JPH01144414A - Production of flame-retardant resin composition for laminated board - Google Patents

Production of flame-retardant resin composition for laminated board

Info

Publication number
JPH01144414A
JPH01144414A JP30290087A JP30290087A JPH01144414A JP H01144414 A JPH01144414 A JP H01144414A JP 30290087 A JP30290087 A JP 30290087A JP 30290087 A JP30290087 A JP 30290087A JP H01144414 A JPH01144414 A JP H01144414A
Authority
JP
Japan
Prior art keywords
reacting
diglycidyl ether
brominated bisphenol
flame
tables
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30290087A
Other languages
Japanese (ja)
Inventor
Mitsutoshi Kamata
満利 鎌田
Masaru Ogata
緒方 優
Yukihiro Yamashita
幸宏 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP30290087A priority Critical patent/JPH01144414A/en
Publication of JPH01144414A publication Critical patent/JPH01144414A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O

Abstract

PURPOSE:To obtain the title composition having improved flame retarding effect and excellent flexibility and heat-resistance and useful for the production of a laminated board, by using a reaction product produced by reacting a plurality of specific glycidyl ethers and reacting the product with triphenyl phosphite. CONSTITUTION:(A) A reaction product produced by reacting (i) a brominated bisphenol A diglycidyl ether with (ii) an adduct of brominated bisphenol A alkyl oxide and diglycidyl ether of formula I (R1 and R2 are -CH2-, -C2H4- or group of formula II; m and n are 1-6) in the presence of (iii) a tertiary amine as a catalyst and reacting the reaction product with (iv) triphenyl phosphite is made to react with (B) formaldehyde and then with (C) an aromatic amine of formula III (R3 is H or CnH2n+1; n is 1-3) to obtain the objective composition. The component C is preferably the aromatic amine of formula IV or formula V.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、難燃性、耐熱性、可撓性低温打抜き加工性に
優れた積層板を提供でき、貯蔵安定性に優れた積層板用
難燃性樹脂組成物の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention can provide a laminate with excellent flame retardancy, heat resistance, flexibility and low-temperature punching processability, and a flame retardant laminate with excellent storage stability. The present invention relates to a method for producing a synthetic resin composition.

従来の技術 近年、家庭用電気機器の安全性の面から、それに使用さ
れるプリント回路基板(積層板で構成される)の難燃化
の要求が高まって来た。同時に、多岐にわたる要求特性
項目の中でも、寸法精度の要求から低温打抜き加]ニ性
あるいは無加熱打法き加工性及び耐熱性にたいする要求
が年り厳しくなっている。
BACKGROUND OF THE INVENTION In recent years, in view of the safety of household electrical appliances, there has been an increasing demand for flame retardant printed circuit boards (composed of laminated boards) used therein. At the same time, among the wide variety of required property items, demands for low-temperature punching or no-heat punching processability and heat resistance are becoming increasingly strict due to demands for dimensional accuracy.

これに対し、従来の難燃樹脂あるいは難燃剤では、これ
らの要求を完全に満足することは困難であった。
In contrast, it has been difficult to completely satisfy these requirements with conventional flame retardant resins or flame retardants.

即ち、従来の難燃剤として、反応性を持たない低分子量
の添加型難燃剤と、反応性を持つ反応型難燃剤が知られ
ている。添加型難燃剤を使用した場合、これを配合した
樹脂の耐熱性、耐重品性、電気特性が低下し、さらに、
架橋密度の低下により、得られたf!層板の眉間密着性
が著しく低下する。特に、打抜き加工性については、眉
間はく離、打抜き時の粉落ち、ダイスの穴詰り等の欠点
が現われやすくなる。
That is, as conventional flame retardants, there are known low molecular weight additive flame retardants that do not have reactivity and reactive flame retardants that have reactivity. When additive flame retardants are used, the heat resistance, heavy-duty resistance, and electrical properties of the resin blended with them decrease, and furthermore,
Due to the reduction in crosslink density, the obtained f! The adhesion of the lamina between the eyebrows is significantly reduced. In particular, with regard to punching workability, defects such as flaking between the eyebrows, powder falling during punching, and die clogging are likely to occur.

反応型難燃剤を配合して使用した場合、前記の欠点は少
ないものの、積層板とした時の樹脂の架橋密度の増加に
より、積層板の軟化温度を高温側に移動させ、低温ある
いは無加熱の打抜きに適さなくなり、また、その反応性
のため、配合樹脂、塗工基材の貯蔵安定性が悪くなる。
When used in combination with reactive flame retardants, although the above-mentioned disadvantages are small, the increased crosslinking density of the resin when used as a laminate moves the softening temperature of the laminate to a higher temperature side, making it easier to use at low temperatures or without heating. It becomes unsuitable for punching, and due to its reactivity, the storage stability of the compounded resin and coated substrate deteriorates.

前者の代表的な例として、ブロム化ビスフェノールA1
ブロム化ジフエニルエール類、トリフェニルフォスフェ
ート及びそのアルキル誘導体があり、また、後者の代表
例として、ブロム化エポキシ樹脂がある。
A typical example of the former is brominated bisphenol A1
There are brominated diphenyl ales, triphenyl phosphate, and alkyl derivatives thereof, and a representative example of the latter is brominated epoxy resin.

実際には、多岐にわたる特性上の要求から、添加型と反
応型難燃剤の両者それぞれの長所短所を考慮しつつ両者
が併用されている。
In reality, due to a wide variety of property requirements, additive type flame retardants and reactive type flame retardants are used in combination, taking into account their respective advantages and disadvantages.

また、両者の併用、特にハロゲン(実用上Brが多用さ
れている)、リンの併用は別の側面からも利点がある。
In addition, the combination of both, particularly halogen (Br is often used in practice) and phosphorus, has advantages from other aspects as well.

即ち、難燃効果を持つ元素(ハロゲン、リン、窒素、ホ
ウ素等)を単独で使用する場合より、それらを複数併用
した場合の方が、相乗効果により難燃効果が増大し、結
果的に難燃剤の総使用量を減少することができる。また
、添加型難燃剤は、優れた可塑効果を持つため、その併
用により積層板の可撓性、打抜き加工性の向上を行うこ
とができる。
In other words, rather than using elements that have flame retardant effects (halogen, phosphorus, nitrogen, boron, etc.) alone, when multiple of them are used together, the flame retardant effect increases due to the synergistic effect, and as a result, the flame retardant effect increases. The total amount of fuel used can be reduced. Further, since the additive flame retardant has an excellent plasticizing effect, the flexibility and punching workability of the laminate can be improved by using it in combination.

しかし、例を最も使用頻度の高いBr、 Pの複合系に
ついて挙げると、Br系のものは、添加型と反応型の両
方が実用化されているが、P系のものについては添加型
しか実用化されていない。
However, to give an example of the most frequently used composite system of Br and P, both the additive type and the reactive type are in practical use for the Br type, but only the additive type is in practical use for the P type. has not been standardized.

従って、Br、 Pの複合系において、最適難燃効果を
示す配合比を探し得たとしても、前述の添加型難燃剤の
持つ欠点のため、簡単に使用量を増加することができず
、充分な可撓性を発揮する所まで、増量することができ
なかった。
Therefore, even if it were possible to find a blending ratio that exhibits the optimal flame retardant effect in a composite system of Br and P, due to the disadvantages of additive flame retardants mentioned above, it is not possible to easily increase the amount used, and it is not sufficient to It was not possible to increase the amount to the point where it exhibited sufficient flexibility.

発明が解決しようとする問題点 以上から、従来リン系化合物を使用する難燃性樹脂及び
難燃剤は積層板特性上での様々な制約から、最適な難燃
効果を得るための配合比率の自由度が非常に狭く、必ず
しも最も難燃効果の高い配合系が選択されているとは言
えなかった。
Problems to be Solved by the Invention From the above, flame retardant resins and flame retardants that conventionally use phosphorus compounds have various restrictions on the properties of laminates, so there is a lack of freedom in the blending ratio to obtain the optimal flame retardant effect. The degree of flame retardancy was very narrow, and it could not be said that the blending system with the highest flame retardant effect was necessarily selected.

本発明は、上記の点に鑑み、これを配合使用して、難燃
性、耐熱性、可撓性、低温打抜き加工性に優れた積層板
を得られ、また、貯蔵安定性に優れた積層板用難燃性積
層板用樹脂組成物を提供することを目的とする。
In view of the above-mentioned points, the present invention provides a laminated board that is excellent in flame retardancy, heat resistance, flexibility, and low-temperature punching processability by blending and using the same, and also has excellent storage stability. The object of the present invention is to provide a resin composition for flame-retardant laminates.

問題点を解決するための手段 本発明は上記の目的を達成するためになされたもので、
ブロム化ビスフェノールAジグリシジルエーテルと一般
式(1)で示されるブロム化ビスフェノールAアルキル
オキシド付加物ジグリシジルエーテルを第三級アミンを
触媒として反応指せた後、トリフェニルフォスファイト
((C6HsO)sP)を反応させさらにホルムアルデ
ヒドを反応させ、次いで一般式(2)で示される芳香族
アミンを反応させる積層板用難燃性樹脂組物の製造法で
ある。
Means for Solving the Problems The present invention has been made to achieve the above objects.
After reacting brominated bisphenol A diglycidyl ether with brominated bisphenol A alkyl oxide adduct diglycidyl ether represented by general formula (1) using a tertiary amine as a catalyst, triphenylphosphite ((C6HsO)sP) is produced. This is a method for producing a flame-retardant resin composite for a laminate, which involves reacting formaldehyde, followed by reacting an aromatic amine represented by general formula (2).

\/ (ここで、R,−HまたはCn H! n * 11、
n=1〜3) 上述特定発明に対して、第二の発明は、−最大(1)で
示される芳香族アミンに替えて式(3)で示される芳香
族アミンを使用する場合であり、第三の発明は、−最大
(2)で示される芳香族アミンに替えて式(4)で示さ
れる芳香族アミンを使用する場合である。
\/ (Here, R, -H or Cn H! n * 11,
n = 1 to 3) In contrast to the above-mentioned specific invention, the second invention is a case in which an aromatic amine represented by formula (3) is used in place of the aromatic amine represented by -maximum (1), The third invention is a case where an aromatic amine represented by formula (4) is used in place of the aromatic amine represented by -maximum (2).

作用 本発明では、ブロム化ビスフェノールAジグリシジルエ
ーテルと一般式(1)で示されるブロム化ビスフェノー
ルAアルキルオキシド付加物ジグリシジルエーテルを反
応させることにより、後者のアルキルオキシド構造によ
り、可撓性を与え、従来ブロム化ビスフェノールAジグ
リシジルエーテルにおいて充分ではなかった可撓性を発
揮させ、かつ、なお反応分子末端には反応基であるエポ
キシ基を残すことにより、可撓性に優れた反応型難燃性
樹脂を得ることができる。
Effect In the present invention, by reacting brominated bisphenol A diglycidyl ether with brominated bisphenol A alkyl oxide adduct diglycidyl ether represented by the general formula (1), flexibility is imparted by the alkyl oxide structure of the latter. , a reactive flame retardant with excellent flexibility by exhibiting flexibility that was not sufficient in conventional brominated bisphenol A diglycidyl ether, and by leaving an epoxy group, which is a reactive group, at the end of the reactive molecule. It is possible to obtain a synthetic resin.

同時に、アルキルオキシド基の分子骨格に入れる事はブ
ロム1損されたビスフェノールA構造って広げることに
tつ、これによって粕晶m+抑制するため、貯蔵安定性
が向上する。
At the same time, incorporating an alkyl oxide group into the molecular skeleton expands the bisphenol A structure with one bromine loss, which suppresses lees crystallization and improves storage stability.

−最大(1)においてR,SR,が炭素数4以上となる
と耐熱性が若干低下し、また、得られた組成物をメタノ
ールリッチなフェノール樹脂に配合して使用すると相溶
性が低下する。
- When R, SR, and the number of carbon atoms in maximum (1) are 4 or more, the heat resistance decreases slightly, and when the resulting composition is used by blending it with a methanol-rich phenol resin, the compatibility decreases.

上記お反応工程で使用ずに触媒としてはトリメチルアミ
ン、トリエチルアミン、トリエタノールアミン、ベンジ
ルジメチルアミン等の第三級アミンである。第一、二級
アミンを使用すると、三次元の架#j構造が生成しやす
くなり、得られた組成物を配合するフェノール樹脂との
相溶性が失われる。
Catalysts that are not used in the above reaction steps include tertiary amines such as trimethylamine, triethylamine, triethanolamine, and benzyldimethylamine. When a primary or secondary amine is used, a three-dimensional bridge #j structure is likely to be formed, and the resulting composition loses compatibility with the phenol resin blended therein.

トリフェニルフォスファイトを反応させる工程では、ト
リフェニルフォスファイトはブロム化ビスフェノールA
ジグリシジルエーテルと一般式(1)で示される化合物
の反応が持つ水酸基とエステル反応をおこし、フェノー
ルを放出しながら該反応物分子に化学的に結合する(式
(5)を参照)。
In the step of reacting triphenylphosphite, triphenylphosphite is converted into brominated bisphenol A.
An ester reaction occurs with the hydroxyl group of the diglycidyl ether and the compound represented by the general formula (1), and the compound chemically bonds to the reactant molecules while releasing phenol (see formula (5)).

−OH+C>o−p−+o−Q)g H トリフェニルフォスファイトは、三官能のため、それ自
身が架橋形成の中心となり得る。この反応により、トリ
フェニルフォスファイトは、前記反応物の架橋に関与し
、その骨格に取り込まれて行くため、前記の添加型リン
酸エステル類の持つ諸欠点を顕在化させずに、従来より
高いリン含有量を持たせる事が可能であり、Br、 P
の難燃性に対する相乗効果が最も効果的な所まで使用量
を増加することができる。式(5)に示した様に、トリ
フェニルフォスファイトが水酸基1モルとエステル反応
を行うと、1モルのフェノールが生成する。生成フェノ
ールは、エポキシ基と反応することにより、若干架橋密
度を低下させ、さらに可撓性を向上させる。しかし、こ
のままでは、未反応のフェノールが残存することは避け
られない、従って、本発明は、次の工程で、さらに、生
成フェノールをメチロール化して反応性を持たせるため
、ホルムアルデヒドを加えて反応させる。
-OH+C>o-p-+o-Q)g H Since triphenylphosphite is trifunctional, it can itself become the center of crosslink formation. Through this reaction, triphenylphosphite participates in the crosslinking of the reactant and is incorporated into its skeleton. It is possible to have a phosphorus content, Br, P
The amount used can be increased to the point where the synergistic effect on flame retardancy is most effective. As shown in formula (5), when triphenylphosphite undergoes an ester reaction with 1 mole of hydroxyl group, 1 mole of phenol is produced. By reacting with the epoxy group, the generated phenol slightly lowers the crosslink density and further improves flexibility. However, if this continues, it is inevitable that unreacted phenol will remain.Therefore, in the next step, in order to methylolize the produced phenol and make it reactive, formaldehyde is added and reacted. .

さらに、次の工程で、−最大(2)或は式(3)(4)
で示される芳香族アミンを添加して反応させ、系中に残
存するエポキシ基に対して、同等のアミン当量となる様
添加することによって残存エポキシ基と結合させる。前
記芳香族アミンは、−N H,基に対してオルト位がホ
ルムアルデヒドによってメチロール化される能力を残し
ており、本発明により得た組成物をフェノール樹脂に配
合して用いたとき、硬化反応の過程でフェノール樹脂と
の結合を容易に進める事ができる。
Furthermore, in the next step, −maximum (2) or equations (3) and (4)
An aromatic amine represented by is added and reacted, and the amine is added to the epoxy group remaining in the system so as to have an equivalent amine equivalent, thereby bonding with the remaining epoxy group. The aromatic amine has the ability to be methylolated by formaldehyde at the position ortho to the -NH group, and when the composition obtained according to the present invention is blended with a phenol resin and used, the curing reaction is suppressed. During the process, bonding with phenolic resin can be easily promoted.

この様にして、この反応組成物全体を、これを配合する
相手であるフェノール樹脂と結合させることにより、添
加型、難燃樹脂及び難燃剤に類似する欠点を完全に克服
することができる。
In this way, by combining the entire reactive composition with the phenolic resin with which it is blended, the disadvantages similar to additives, flame retardant resins and flame retardants can be completely overcome.

実施例 本発明を実施するに当たり、ブロム化ビスフェノールA
ジグリシジルエーテルと一般式(1)で示されるブロム
化ビスフェノールAアルキルオキシド添加物ジグリ・シ
ジルエーテルの混合比については、特に制限するもので
はないが、可撓性、貯蔵安定性に対して効果を発揮する
ためには、後者が5重量以上であることが望ましい。
EXAMPLE In carrying out the present invention, brominated bisphenol A
The mixing ratio of diglycidyl ether and the brominated bisphenol A alkyl oxide additive diglycidyl ether represented by the general formula (1) is not particularly limited; In order to achieve the desired effect, it is desirable that the latter weighs 5 or more.

後者が増加して来ると、可撓性、貯蔵性安全性は向上す
るため、難燃剤として配合するとき単独で使用しても良
い、しかし、前者に比較するとBr含有率が小さいため
、所定の難燃効果を得るために適用系に応じて三者の混
合比率を調整する方が良い、第三級アミン触媒の添加量
としては、ブロム化ビスフェノールAジグリシジルエー
テルと一般式(1)で示される化合物の固形と一般式(
1)で示される化合物の反応物に対し、トリフェニルフ
ォスファイトの使用比率については1、未反応のトリフ
ェニルフォスファイトが残存することを避けるため、〔
前記反応物の水酸基当量〕≧〔トリフェニルフォスファ
イトの分子量Xi/3)となる様にした方が良い。
As the latter increases, flexibility and storage safety improve, so it may be used alone when compounding as a flame retardant. However, since the Br content is small compared to the former, In order to obtain a flame retardant effect, it is better to adjust the mixing ratio of the three components depending on the application system.As for the amount of tertiary amine catalyst added, the amount of brominated bisphenol A diglycidyl ether and the general formula (1) shown in Solid state and general formula (
The ratio of triphenylphosphite to the reactant of the compound shown in 1) is 1. In order to avoid unreacted triphenylphosphite remaining,
It is preferable that the reaction product satisfies the following relationship: hydroxyl group equivalent of the reactant]≧[molecular weight of triphenylphosphite Xi/3].

ホルムアルデヒドの使用量としては1、〔トリフェニル
フォスファイトのモル数×3〕≧〔ホルムアルデヒドの
モル数〕≧〔トリフェニルフォスファイトのモル数〕の
範囲が望ましい。
The amount of formaldehyde used is preferably in the range of 1, [number of moles of triphenylphosphite x 3]≧[number of moles of formaldehyde]≧[number of moles of triphenylphosphite].

過剰に使用すると、反応後にホルムアルデヒドが残存し
、少ない場合、フェノールが残存する。
If used in excess, formaldehyde will remain after the reaction, and if used in excess, phenol will remain.

さらに、−a式(2)、或は式(3)(4)で示される
芳香族アミンの添加量が前段の反応後に残存するエポキ
シ基のモル数よりも、NH基モル数が多くなる場合、残
存するNH基の作用により、フェノール樹脂との配合溶
液の保存安定性が悪(なり、極端な場合、配合後直ちに
白濁する場合もある。また、芳香族アミの添加量が前記
の残存エポキシ基のモル数に比較して少ない場合、残存
するエポキシ基の作用により、やはり、フェノール樹脂
との配合溶液及びこの溶液を含浸した塗工基材の保存安
定性が悪くなる。
Furthermore, when the amount of aromatic amine added represented by -a formula (2) or formulas (3) and (4) is such that the number of moles of NH groups is greater than the number of moles of epoxy groups remaining after the first stage reaction. Due to the action of the remaining NH groups, the storage stability of the blended solution with the phenol resin becomes poor (in extreme cases, it may become cloudy immediately after blending). If the number of moles is small compared to the number of moles of the group, the storage stability of the mixed solution with the phenol resin and the coated substrate impregnated with this solution will deteriorate due to the action of the remaining epoxy groups.

本発明の難燃性樹脂は、これを単独で使用しても、ある
いは、比較的少量のトリエチルアミン〔ト、プロふ化ジ
フェニルエーテル等の添加型難燃剤と併用することも可
能であるが、いずれの場合も難燃性樹脂及び難燃剤の総
使用量を減少することができる。
The flame-retardant resin of the present invention can be used alone or in combination with a relatively small amount of an additive flame retardant such as triethylamine, pro-phenyl ether, etc. It is also possible to reduce the total amount of flame retardant resin and flame retardant used.

本発明実施例を詳細に説明する。Embodiments of the present invention will be described in detail.

実施例1 ブロム含有率48%、エポキシ当量400、水酸基当量
2.200のブロム化ビスフェノールAジグリシジルエ
ーテルの60%トルエン溶液613gとジメチルベンジ
ルアミン2.76gを三ツロフラスコに投入し、90℃
で3時間反応させた。
Example 1 613 g of a 60% toluene solution of brominated bisphenol A diglycidyl ether with a bromine content of 48%, an epoxy equivalent of 400, and a hydroxyl equivalent of 2.200 and 2.76 g of dimethylbenzylamine were charged into a Mitsuro flask and heated at 90°C.
The mixture was allowed to react for 3 hours.

次にトリフェニルフォスファイト20gを投入し、80
℃で4時間反応後、86%バラホルムアルデヒド12g
を加え、さらに80℃で2時間反応させた。
Next, add 20g of triphenylphosphite and add 80g of triphenylphosphite.
After reacting for 4 hours at °C, 12 g of 86% paraformaldehyde
was added, and the mixture was further reacted at 80°C for 2 hours.

続いて、ジアミノジフェニルメタン57gを加え、さら
に80℃で1時間反応を続けた(反応物1)。
Subsequently, 57 g of diaminodiphenylmethane was added, and the reaction was further continued at 80° C. for 1 hour (Reactant 1).

また、別途、本発明により得た反応物、1を配合する桐
油変性フェノール樹脂を次の様にして得た。
Separately, a tung oil-modified phenol resin containing the reactant 1 obtained according to the present invention was obtained in the following manner.

三ツロフラスコに桐油720g5rn−クレゾール58
0 g 、パラトルエンスルホン酸0.74gヲ投大投
入80℃で1時間反応後、フェノール500 g 。
Tung oil 720g in a Mitsuro flask 5rn-cresol 58
0 g and 0.74 g of p-toluenesulfonic acid were added, and after reacting at 80°C for 1 hour, 500 g of phenol was added.

86%パラホルムアルデヒド450g、25%アンモニ
ア水35gを投入し、80″Cで反応を進めて、反応性
成物の160℃熱盤上での硬化時間が6分になった時点
で脱水濃縮し、後にメタノールを加え、樹脂分50 %
 ニIlI N シタ。
Add 450 g of 86% paraformaldehyde and 35 g of 25% ammonia water, proceed with the reaction at 80''C, and when the curing time of the reactive composition on a 160°C hot plate reaches 6 minutes, dehydrate and concentrate. Afterwards, methanol is added to reduce the resin content to 50%.
NIILI N Sita.

ごの桐油変性フェノール樹脂と前記反応物1を固形分比
率で【桐油変性フェノール樹脂〕/(反応物1 )−8
0/20の割合で混合溶解し、この溶液を11ミルスの
クラフト紙に樹脂付着量50組合せ、加熱・加圧して厚
さ1.6m+aの片面銅張り積層板を得た。
The solid content ratio of the tung oil-modified phenolic resin and the reactant 1 is [tung oil-modified phenolic resin]/(reactant 1) -8
The mixtures were mixed and dissolved in a ratio of 0/20, and this solution was applied to 11 mils kraft paper in an amount of 50 resins, and heated and pressurized to obtain a single-sided copper-clad laminate with a thickness of 1.6 m+a.

実施例2 ブロム含有率48%、エポキシ当I400、水酸基当量
2.200のブロム化ビスフェノールAジグリシジルエ
ーテルの60%トルエン溶H1,380gと式(ロ)で
示されるジグリシジルエーテルの60%トルエン溶液1
53gとトリエチルアミン1.84 gを三ツロフラス
コに投入し、90℃で3時間反応させた。
Example 2 A 60% toluene solution of brominated bisphenol A diglycidyl ether with a bromine content of 48%, an epoxy equivalent of I of 400, and a hydroxyl equivalent of 2.200 (1,380 g) and a 60% toluene solution of a diglycidyl ether represented by formula (b) 1
53 g and 1.84 g of triethylamine were charged into a Mitsuro flask and reacted at 90° C. for 3 hours.

CH。CH.

次に、トリフェニルフォスファイト30gを投入し、8
o″Cで4時間反応後、86%バラホルムアルデヒド1
5gを加え、さらにao”cで2時間反応させた。
Next, add 30g of triphenylphosphite and
After reacting for 4 hours at o''C, 86% paraformaldehyde 1
5 g was added, and the reaction was further carried out for 2 hours at ao''c.

続いて、ジアミノンジフェニルスルフォン240gを加
え、さらに80″Cで1時間反応を続けた(反応物2)
Subsequently, 240 g of diaminone diphenyl sulfone was added, and the reaction was further continued for 1 hour at 80"C (Reactant 2)
.

反応物2と実施例1における桐油変性フェノール樹脂を
用い、以下、実施例1と同様の配合量、方法により厚さ
1.6■の片面銅張り積層板を得た。
Using Reactant 2 and the tung oil-modified phenolic resin in Example 1, a single-sided copper-clad laminate with a thickness of 1.6 cm was obtained using the same blending amounts and method as in Example 1.

実施例3 ブロム含有率48%、エポキシ当量400、水酸基当量
2,200のブロム化ビスフェノールAジグリシジルエ
ーテル と式(C)で示されるジグリシジルエーテルの60%ト
ルエン溶液183gとトリエタノール220gを三ツロ
フラスコに投入し、90℃で3時間反応させた。
Example 3 Brominated bisphenol A diglycidyl ether having a bromine content of 48%, an epoxy equivalent of 400, and a hydroxyl equivalent of 2,200, 183 g of a 60% toluene solution of the diglycidyl ether represented by formula (C), and 220 g of triethanol were placed in a Mitsuro flask. and reacted at 90°C for 3 hours.

CH,+ 次に、トリフェニルフォスファイト32gを投入し、8
0°Cで4時間反応後、86%バラホルムアアルデヒド
16gを加え、さらに80°Cで2時間反応させた。
CH,+ Next, 32g of triphenylphosphite was added, and 8
After reacting at 0°C for 4 hours, 16g of 86% paraformaldehyde was added, and the reaction was further carried out at 80°C for 2 hours.

続いて、ジアミノジフェニルエーテル180gを加え、
さらに80℃で1時間反応を続けた(反応物3)。
Subsequently, 180 g of diaminodiphenyl ether was added,
The reaction was further continued at 80° C. for 1 hour (reactant 3).

反応物3と実施例1における桐油変性フェノール樹脂を
用い、以下、実施例1と同様の配合量、方法により厚さ
1.6auaの片面銅張り積層板を得た。
Using Reactant 3 and the tung oil-modified phenol resin in Example 1, a single-sided copper-clad laminate having a thickness of 1.6 aua was obtained using the same blending amount and method as in Example 1.

比較例1 実施例1で使用した桐油変性フェノール樹脂と、ブロム
含有率48%、エポキシ当1400のブロム化ビスフェ
ノールAジグリシジルエーテルの60%トルエン溶液を
固形分比率で〔桐油変性フェノール樹1M)/(ブロム
化ビスフェノールAジグリシジルエーテル) −80/
20の割合で混合溶解した。この溶液を実施例1と同様
のクラフト紙に塗工乾燥して塗工乾燥紙とし、以下実施
例1と同様の方法で厚さ1.6mmの片面銅張り積層板
を得た。
Comparative Example 1 The tung oil modified phenolic resin used in Example 1 and a 60% toluene solution of brominated bisphenol A diglycidyl ether with a bromine content of 48% and an epoxy weight of 1400 were mixed at a solid content ratio [tung oil modified phenolic resin 1M]/ (Brominated bisphenol A diglycidyl ether) -80/
They were mixed and dissolved at a ratio of 20%. This solution was coated and dried on the same kraft paper as in Example 1 to obtain a coated dry paper, and then in the same manner as in Example 1, a single-sided copper-clad laminate with a thickness of 1.6 mm was obtained.

比較例2 実施例1で使用した桐油変性フェノール樹脂と比較例1
で使用したブロム化ビスフェノールAジグリシジルエー
テルと、トリフェニルホスフェートを固形分比率で〔桐
油変性フェノール樹脂]/〔ブロム化ビスフェノールA
ジグリシジルエーテル〕/(トリフェニルフォスホスフ
ェート) −60/30/10の割合で混合溶解した。
Comparative Example 2 Tung oil modified phenolic resin used in Example 1 and Comparative Example 1
Brominated bisphenol A diglycidyl ether and triphenyl phosphate used in solid content ratio [tung oil modified phenol resin]/[brominated bisphenol A]
diglycidyl ether]/(triphenyl phosphate) - mixed and dissolved in a ratio of 60/30/10.

この溶液を実施例1と同様のクラフト紙に塗工乾燥して
塗工乾燥紙とし、以下、実施例1と同様の方法で厚さ1
.6鵬の片面銅張り積層板を得た。
This solution was coated on the same kraft paper as in Example 1 and dried to obtain a coated dry paper.
.. A single-sided copper-clad laminate of 6 pores was obtained.

実施例、比較例で得た積層板の試験結果を第1表に示す
.また、難燃樹脂溶液の貯蔵安定性と塗工乾燥紙の貯蔵
安定性についても併せて示した。
Table 1 shows the test results for the laminates obtained in Examples and Comparative Examples. The storage stability of the flame retardant resin solution and the coated dry paper are also shown.

発明の効果 以上の試験結果から、本発明により、難燃効果が向上し
、可撓性、耐熱性に優れたa層板の製造に寄与でき、樹
脂溶液及び塗工乾燥紙の貯蔵安定性が向上する。また、
本発明の手法により、系中に未反応の可塑剤的作用を示
す成分をほとんど含まないようにできるため、上記の効
果に加えて、積M@の耐薬品性も著しく向上する。
From the test results that exceed the effects of the invention, the present invention improves the flame retardant effect, contributes to the production of A-layer plates with excellent flexibility and heat resistance, and improves the storage stability of resin solutions and coated dry paper. improves. Also,
By the method of the present invention, the system can contain almost no unreacted components that act as plasticizers, so in addition to the above-mentioned effects, the chemical resistance of the product M@ is also significantly improved.

Claims (1)

【特許請求の範囲】 1、ブロム化ビスフェノールAジグリシジルエーテルと
一般式(1) ▲数式、化学式、表等があります▼(1) 〔R_1、R_2=−CH_2−、C_2−H_4−▲
数式、化学式、表等があります▼より選ばれる。 m、n=1〜6の整数〕 で示されるブロム化ビスフェノールAアルキルオキシド
付加物ジグリシジルエーテルを第三級アミンを触媒とし
て反応させた後、トリフェニルフォスファイトを反応さ
せて得られた反応物に、ホルムアルデヒドを反応させ、
さらに一般式(2) ▲数式、化学式、表等があります▼(2) (ここで、R_3=HまたはC_nH_2_n_+_1
n=1〜3) で示される芳香族アミンを反応させる積層板用難燃性樹
脂組成物の製造法。 2、ブロム化ビスフェノールAジグリシジルエーテルと
一般式(1) ▲数式、化学式、表等があります▼(1) 〔R_1、R_2=−CH_2−、C_2H_4−▲数
式、化学式、表等があります▼より選ばれる。 m、n=1〜6の整数〕 で示されるブロム化ビスフェノールAアルキルオキド付
加物ジグリシジルエーテルを第三級アミンを触媒として
反応させた後、トリフェニルフォスファイトを反応させ
て得られた反応物に、ホルムアルデヒドを反応させ、さ
らに式(3)▲数式、化学式、表等があります▼(3) で示される芳香族アミンを反応させる積層板用難燃性樹
脂組成物の製造法。 3、ブロム化ビスフェノールAジグリシジルエーテルと
一般式(1) ▲数式、化学式、表等があります▼(1) 〔R_1、R_2=−CH_2−、C_2H_4−▲数
式、化学式、表等があります▼より選ばれる。 m、n=1〜6の整数〕 で示されるブロム化ビスフェノールAアルキルオキド付
加物ジグリシジルエーテルを第三級アミンを触媒として
反応させた後、トリフェニルフォスファイトを反応させ
て得られた反応物に、ホルムアルデヒドを反応させ、さ
らに一般式(4)▲数式、化学式、表等があります▼(
4) で示される芳香族アミンを反応させる積層板用難燃性樹
脂組成物の製造法。
[Claims] 1. Brominated bisphenol A diglycidyl ether and general formula (1) ▲ Numerical formulas, chemical formulas, tables, etc. are available ▼ (1) [R_1, R_2=-CH_2-, C_2-H_4-▲
There are mathematical formulas, chemical formulas, tables, etc. Selected from ▼. m, n = integer of 1 to 6] A reaction product obtained by reacting a brominated bisphenol A alkyl oxide adduct diglycidyl ether shown using a tertiary amine as a catalyst, and then reacting it with triphenylphosphite. , react with formaldehyde,
Furthermore, general formula (2) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (2) (Here, R_3=H or C_nH_2_n_+_1
A method for producing a flame-retardant resin composition for a laminate, which comprises reacting an aromatic amine represented by n=1 to 3). 2. Brominated bisphenol A diglycidyl ether and general formula (1) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (1) [R_1, R_2 = -CH_2-, C_2H_4- ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ To be elected. m, n = an integer of 1 to 6] After reacting the brominated bisphenol A alkyl oxide adduct diglycidyl ether represented by tertiary amine as a catalyst, the reaction product obtained by reacting triphenylphosphite with A method for producing a flame-retardant resin composition for a laminate, which comprises reacting formaldehyde and then reacting an aromatic amine represented by formula (3). 3. Brominated bisphenol A diglycidyl ether and general formula (1) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (1) [R_1, R_2 = -CH_2-, C_2H_4- ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ To be elected. m, n = an integer of 1 to 6] After reacting the brominated bisphenol A alkyl oxide adduct diglycidyl ether represented by tertiary amine as a catalyst, the reaction product obtained by reacting triphenylphosphite with , formaldehyde is reacted, and general formula (4) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (
4) A method for producing a flame-retardant resin composition for a laminate, which involves reacting an aromatic amine represented by the following.
JP30290087A 1987-11-30 1987-11-30 Production of flame-retardant resin composition for laminated board Pending JPH01144414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30290087A JPH01144414A (en) 1987-11-30 1987-11-30 Production of flame-retardant resin composition for laminated board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30290087A JPH01144414A (en) 1987-11-30 1987-11-30 Production of flame-retardant resin composition for laminated board

Publications (1)

Publication Number Publication Date
JPH01144414A true JPH01144414A (en) 1989-06-06

Family

ID=17914457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30290087A Pending JPH01144414A (en) 1987-11-30 1987-11-30 Production of flame-retardant resin composition for laminated board

Country Status (1)

Country Link
JP (1) JPH01144414A (en)

Similar Documents

Publication Publication Date Title
JPH0411662A (en) Flame-retardant thermosetting resin composition
EP2050756A1 (en) Phosphorus-containing benzoxazine compound, process for production thereof, curable resin composition, cured article, and laminate plate
KR100310313B1 (en) Containing Flame Retardant For Epoxy Resin Materials
JPS636016A (en) Production of flame-retarding resin composition for laminate
JPH01144414A (en) Production of flame-retardant resin composition for laminated board
JPS58189219A (en) Flame retardant for thermosetting resin
JPH01118520A (en) Preparation of flame-retardant resin composition for laminate
JPH01223158A (en) Flame-retardant phenolic resin composition
JPH01118521A (en) Preparation of flame-retardant resin composition for laminate
JPH0315927B2 (en)
JPH01144413A (en) Production of flame-retardant resin composition for laminated board
JPS5938104B2 (en) Method for manufacturing paper-based flame-resistant phenolic resin laminate
JPS6357627A (en) Production of flame-retarding resin composition for laminate
JPH01115922A (en) Production of flame-retardant resin composition for laminated board
JPH01108229A (en) Production of flame-retarding laminate
JPS60192732A (en) Production of laminated sheet
JP3148050B2 (en) Manufacturing method of flame retardant copper clad laminate
JPS5853909A (en) Preparation of modified phenolic resin composition for flame retardant laminate
JPH01118522A (en) Preparation of flame-retardant resin composition for laminate
JPS6356517A (en) Production of flame-retardant resin composition for laminated sheet
JPS6033140B2 (en) Flame retardant phenolic resin composition
JPH0393849A (en) Flame-retardant phenol resin composition
JPS6112720A (en) Flame-retardant for laminate
JPS636014A (en) Production of flame-retarding resin composition for laminate
JPH0267310A (en) Non-flammable phenol resin composition and laminate