JPH01144562A - Electrode - Google Patents

Electrode

Info

Publication number
JPH01144562A
JPH01144562A JP62303011A JP30301187A JPH01144562A JP H01144562 A JPH01144562 A JP H01144562A JP 62303011 A JP62303011 A JP 62303011A JP 30301187 A JP30301187 A JP 30301187A JP H01144562 A JPH01144562 A JP H01144562A
Authority
JP
Japan
Prior art keywords
electrode
thin film
mediator
noble metal
metal thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62303011A
Other languages
Japanese (ja)
Inventor
Tadashi Nakajima
正 中島
Takahiro Iino
恭弘 飯野
Takahiro Kawagoe
隆博 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP62303011A priority Critical patent/JPH01144562A/en
Publication of JPH01144562A publication Critical patent/JPH01144562A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain an inexpensive and high-performance cell electrode, chemical reaction tank electrode, sensor electrode, fuel cell electrode, bio-reactor electrode or the like by using a composite film made of a noble metal thin film and a mediator. CONSTITUTION:A noble metal thin film layer made of palladium or the like is formed on a nonconducting substrate made of polyethylene terephtalate or polyamide. The surface of this thin film layer is modified by a mediator made of a conducting polymer material such as polyaniline or its derivative. An inexpensive and high-performance electrode is thereby obtained.

Description

【発明の詳細な説明】 髪栗上血程凰分立 本発明は、電池電極、化学反応槽電極、センサー電極、
燃料電池電極、バイオリアクター電極などに好適な電極
に関する。
[Detailed Description of the Invention] The present invention provides a battery electrode, a chemical reaction tank electrode, a sensor electrode,
This invention relates to electrodes suitable for fuel cell electrodes, bioreactor electrodes, etc.

の   び 日が  しよ゛とするル ζ従来、電気化
学反応の電極としては、白金・金・水銀・ニッケル・鉄
・鉛・亜鉛・銅・酸化インジウム・酸化錫・炭素などが
種々の目的に応じて用いられている。これらの中で、白
金・金などの貴金属を用いた電極は、電気化学反応性で
はもっとも良好であるものの、コストが高いという欠点
がある。
Conventionally, platinum, gold, mercury, nickel, iron, lead, zinc, copper, indium oxide, tin oxide, carbon, etc. have been used as electrodes for electrochemical reactions for various purposes. It is used accordingly. Among these, electrodes using noble metals such as platinum and gold have the best electrochemical reactivity, but have the disadvantage of being high in cost.

本発明は、上記事情に鑑みなされたもので、安価でしか
も高機能であり、電池電極、化学反応槽電極、センサー
電極、燃料電池電極、バイオリアクター電極などとして
好適な電極を提供することを目的とする。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide an electrode that is inexpensive, highly functional, and suitable for use as a battery electrode, a chemical reaction tank electrode, a sensor electrode, a fuel cell electrode, a bioreactor electrode, etc. shall be.

1 ξを解 するための手  び 本発明者らは、上記目的を達成すべく鋭意検討を行なっ
た結果、貴金属の薄膜とメディエータとの複合膜を用い
ることにより、電気化学反応性を損なうことなくコスト
を下げ得ること、即ちポリエチレンテレフタレートなど
の不導電性基体上にパラジウムなどの貴金属薄膜をスパ
ッタリングなどの方法で形成し、更に導電性高分子物質
等のメディエータ層を形成して修飾することにより、安
価でかつ高機能な電極が得られることを知見し。
1 Method for solving ξ As a result of intensive studies to achieve the above objective, the present inventors found that by using a composite film of a thin film of a noble metal and a mediator, it was possible to solve the problem without impairing electrochemical reactivity. By forming a thin film of a noble metal such as palladium on a non-conductive substrate such as polyethylene terephthalate by a method such as sputtering, and further modifying it by forming a mediator layer such as a conductive polymer material, the cost can be reduced. It was discovered that inexpensive and highly functional electrodes could be obtained.

本発明を完成するに至ったものである。This has led to the completion of the present invention.

従って、本発明は、不導電性基体上に貴金属薄膜層を形
成すると共に、該貴金属薄膜暦表面をメディエータで修
飾してなることを特徴とする電極を提供するものである
Therefore, the present invention provides an electrode characterized in that a noble metal thin film layer is formed on a non-conductive substrate, and the surface of the noble metal thin film layer is modified with a mediator.

以下、本発明につき更に詳しく説明する。The present invention will be explained in more detail below.

本発明の電極は、上述したように、不導電性基体上に貴
金属薄膜層を形成し、更にこの貴金属薄膜層表面をメデ
ィエータで修飾したものである。
As described above, the electrode of the present invention has a noble metal thin film layer formed on a nonconductive substrate, and the surface of this noble metal thin film layer is further modified with a mediator.

この場合、本発明の電極に用いられる不導電性基体とし
ては、不導電性のものであればよく、特に制限されない
が、ポリエチレンテレフタレート。
In this case, the non-conductive substrate used in the electrode of the present invention may be any non-conductive substrate, including but not limited to, polyethylene terephthalate.

ポリアミドなどの不導電性の樹脂が成形性の点などで好
ましい。また、セラミックやガラス等も好適に用いられ
る。
Non-conductive resins such as polyamide are preferred from the viewpoint of moldability. Moreover, ceramics, glass, etc. are also suitably used.

上記不導電性基体上に形成される薄膜貴金属としては、
白金、金、水銀、銀、銅などの単一金属又はその合金が
使用し得るが、特にパラジウムが低コスト化と高機能性
とのバランスの点から好ましい。該貴金属薄膜の厚さは
特に制限されないが、表面抵抗5にΩ/a1以下とする
ことが好ましい。
The thin noble metal film formed on the non-conductive substrate is as follows:
A single metal such as platinum, gold, mercury, silver, copper, or an alloy thereof can be used, but palladium is particularly preferred from the viewpoint of a balance between low cost and high functionality. Although the thickness of the noble metal thin film is not particularly limited, it is preferable that the surface resistance 5 is Ω/a1 or less.

上記不導電性基体に上記貴金属薄膜層を形成する方法と
しては、特に制限はなく、スパッタリング、イオンブレ
ーティング、真空蒸着、無電解めっき、熱転写フィルム
を用いる方法などが好適に採用される。これらの中では
、特にスパッタリングによる方法が貴金属の回収効率が
高く、好適に採用される。この場合、電気抵抗がIKΩ
程度になるまでスパッタするのが好ましい。
The method for forming the noble metal thin film layer on the non-conductive substrate is not particularly limited, and methods such as sputtering, ion blasting, vacuum deposition, electroless plating, and a method using a thermal transfer film are suitably employed. Among these, the method using sputtering has particularly high recovery efficiency of precious metals, and is therefore preferably employed. In this case, the electrical resistance is IKΩ
It is preferable to perform sputtering until it reaches a certain level.

次に、上記貴金属薄膜層表面を修飾するメディエータと
しては、特に制限はなく1種々のメディエータ物質を使
用し得、例えばベンゾキノン、フェロセン、クロルアニ
ル、チオニン、フェリシアン化カリウムなどが用いられ
るが、特にポリピロール、ポリチオフェン、ポリアニリ
ン及びその誘導体などの導電性高分子物質が好適であり
、中でもポリアニリン又はその誘導体が最適である。な
お、これらの導電性高分子物質と上記したベンゾキノン
、フェロセン、クロルアニル、チオニン。
Next, as the mediator for modifying the surface of the noble metal thin film layer, there is no particular restriction and a variety of mediator substances can be used, such as benzoquinone, ferrocene, chloranil, thionine, potassium ferricyanide, etc., but especially polypyrrole, polythiophene, etc. , polyaniline and its derivatives are suitable, and among them polyaniline and its derivatives are most suitable. In addition, these conductive polymer substances and the above-mentioned benzoquinone, ferrocene, chloranil, and thionine.

フェリシアン化カリウムなどのメディエータ物質とを併
用することは差支えない。
There is no problem in using it in combination with a mediator substance such as potassium ferricyanide.

ここで、メディエータとしては上述したようにポリアニ
リンやその誘導体が最適であるが、ポリアニリンの誘導
体としては、 (式中R1−R9基は、それぞれ水素原子、アれる互に
同−又は異種の基を表す、) 等が挙げられる。
Here, as mentioned above, polyaniline and its derivatives are most suitable as the mediator, but as a derivative of polyaniline, ), etc.

ポリアニリン及びその誘導体はアニリン又はその誘導体
を電解酸化重合又は還元剤を用いた化学的酸化重合する
ことなどによって得られ、これをそのまま用いることも
できるが、この場合得られたポリアニリン又はその誘導
体を還元処理及び/又は中和処理したものを使用するこ
とが、本発明電極を酵素電極とした場合におけるバック
グラウンド電流によるノイズ除去の点で好ましい。 こ
の場合、還元処理の方法としては、電解による方法、還
元剤による方法が採用される。
Polyaniline and its derivatives are obtained by electrolytic oxidative polymerization or chemical oxidative polymerization using a reducing agent of aniline or its derivatives, and they can be used as they are, but in this case, the obtained polyaniline or its derivatives are reduced. It is preferable to use a treated and/or neutralized one in terms of noise removal due to background current when the electrode of the present invention is used as an enzyme electrode. In this case, as the reduction treatment method, a method using electrolysis or a method using a reducing agent is adopted.

電解還元の具体的方法としては、pH8より酸性側の電
解液を用いて、銀塩化銀電極対比−0,6〜+0.2V
(7)電位、1〜5 m A / al (7)電流密
度で還元するのが好ましく、場合によって【ま、銀塩化
銀電極対比0.0〜+0.7vの電位で酸化する工程を
入れることも可能であり、この場合、電流値としては5
mA以下が好適であり、−〇、2〜0.7vの範囲で5
〜50 m V / sacでサイクリックポルタモグ
ラム処理することもできる。これによりホウフッ酸、フ
ッ酸等の非生体イオンを塩酸、リン酸等の生体イオンと
交換できる。
A specific method for electrolytic reduction is to use an electrolytic solution with a pH higher than 8, and to achieve a voltage of -0.6 to +0.2 V compared to a silver-silver chloride electrode.
(7) Potential, 1 to 5 mA/al (7) It is preferable to reduce at a current density, and in some cases, a step of oxidizing at a potential of 0.0 to +0.7 V compared to a silver-silver chloride electrode may be included. is also possible, and in this case, the current value is 5
mA or less is suitable, -〇, 5 in the range of 2 to 0.7v
Cyclic portamograms can also be performed at ~50 mV/sac. This allows non-living ions such as borofluoric acid and hydrofluoric acid to be exchanged with living ions such as hydrochloric acid and phosphoric acid.

この電解還元処理に用いる電解液としては、ホウフッ酸
、塩酸、酢酸、リン酸1食塩水などや酢酸、リン酸、フ
タル酸等を用いた公知の緩衝液が好適に用いられる。好
ましい濃度範囲は5モル/Q〜10ミリモル/Qで、3
モル/Q〜100ミリモル/Qがより好ましい。処理温
度としては0〜40℃、特に0〜20℃が好適である。
As the electrolytic solution used in this electrolytic reduction treatment, known buffer solutions using borofluoric acid, hydrochloric acid, acetic acid, phosphoric acid monosaline, etc., acetic acid, phosphoric acid, phthalic acid, etc. are suitably used. The preferred concentration range is 5 mol/Q to 10 mmol/Q, with 3
More preferably mol/Q to 100 mmol/Q. The treatment temperature is preferably 0 to 40°C, particularly 0 to 20°C.

電解時間としては5秒〜30分が好ましい。The electrolysis time is preferably 5 seconds to 30 minutes.

一方、還元剤による処理方法は、還元剤でポリアニリン
又はその誘導体を化学的に還元する方法が採用され得る
。この場合、還元剤としては、水素ガス、塩酸ヒドラジ
ン、ヒドラジン、硫化水素、亜硫酸ナトリウム、マグネ
シウム、ギ酸等の1種又は2種以上が用いられるが、よ
り好ましくはヒドラジンにリン酸、酢酸、塩酸等を添加
してpHを1〜10、より好ましくはpHを5〜9に調
整した水溶液が好ましい、その際のヒドラジン濃度は3
モル/Q〜50ミリモル/Ωが好ましく、酸濃度は3モ
ル/Q〜10ミリモル/Ωが好ましい。
On the other hand, as the treatment method using a reducing agent, a method of chemically reducing polyaniline or a derivative thereof using a reducing agent may be employed. In this case, the reducing agent used is one or more of hydrogen gas, hydrazine hydrochloride, hydrazine, hydrogen sulfide, sodium sulfite, magnesium, formic acid, etc., but more preferably hydrazine, phosphoric acid, acetic acid, hydrochloric acid, etc. An aqueous solution in which the pH is adjusted to 1 to 10, more preferably 5 to 9 by adding hydrazine is preferable.
Mol/Q to 50 mmol/Ω is preferable, and the acid concentration is preferably 3 mol/Q to 10 mmol/Ω.

また、処理時間は1分〜5時間が好ましく、処理温度は
0〜40℃が好ましい。
Further, the treatment time is preferably 1 minute to 5 hours, and the treatment temperature is preferably 0 to 40°C.

更に、後処理として行なう中和処理の方法としては、p
 H3〜10、より好ましくはpH5〜9の公知の緩衝
液に1分〜50時間、より好ましくは10分〜6時間浸
漬する方法が採用され、この場合処理温度は0〜40’
Cが好適である。なお、酸性水溶液で合成されたポリア
ニリンはアンモニウム塩状態でそのPK値は1〜3であ
る。従って、通常の水洗も中和処理に含まれ、実際に水
洗に伴ってポリアニリンのPK値は3〜6にまで上昇す
る。また、この中和処理は、上記還元処理と同時に行な
い得る。
Furthermore, as a method of neutralization treatment performed as a post-treatment, p
A method of immersion in a known buffer solution of pH 3 to 10, more preferably pH 5 to 9 for 1 minute to 50 hours, more preferably 10 minutes to 6 hours is adopted, and in this case, the treatment temperature is 0 to 40'.
C is preferred. Note that polyaniline synthesized in an acidic aqueous solution is in an ammonium salt state and has a PK value of 1 to 3. Therefore, normal water washing is also included in the neutralization treatment, and the PK value of polyaniline actually increases to 3 to 6 with water washing. Moreover, this neutralization treatment can be performed simultaneously with the above-mentioned reduction treatment.

上述したメディエータで上記不導電性基体に形成された
貴金属薄膜表面を修飾する方法に制限はないが、貴金属
薄膜上に電解重合法によりメディエータ被膜を作成する
方法、メディエータ被膜をテフロンディスバージョンに
より塗布成形する方法などが有効である。なお、メディ
エータとしてポリアニリンを用いる場合には、ポリアニ
リンをジメチルホルムアミド等の溶媒に溶解して貴金属
薄膜上にキャストする方法が採用し得る。
There are no restrictions on the method of modifying the surface of the noble metal thin film formed on the non-conductive substrate with the above-mentioned mediator, but methods include forming a mediator film on the noble metal thin film by electrolytic polymerization, and coating and molding the mediator film by Teflon disversion. An effective method is to Note that when polyaniline is used as the mediator, a method may be adopted in which polyaniline is dissolved in a solvent such as dimethylformamide and cast on the noble metal thin film.

本発明の電極は、更にメディエータに酵素を固定するこ
とができ、固定される酵素としては、進行させたい化学
反応の種類に応じた基質特異性及び反応特異性等により
適宜選択され1例えば、グルコースオキシダーゼ、アル
コールデヒドロゲナーゼ、ウレアーゼ、グルコキナーゼ
、ペルオキシダーゼ、コレステロールエステラーゼ、リ
パーゼ、ホスホリパーゼ、カタラーゼ、乳酸デヒドロゲ
ナーゼ、グルコアミラーゼ、ガラクトースオキシダーゼ
、ペニシリナーゼ、チロシナーゼ等が挙げられる。
The electrode of the present invention can further immobilize an enzyme on the mediator, and the enzyme to be immobilized is appropriately selected depending on the substrate specificity and reaction specificity depending on the type of chemical reaction desired to proceed. Oxidase, alcohol dehydrogenase, urease, glucokinase, peroxidase, cholesterol esterase, lipase, phospholipase, catalase, lactate dehydrogenase, glucoamylase, galactose oxidase, penicillinase, tyrosinase and the like.

酵素を固定する方法としては、特に制限はないが、担体
結合法、共有結合法、イオン結合法、吸着法、架橋法な
どが挙げられ、中でも酵素を含む溶液を滴下、乾燥する
方法や、グルタルアルデヒドによりシッフ塩基を形成す
る方法が好適に用いられる。メディエータに対する酵素
の量としては1〜50,000単位/■が好適に使用さ
れる。
Methods for immobilizing enzymes are not particularly limited, but include carrier binding methods, covalent bonding methods, ionic bonding methods, adsorption methods, and crosslinking methods, among which methods include dropping a solution containing the enzyme and drying it, and glutaric A method of forming a Schiff base with an aldehyde is preferably used. The amount of enzyme to mediator is preferably 1 to 50,000 units/■.

処理温度としては0〜30℃、より好ましくは5〜20
℃、pHは3〜10の範囲が好ましい。
The treatment temperature is 0 to 30°C, more preferably 5 to 20°C.
C and pH are preferably in the range of 3 to 10.

本発明の電極は、電池電極、化学反応槽電極。The electrode of the present invention can be used as a battery electrode or a chemical reaction tank electrode.

センサー電極、燃料電池電極、バイオリアクター電極等
に好適に用いられる。
Suitable for use in sensor electrodes, fuel cell electrodes, bioreactor electrodes, etc.

この場合、センサーの構成としては、酸化還元酵素と本
発明の修飾電極を組み合わせて作成するバイオセンサー
が好適である。また、このようなバイオセンサーを作成
する場合、電極を構成するメディエータとして上述した
ように導電性高分子物質とベンゾキノン・フェロセン・
クロルアニル・チオニン・フェリシアン化カリウムの如
きメディエータ物質とを併用することができるが、これ
は測定可能な基質濃度域を拡大する効果がある。
In this case, a biosensor made by combining an oxidoreductase and the modified electrode of the present invention is suitable as a sensor configuration. In addition, when creating such a biosensor, conductive polymer substances such as benzoquinone, ferrocene, and
Mediator substances such as chloranyl, thionine, and potassium ferricyanide can be used in combination, but this has the effect of expanding the measurable substrate concentration range.

見匪夙紘果 以上説明したように、本発明の電極は、電池電極、化学
反応槽電極、センサー電極、燃料電池電極、バイオリア
クター電極等に好適に用いられる高機能性を有し、しか
も従来の資金a電極と比較して、?li極作製作製コス
トで優れているものである。
As explained above, the electrode of the present invention has high functionality suitable for use in battery electrodes, chemical reaction tank electrodes, sensor electrodes, fuel cell electrodes, bioreactor electrodes, etc. Compared to the fund a electrode? It is superior in production cost for Li electrodes.

以下、実施例と比較例を示し、本発明を具体的に説明す
るが1本発明は下記の実施例に制限されるものではない
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples; however, the present invention is not limited to the following Examples.

〔実施例〕〔Example〕

21角で厚さ125μのポリエチレンテレフタレートフ
ィルムに、電気抵抗がIKΩに達するまでパラジウムを
スパッタリングした。次に、このフィルムのスパッタリ
ング面にポリアニリンを10■テフロンデイスバージヨ
ンで混練り塗布し。
Palladium was sputtered onto a 21 square polyethylene terephthalate film having a thickness of 125 μm until the electrical resistance reached IKΩ. Next, polyaniline was kneaded and coated on the sputtering surface of this film using a 10-inch Teflon disk version.

修飾した。更に、グルタルアルデヒドを用いてグルコー
スオキシダーゼを固定し、#素電極を作成した。この電
極は、ブドウ糖のセンサー電極として用いられ、材料費
は50円であり、ブドウ糖100■/dilに対し、1
.6μAの電流応答を示した。
Qualified. Furthermore, glucose oxidase was immobilized using glutaraldehyde to create a # bare electrode. This electrode is used as a glucose sensor electrode, and the material cost is 50 yen.
.. It showed a current response of 6 μA.

〔比較例〕[Comparative example]

2cm角で厚さ100μの白金板に、グルタルアルデヒ
ドを用いてグルコースオキシダーゼを固定し、ブドウ糖
センサー用酵素電極を作成した。この電極の材料費は6
,000円であり、ブドウ糖100■/dllに対する
電流応答は12μAであった。
Glucose oxidase was immobilized on a 2 cm square, 100 μ thick platinum plate using glutaraldehyde to create an enzyme electrode for a glucose sensor. The material cost of this electrode is 6
,000 yen, and the current response to 100 μ/dll of glucose was 12 μA.

出願人  ブリデストン 株式会社 代理人  弁理士  小 島 隆 司Applicant Brideston Co., Ltd. Agent: Patent Attorney Takashi Kojima

Claims (1)

【特許請求の範囲】 1、不導電性基体上に貴金属薄膜層を形成すると共に、
該貴金属薄膜層表面をメディエータで修飾してなること
を特徴とする電極。 2、メディエータが導電性高分子物質である特許請求の
範囲第1項に記載の電極。 3、導電性高分子物質がポリアニリン又はその誘導体で
ある特許請求の範囲第2項に記載の電極。 4、貴金属がパラジウムである特許請求の範囲第1項乃
至第3項のいずれか1項に記載の電極。
[Claims] 1. Forming a noble metal thin film layer on a non-conductive substrate,
An electrode characterized in that the surface of the noble metal thin film layer is modified with a mediator. 2. The electrode according to claim 1, wherein the mediator is a conductive polymer substance. 3. The electrode according to claim 2, wherein the conductive polymer material is polyaniline or a derivative thereof. 4. The electrode according to any one of claims 1 to 3, wherein the noble metal is palladium.
JP62303011A 1987-11-30 1987-11-30 Electrode Pending JPH01144562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62303011A JPH01144562A (en) 1987-11-30 1987-11-30 Electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62303011A JPH01144562A (en) 1987-11-30 1987-11-30 Electrode

Publications (1)

Publication Number Publication Date
JPH01144562A true JPH01144562A (en) 1989-06-06

Family

ID=17915864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62303011A Pending JPH01144562A (en) 1987-11-30 1987-11-30 Electrode

Country Status (1)

Country Link
JP (1) JPH01144562A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337969A (en) * 1989-07-03 1991-02-19 Yuasa Battery Co Ltd Battery
JPH0688268A (en) * 1990-07-26 1994-03-29 Avl Ges Verbrennungskraftmas & Messtech Mbh Anode of electrochemical sensor device and production thereof
EP0608203A2 (en) * 1993-01-22 1994-07-27 SOCIETA' ITALIANA VETRO- SIV-SpA Electrochromic glass for use in cars and buildings
JP2017075939A (en) * 2015-10-15 2017-04-20 アークレイ株式会社 Biosensor, and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337969A (en) * 1989-07-03 1991-02-19 Yuasa Battery Co Ltd Battery
JPH0688268A (en) * 1990-07-26 1994-03-29 Avl Ges Verbrennungskraftmas & Messtech Mbh Anode of electrochemical sensor device and production thereof
EP0608203A2 (en) * 1993-01-22 1994-07-27 SOCIETA' ITALIANA VETRO- SIV-SpA Electrochromic glass for use in cars and buildings
EP0608203A3 (en) * 1993-01-22 1995-04-12 Siv Soc Italiana Vetro Electrochromic glass for use in cars and buildings.
JP2017075939A (en) * 2015-10-15 2017-04-20 アークレイ株式会社 Biosensor, and method for producing the same

Similar Documents

Publication Publication Date Title
EP0368209B1 (en) A process for immobilizing an enzyme on an electrode surface
Scheller et al. Second generation biosensors
Jönsson et al. An amperometric glucose sensor made by modification of a graphite electrode surface with immobilized glucose oxidase and adsorbed mediator
US7052591B2 (en) Electrodeposition of redox polymers and co-electrodeposition of enzymes by coordinative crosslinking
EP1472361B1 (en) Biosensor carrying redox enzymes
US20050130248A1 (en) Biosensor carrying redox enzymes
US20040238359A1 (en) Biosensor
JPS636451A (en) Enzyme sensor
EP1398626A1 (en) Biosensor
NL9002764A (en) ELECTRODE, FITTED WITH A POLYMER COATING WITH A REDOX ENZYM BOND TO IT.
JPS61274252A (en) Bioelectrochemical electrode and manufacture and usage thereof
Malinauskas et al. Bioelectrochemical sensor based on PQQ-dependent glucose dehydrogenase
Strike et al. Electrochemical techniques for the modification of microelectrodes
Voitechovič et al. Development of label-free impedimetric platform based on new conductive polyaniline polymer and three-dimensional interdigitated electrode array for biosensor applications
Sun Immobilization of horseradish peroxidase on a self-assembled monolayer modified gold electrode for the detection of hydrogen peroxide
CN111855778A (en) Electrochemical biosensor based on zwitter-ion hydrogel porous enzyme membrane modification
Calvo et al. Amperometric enzyme electrodes
EP0300082A2 (en) Enzyme electrode
Shin et al. Electrochemical characterization of polypyrrole/glucose oxidase biosensor: Part II. Optimal preparation conditions for the biosensor
Yabuki et al. Glucose-sensing carbon paste electrode containing polyethylene glycol-modified glucose oxidase
JPH01144562A (en) Electrode
JPH01206565A (en) Electrode
Iwuoha et al. Polymer-based amperometric biosensors
JPH0213842A (en) Oxygen electrode
Anzai et al. Use of the avidin-biotin system for immobilization of an enzyme on the electrode surface