductivity of the collision surface with the fuel delivered from the fuel supply pipe. At the same time, the collision surface is maintained at a temperature higher than the film boiling temperature of the fuel.

この構成によつて、高温の膜沸騰条件下にある
衝突面に衝突した燃料は、分裂して微粒子となつ
て飛散するとともに、熱伝導率の小さな気化面に
落下して燃料の気化・蒸発速度の速い核沸騰状態
にて急速かつ安定して気化される。これにより、
衝突面にタールが付着しないばかりか気化面にお
いても燃料の気化が集中しないためにタールの生
成が防止され、脈動気化・臭気等を防止すること
ができる。
With this configuration, fuel that collides with the collision surface under high-temperature film boiling conditions is split into fine particles and scattered, and falls onto the vaporization surface with low thermal conductivity, causing the fuel to vaporize and evaporate. It is rapidly and stably vaporized in the fast nucleate boiling state. This results in
Not only does tar not adhere to the collision surface, but also fuel vaporization does not concentrate on the vaporization surface, so tar generation is prevented and pulsating vaporization, odor, etc. can be prevented.

実施例の説明 以下本発明の一実施例を第2図および第3図を
用いて説明する。なお、図中第1図における部品
と同部品は同番号を付し、説明を省略する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 2 and 3. Components in the figure that are the same as those in FIG. 1 are designated by the same numbers, and explanations thereof will be omitted.

気化筒2の内面である気化面は、耐熱性塗料皮
膜100で覆われるとともに、燃料との衝突面1
3のみが気化筒2を構成する金属面が露出してい
る。
The vaporization surface, which is the inner surface of the vaporization cylinder 2, is covered with a heat-resistant paint film 100, and the fuel collision surface 1
Only the metal surface composing the vaporizer cylinder 2 is exposed.

この構成において気化筒2が所定温度まで加熱
されて、給油ポンプおよび燃焼フアンが作動して
給油管5および給油管6から燃料および燃焼用空
気が気化室11に供給されると、燃料は高温で熱
伝導率の大きな金属面が露出した膜沸騰条件下に
ある衝突面13に衝突して分裂し、微粒子として
気化面に飛散する。気化面は金属面に比較して熱
伝導率の小さな耐熱性塗料皮膜で覆われているの
で衝突面13と同じ温度であつても核沸騰状態に
なり、飛散・落下した燃料粒子は急速かつ安定し
て気化される。
In this configuration, when the vaporization cylinder 2 is heated to a predetermined temperature and the fuel pump and combustion fan are operated to supply fuel and combustion air from the fuel supply pipes 5 and 6 to the vaporization chamber 11, the fuel is heated to a high temperature. The metal surface with high thermal conductivity collides with the exposed collision surface 13 under film boiling conditions, breaks up, and scatters as fine particles on the vaporization surface. Since the vaporization surface is covered with a heat-resistant paint film that has a lower thermal conductivity than the metal surface, it will reach a nucleate boiling state even if it is at the same temperature as the collision surface 13, and the scattered and fallen fuel particles will rapidly and stably. and vaporized.

第3図は上記の気化状態を示す特性図で、横軸
に気化壁温度、縦軸に気化面上に落とされた一定
量の燃料粒子の気化・蒸発に要する時間の関係を
示している。図中、実線で示すA線は金属面が露
出した気化面における特性を示し、破線で示すB
線は耐熱性塗料皮膜で覆われた気化面における特
性を示す。図からもわかるように金属面において
は比較的低い温度T0付近から蒸発時間が長くな
り始めて、蒸発・気化時間の短かい核沸騰領域か
ら膜沸騰領域に移行が始まつており、さらに高温
のT1に致つては完全に膜沸騰状態で気化・蒸発
時間が長くなつている。この状態においては気化
面上に衝突した燃料は、ほとんど気化することな
く高温の微粒子として分裂飛散する。一方、B線
で示す耐熱塗料皮膜で覆つた気化面においては、
前述のT0ばかりかT1の温度においても気化・蒸
発時間の短かい核沸騰状態を保つており、T1
温度に保持された気化面においても燃料を急速か
つ安定して気化することができる。さらに燃料の
温度が高いためにより急速な気化が得られる。こ
のように、衝突面13においては燃料の気化成分
がほとんどないために衝突面13におけるタール
の生成・付着が防止されるばかりか、分裂・飛散
した高温の燃料粒子が落下する気化面において
は、核沸騰状態ではあるが気化すべき燃料が集中
して落下しないので気化負荷が小さく、かつ基本
的に高温状態で気化するためにタールの生成を防
止した急速で安定した気化が得られる。
FIG. 3 is a characteristic diagram showing the above-mentioned vaporization state, with the horizontal axis showing the vaporization wall temperature and the vertical axis showing the relationship between the time required for vaporization and evaporation of a certain amount of fuel particles dropped onto the vaporization surface. In the figure, line A shown as a solid line shows the characteristics on the vaporized surface where the metal surface is exposed, and line B shown as a broken line
The line shows the characteristics on the vaporized surface covered with a heat-resistant paint film. As can be seen from the figure, on metal surfaces, the evaporation time begins to increase from around a relatively low temperature T 0 , and the transition from the nucleate boiling region where the evaporation/vaporization time is short to the film boiling region begins, and then at even higher temperatures. At T 1 , it is completely in a film boiling state and the vaporization and evaporation time are long. In this state, the fuel that collides with the vaporization surface splits and scatters as high-temperature particles without being vaporized. On the other hand, on the vaporization surface covered with a heat-resistant paint film shown by line B,
It maintains a nucleate boiling state with short vaporization and evaporation time not only at T 0 mentioned above but also at T 1, and it is able to vaporize fuel rapidly and stably even on the vaporization surface maintained at T 1 . can. Furthermore, the higher temperature of the fuel results in more rapid vaporization. In this way, since there is almost no vaporized component of the fuel on the collision surface 13, not only is tar formation and adhesion on the collision surface 13 prevented, but also on the vaporization surface where the split and scattered high-temperature fuel particles fall. Although it is in a nucleate boiling state, the fuel to be vaporized is concentrated and does not fall, so the vaporization load is small, and since it is basically vaporized at a high temperature, rapid and stable vaporization can be obtained that prevents the formation of tar.

つぎに本発明の気化装置の他の実施例を第4図
に示し説明する。気化筒2の気化面は耐熱性塗料
皮膜101で覆われているとともに、衝突面13
は炭素等が含まれた熱伝導性のよい耐熱性塗料皮
膜102で覆われており、衝突面13を膜沸騰状
態としている。熱伝導性のよい耐熱性塗料皮膜で
覆われた気化面での気化壁温度と燃料の蒸発・気
化筒時間との関係を示す特性図を、第3図におい
て一点鎖線のC線で示す。第3図から明らかなよ
うに、熱伝導性耐熱塗料皮膜で覆つた気化面(衝
突面)においては、A線で示す金属面よりもさら
に高温で膜沸騰状態に移行するが、T2のような
高温においては膜沸騰状態になり、衝突した燃料
は分裂・飛散する。一方、B線で示す熱伝導率の
小さな耐熱性塗料皮膜101で覆つた気化面にお
いてはT2の温度であつても核沸騰状態を保つて
おり、気化面に落下した燃料粒子は急速かつ安定
して気化されるとともに、高温気化であるのでタ
ールの生成・付着を防止することができる。
Next, another embodiment of the vaporizer of the present invention is shown in FIG. 4 and will be described. The vaporization surface of the vaporization cylinder 2 is covered with a heat-resistant paint film 101, and the collision surface 13
is covered with a heat-resistant paint film 102 containing carbon or the like and having good thermal conductivity, and brings the collision surface 13 into a film boiling state. A characteristic diagram showing the relationship between the vaporization wall temperature and the fuel evaporation/vaporization cylinder time on the vaporization surface covered with a heat-resistant paint film with good thermal conductivity is shown by the dashed line C in FIG. As is clear from Fig. 3, the vaporization surface (impingement surface) covered with a heat-conductive heat-resistant paint film transitions to a film boiling state at a higher temperature than the metal surface shown by line A, but as shown in T 2 . At high temperatures, film boiling occurs, and the colliding fuel splits and scatters. On the other hand, the vaporization surface covered with the heat-resistant paint film 101 with low thermal conductivity shown by line B maintains a nucleate boiling state even at a temperature of T2 , and the fuel particles falling onto the vaporization surface rapidly and stably. Since it is vaporized at a high temperature, it is possible to prevent the formation and adhesion of tar.

さらに他の実施例を第5図に示す。気化筒2の
気化面は耐熱性塗料皮膜103で覆われていると
ともに、衝突面13における塗膜の厚みを他の気
化面におけるそれよりも薄くしたものである。同
じ塗膜材料であつても、それを薄くすると熱伝導
率は高くなるが、その塗膜を薄くした気化面にお
ける気化壁温度と気化・蒸発時間との関係を、第
3図においてD線で示す。図から明らかなよう
に、塗膜の厚みよつて膜沸騰移行温度は異なり、
T2のような温度においては塗膜が薄い場合には
膜沸騰状態となり、B線で示す塗膜が厚い場合に
は核沸騰状態とすることができる。
Still another embodiment is shown in FIG. The vaporizing surface of the vaporizing cylinder 2 is covered with a heat-resistant paint film 103, and the thickness of the coating on the collision surface 13 is made thinner than that on other vaporizing surfaces. Even if the coating material is the same, the thermal conductivity will increase if the coating is made thinner, but the relationship between the vaporization wall temperature and vaporization/evaporation time on the vaporization surface with a thinner coating is shown by line D in Figure 3. show. As is clear from the figure, the film boiling transition temperature varies depending on the thickness of the coating film.
At a temperature such as T2 , if the coating film is thin, it will be in a film boiling state, and if the coating film is thick, as shown by line B, it will be in a nucleate boiling state.

発明の効果 以上の説明から明らかなように、本発明によれ
ば燃料供給手段から送出される燃料の気化筒との
衝突面の熱伝導率よりも、他の気化面における熱
伝導率を小さくするとともに、衝突面を燃料の膜
沸騰温度以上に保持したために、高温の衝突面に
衝突した燃料は分裂・飛散して高温の燃料粒子と
して気化面に分散・落下し、高温の気化面にて核
沸騰状態で急速かつ安定して気化が行なわれる。
さらに、衝突面においてはほとんど気化成分がな
いためにタールの付着がなく、かつ気化面におい
ても燃料が粒子として分散して落下するために気
化負荷が小さいとともに高温状態で気化されるた
めにタールの生成付着が防止され、着火・消火時
の臭気等のない長寿命の気化装置を得ることがで
きる。
Effects of the Invention As is clear from the above description, according to the present invention, the thermal conductivity of the fuel delivered from the fuel supply means at the collision surface with the vaporizing tube is lower than that of the other vaporizing surfaces. At the same time, because the collision surface was maintained at a temperature higher than the film boiling temperature of the fuel, the fuel that collided with the high-temperature collision surface splits and scatters, scattering and falling onto the vaporization surface as high-temperature fuel particles, and nucleates on the high-temperature vaporization surface. Vaporization occurs rapidly and stably in boiling conditions.
Furthermore, since there are almost no vaporized components on the collision surface, there is no tar adhesion, and even on the vaporization surface, the fuel is dispersed as particles and falls, so the vaporization load is small, and since the fuel is vaporized at high temperatures, tar does not adhere to it. It is possible to obtain a long-life vaporizer that prevents generation and adhesion and is free from odors during ignition and extinguishing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の気化装置を示す縦断面図、第2
図a,bは本発明の気化装置の一実施例を示す縦
断面図および側断面図、第3図は気化面における
気化壁温度と燃料の気化蒸発時間との関係を示す
特性図、第4図a,bは本発明の気化装置の他の
実施例を示す縦断面図および側断面図、第5図
a,bは本発明の気化装置の更に他の実施例を示
す縦断面図および側断面図である。 2……気化筒、3……給油ポンプ、4……燃焼
フアン、13……衝突面、100……耐熱性塗料
皮膜、102……熱伝導性耐熱塗料皮膜。
Fig. 1 is a vertical cross-sectional view showing a conventional vaporization device;
Figures a and b are a longitudinal cross-sectional view and a side cross-sectional view showing an embodiment of the vaporization device of the present invention, Figure 3 is a characteristic diagram showing the relationship between the vaporization wall temperature at the vaporization surface and the fuel vaporization time, and Figure 4 Figures a and b are longitudinal cross-sectional views and side cross-sectional views showing other embodiments of the vaporizer of the present invention, and Figures 5a and b are longitudinal cross-sectional views and side cross-sectional views showing still other embodiments of the vaporizer of the present invention. FIG. 2... Vaporization tube, 3... Fuel pump, 4... Combustion fan, 13... Collision surface, 100... Heat resistant paint film, 102... Heat conductive heat resistant paint film.

Claims (1)

【特許請求の範囲】 1 気化筒と、気化筒内に燃焼用空気および燃料
を供給する燃焼空気供給手段および燃料供給手段
とを備えるとともに、気化筒の気化面における燃
料供給手段より送出される燃料との衝突面の熱伝
導率よりも、他の気化面の熱伝導率を小さくし、
かつ衝突面を燃料の膜沸騰温度以上に保持した気
化装置。 2 衝突面に気化筒金属面を露出させるとともに
他の気化面を耐熱性塗料皮膜で覆つた特許請求の
範囲第1項記載の気化装置。 3 衝突面を熱伝導性の良い耐熱性塗料皮膜で覆
うとともに、他の気化面を熱伝導性の悪い耐熱性
塗料皮膜で覆つた特許請求の範囲第1項記載の気
化装置。 4 気化面を耐熱性塗料皮膜で覆うとともに、衝
突面における耐熱性塗料皮膜の厚みを他の気化面
における厚みよりも薄くした特許請求の範囲第1
項記載の気化装置。 5 衝突面を覆う耐熱性塗料皮膜を、炭素を含む
耐熱性塗料皮膜とした特許請求の範囲第2項記載
の気化装置。
[Scope of Claims] 1. Comprising a carburetor cylinder, combustion air supply means and fuel supply means for supplying combustion air and fuel into the carburetor cylinder, and fuel delivered from the fuel supply means on the vaporization surface of the carburetor cylinder. The thermal conductivity of the other vaporization surface is made smaller than the thermal conductivity of the collision surface with
and a vaporizer that maintains the collision surface above the film boiling temperature of the fuel. 2. The vaporizer according to claim 1, wherein the metal surface of the vaporizer cylinder is exposed on the collision surface, and the other vaporizer surface is covered with a heat-resistant paint film. 3. The vaporizer according to claim 1, wherein the collision surface is covered with a heat-resistant paint film that has good thermal conductivity, and the other vaporization surface is covered with a heat-resistant paint film that has poor thermal conductivity. 4. Claim 1 in which the vaporization surface is covered with a heat-resistant paint film, and the thickness of the heat-resistant paint film on the collision surface is thinner than on other vaporization surfaces.
Vaporizer as described in section. 5. The vaporizer according to claim 2, wherein the heat-resistant paint film covering the collision surface is a heat-resistant paint film containing carbon.
JP25121783A 1983-12-29 1983-12-29 Vaporizing device Granted JPS60142110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25121783A JPS60142110A (en) 1983-12-29 1983-12-29 Vaporizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25121783A JPS60142110A (en) 1983-12-29 1983-12-29 Vaporizing device

Publications (2)

Publication Number Publication Date
JPS60142110A JPS60142110A (en) 1985-07-27
JPH0114484B2 true JPH0114484B2 (en) 1989-03-13

Family

ID=17219438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25121783A Granted JPS60142110A (en) 1983-12-29 1983-12-29 Vaporizing device

Country Status (1)

Country Link
JP (1) JPS60142110A (en)

Also Published As

Publication number Publication date
JPS60142110A (en) 1985-07-27

Similar Documents

Publication Publication Date Title
GB2028997A (en) Method of burning liquid fuels in an apparatus with an atomizer and burner device for practising the method
JPH0114484B2 (en)
JPH031572B2 (en)
JPS60134110A (en) Vaporizer
JP2808830B2 (en) Combustion equipment
JPH0137643B2 (en)
JPH037688Y2 (en)
JPH0875121A (en) Fan heater combustion equipment
JPS60134108A (en) Vaporizer
JPH0120501Y2 (en)
JP3376585B2 (en) Oil burning equipment
JP2921166B2 (en) Oil burning equipment
JP2748675B2 (en) Combustion equipment
JPH02122106A (en) Liquid fuel gasifier
JPS6020009A (en) Evaporating device
JPS60202214A (en) Evaporating device
JP2979774B2 (en) Oil burning equipment
JPS6335219Y2 (en)
JPH0477202B2 (en)
JPS5818009A (en) Liquid fuel combustor
JPH05106808A (en) Vaporizing type petroleum fuel combustion apparatus
RU13250U1 (en) EVAPORATOR BURNER
JPS60200012A (en) Liquid fuel burner
JPS5875610A (en) Combustion apparatus for liquid fuel
JPH0210007A (en) Liquid fuel combustion apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term