JPH01144359A - Switching power circuit - Google Patents

Switching power circuit

Info

Publication number
JPH01144359A
JPH01144359A JP62302878A JP30287887A JPH01144359A JP H01144359 A JPH01144359 A JP H01144359A JP 62302878 A JP62302878 A JP 62302878A JP 30287887 A JP30287887 A JP 30287887A JP H01144359 A JPH01144359 A JP H01144359A
Authority
JP
Japan
Prior art keywords
output
voltage
circuit
overcurrent
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62302878A
Other languages
Japanese (ja)
Inventor
Koichi Ariga
有賀 浩一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP62302878A priority Critical patent/JPH01144359A/en
Publication of JPH01144359A publication Critical patent/JPH01144359A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/46Inputs being a function of speed dependent on a comparison between speeds
    • F16H2059/465Detecting slip, e.g. clutch slip ratio
    • F16H2059/467Detecting slip, e.g. clutch slip ratio of torque converter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • F16H2061/66281Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing by increasing the line pressure at the occurrence of input torque peak

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Protection Of Static Devices (AREA)

Abstract

PURPOSE:To simplify a circuit constitution by supplying the overcurrent detection output in addition to the output voltage detection output to a variable constant voltage element controlling a photocoupler which is commonly provided. CONSTITUTION:A switching power circuit 10 is equipped with an adder 17, and the detected output V1 of an output voltage detection circuit 15 provided in relation to a secondary coil 3b is supplied to an error amplifier 16 through the adder 17. Overcurrent detection circuits 25B-25D are respectively provided to each of secondary coils 3a-3d, and its detected output V2 is supplied to the adder 17 to add to said detected output V1. The output of the error amplifier 16 controls the photocoupler 22 which functions as a common signal transfer means 22. A controlling circuit 20 of a primary coil 3a side is constituted of an error voltage detection circuit 21 and so on. Said adding output is thereby supplied to the common signal transfer means 22 through the error amplifier 16, and is guided to a light emission section 22b.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、スイッチング電源回路、特に過電流保護機
能を有したスイッチング電源回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a switching power supply circuit, and particularly to a switching power supply circuit having an overcurrent protection function.

[従来の技術] スイッチング電源回路は周知のように1次コイル側に加
えられる直流電圧をスイッチング素子によっ゛て断続き
せることにより、その2次コイル側に安定化された所定
の一出力電圧を得るようにしたものである。
[Prior Art] As is well known, a switching power supply circuit uses a switching element to intermittent a DC voltage applied to a primary coil, thereby producing a stabilized predetermined output voltage on the secondary coil. It was designed to obtain

第3図はこの種スイッチング電源回路10の要部の一例
を示す系統図であって、電源トランス3の1次コイル3
a、側には、この1次コイル3aに印加された直流電圧
をスイッチングするスイッチング素子11が設けられて
いる。
FIG. 3 is a system diagram showing an example of the main parts of this type of switching power supply circuit 10, in which the primary coil 3 of the power transformer 3
A switching element 11 for switching the DC voltage applied to the primary coil 3a is provided on the a side.

スイッチング素子11にはパルス輻変調されたスイッチ
ング信号が印加される。そのため、発振1112が設け
られ、その発振出力がパルス幅制御回路13に供給され
て、後述する制御信号によって発振出力のパルス幅がコ
ントロールされる。
A pulse modulated switching signal is applied to the switching element 11 . Therefore, an oscillation 1112 is provided, and its oscillation output is supplied to a pulse width control circuit 13, and the pulse width of the oscillation output is controlled by a control signal described later.

電源トランス3の2次側には、単一若しくは複数、この
例では複数の2次コイル3b、3c及び3dが巻回され
、夫々より各負荷6B〜6Dに対して所定の出力電圧が
得られるようになされている。
On the secondary side of the power transformer 3, a single or multiple secondary coils 3b, 3c, and 3d are wound, in this example, a plurality of secondary coils 3b, 3c, and 3d, each of which provides a predetermined output voltage for each load 6B to 6D. It is done like this.

そして、その内の1つの2次コイル3bには、各出力電
圧の安定化を図るために、出力電圧の横出回路15が設
けられ、その出力が誤差増幅器16を介してフォトカブ
ラを構成する第1の発光部22bに導かれる。
One of the secondary coils 3b is provided with an output voltage horizontal output circuit 15 in order to stabilize each output voltage, and the output thereof is passed through an error amplifier 16 to form a photocoupler. The light is guided to the first light emitting section 22b.

1次コイル3a側にはこの発光部22bからの光信号を
受光する第1の受光部22aが設けられ、この受光部2
2aと誤差電圧検出回路21とによって、光信号がその
強とに対応した電気信号、つまり誤差電圧に変換される
A first light receiving section 22a that receives the optical signal from the light emitting section 22b is provided on the primary coil 3a side.
2a and the error voltage detection circuit 21, the optical signal is converted into an electric signal corresponding to its strength, that is, an error voltage.

誤差電圧はパルス幅制御信号の発生回路22に供給され
て、誤差電圧に対応したパルス幅制御信号が形成され、
これで上述したパルス幅制御回路13が制御される。
The error voltage is supplied to a pulse width control signal generation circuit 22 to form a pulse width control signal corresponding to the error voltage,
The above-mentioned pulse width control circuit 13 is now controlled.

発振出力のパルス幅は出力電圧に反比例するように制御
され、これでスイッチング素子11の導通角を制御する
ことにより、負荷6Bに印加される出力電圧が所定値に
安定化されることになる。
The pulse width of the oscillation output is controlled to be inversely proportional to the output voltage, and by controlling the conduction angle of the switching element 11, the output voltage applied to the load 6B is stabilized at a predetermined value.

このように構成されたスイッチング電源回路10では、
ざらに負荷への過大な電流の流入を防止するため、夫々
の負荷6B〜6Dに対応して過電流検出回路25B〜2
5Dが設けられ、夫々の過電流検出出力が第2の発光部
27bに導かれる。
In the switching power supply circuit 10 configured in this way,
In order to prevent excessive current from flowing into the loads, overcurrent detection circuits 25B to 2 are installed corresponding to the respective loads 6B to 6D.
5D is provided, and the respective overcurrent detection outputs are guided to the second light emitting section 27b.

その光信号は第2の受光部27aにて受光される。第2
の受光部2,7aには、パルス幅制師信号発生回路28
が関連され、光信号に対応したパルス幅制御信号が加算
器29において、出力電圧安定化用のパルス幅制御信号
に加算されて、共通のパルス幅制御回路13に供給され
るようになされている。
The optical signal is received by the second light receiving section 27a. Second
The light receiving sections 2 and 7a include a pulse width controlled signal generating circuit 28.
A pulse width control signal corresponding to the optical signal is added to a pulse width control signal for output voltage stabilization in an adder 29, and is supplied to a common pulse width control circuit 13. .

従って、負荷に過電流が流れたようなときには、発振出
力のパルス幅が狭く、あるいは完全に零となるような制
御が行なわれる。これによって、負荷への過大電流の流
入が阻止されて、電源装置が保護される。
Therefore, when an overcurrent flows through the load, control is performed so that the pulse width of the oscillation output becomes narrow or completely zero. This prevents excessive current from flowing into the load and protects the power supply.

[発明が解決しようとする問題点] ところで、このように構成されたスイッチング電源回路
10においては、出力電圧の安定化と共に、過電流によ
る電源装置の損傷を保護するため、上述したように過電
流検出回路25B〜25Dが設けられ、夫々の検出出力
が1次コイル3a側に伝達されるように構成きれている
[Problems to be Solved by the Invention] Incidentally, in the switching power supply circuit 10 configured as described above, in order to stabilize the output voltage and protect the power supply device from damage due to overcurrent, as described above, overcurrent Detection circuits 25B to 25D are provided, and each detection output is transmitted to the primary coil 3a side.

その場合に、電源トランスの1次側と2次側の電気的な
絶縁を図る必要があるため、出力電圧検出回路15側及
び過電流検出回路25B〜25Dには、夫々フォトカプ
ラ等の信号伝達手段が必要になる。
In that case, it is necessary to electrically isolate the primary side and the secondary side of the power transformer, so the output voltage detection circuit 15 side and overcurrent detection circuits 25B to 25D each have a signal transmission device such as a photocoupler. You will need the means.

そのため、独立した2系統の信号伝達手段が夫々必要で
ある。
Therefore, two independent systems of signal transmission means are required.

従って、フォトカブラの部品点数が増大する欠点がある
Therefore, there is a drawback that the number of parts of the photocoupler increases.

そこで、7この発明においては、−組のフォトカブラで
、1次コイル3a側に夫々必要とする信号が伝達できる
ようにすることにより、回路構成の簡略化を図ったスイ
ッチング電源回路を提案するものである。
Therefore, in the present invention, a switching power supply circuit is proposed in which the circuit configuration is simplified by using the - set of photocoupler so that necessary signals can be transmitted to the primary coil 3a side. It is.

[問題点を解決するための技術的手段]上述の問題点を
解決するため、この発明においては、直流電圧を電源ト
ランスの1次側の第1のコイルに印加し、該第1のコイ
ルに接続されたスイッチング素子をスイッチングパルス
で制御すると共に、前記電源トランスの2次側に負荷へ
供給される直流電圧の変動に応じて発光素子の輝度を変
化させる発光手段を一般け、該発光素子からの光を電源
トランスの1次側に設けた受光素子で受光し、該受光素
子の出力に基づいて、前記スイッチングパルスのパルス
幅を制御するようになされたスイッチング電源回路であ
って、 前記電源トランスの2次側の過電流を検出すると共に、
この過電流検出出力が最優先して前記発光素子の輝度を
制御して前記スイッチングパルスのパルス幅の制御を行
なう過電流検出手段を設けるようになされたことを特徴
とするものである。
[Technical Means for Solving the Problems] In order to solve the above-mentioned problems, in the present invention, a DC voltage is applied to the first coil on the primary side of the power transformer, and the voltage is applied to the first coil. Generally, a light emitting means is provided on the secondary side of the power transformer to control the connected switching elements with switching pulses, and to change the brightness of the light emitting element in accordance with fluctuations in the DC voltage supplied to the load. A switching power supply circuit configured to receive the light of the light with a light receiving element provided on the primary side of a power transformer, and to control the pulse width of the switching pulse based on the output of the light receiving element, the power transformer In addition to detecting overcurrent on the secondary side of
The present invention is characterized in that an overcurrent detection means is provided which controls the brightness of the light emitting element and controls the pulse width of the switching pulse by giving top priority to the overcurrent detection output.

[作 用] 出力電圧検出回路15の検出出力と、過電流検出回路2
5B〜25Dの検出出力とが加算器17において加算さ
れる。
[Function] Detection output of output voltage detection circuit 15 and overcurrent detection circuit 2
The detection outputs of 5B to 25D are added in an adder 17.

この加算出力が誤差増幅器16を介して共通の信号伝達
手段22に供給される。この信号伝達手段22は発光部
22bと受光部22aとで構成され、加算出力はまず、
発光部22bに導かれる。
This summed output is supplied to the common signal transmission means 22 via the error amplifier 16. This signal transmission means 22 is composed of a light emitting section 22b and a light receiving section 22a, and the addition output is first
The light is guided to the light emitting section 22b.

一方、受光した光信号は誤差電圧検出回路21において
、誤差電圧に変換され、この誤差電圧に対応したパルス
幅制御信号が形成される。このパルス幅制御信号によっ
てスイッチング素子11がパルス幅変調される。
On the other hand, the received optical signal is converted into an error voltage in the error voltage detection circuit 21, and a pulse width control signal corresponding to this error voltage is formed. The switching element 11 is pulse width modulated by this pulse width control signal.

従って、負荷6Bに印加される出力電圧が変動すると、
それに伴なってスイッチング素子11の導通角が制御さ
れて、出力電圧の安定化が図られる。
Therefore, when the output voltage applied to the load 6B changes,
Accordingly, the conduction angle of the switching element 11 is controlled, and the output voltage is stabilized.

また、過電流状態が検出されると、これによっても発光
部22bの励起状態が制御されるため、過電流によって
もこれが検出されると、スイッチング素子11が制御さ
れて、負荷25B〜25Dが保護される。
Furthermore, when an overcurrent condition is detected, the excitation state of the light emitting section 22b is also controlled. Therefore, when an overcurrent condition is also detected, the switching element 11 is controlled and the loads 25B to 25D are protected. be done.

このように構成した場合には、信号伝達手段としてのフ
ォトカブラは1組でよい。
In this case, only one set of photo couplers is required as the signal transmission means.

[実 施 例] 続いて、この発明に係るスイッチング電源回路1oの一
例を第1図を参照して詳細に説明する。
[Example] Next, an example of a switching power supply circuit 1o according to the present invention will be described in detail with reference to FIG.

第2図と対応する部分には、同一符号を付し、その詳細
な説明は省略する。
Portions corresponding to those in FIG. 2 are designated by the same reference numerals, and detailed explanation thereof will be omitted.

この発明においては、加算器17が設けられ、2次コイ
ル3bに関連して設けられた出力電圧検出回路15の検
出出力V1がこの加算器17を介して、誤差増幅器16
側に供給されるようになされている。
In this invention, an adder 17 is provided, and the detection output V1 of the output voltage detection circuit 15 provided in relation to the secondary coil 3b is passed through the adder 17 to the error amplifier 16.
It is designed to be supplied to the side.

各2次コイル3a〜3dには、夫々過電流検出回路25
B〜25Dが設けられ、夫々から検出された過電流検出
出力■2が加算器17に供給されて、上述した出力電圧
の検出出力■1と加算される。
Each of the secondary coils 3a to 3d has an overcurrent detection circuit 25.
B to 25D are provided, and the overcurrent detection output (2) detected from each is supplied to the adder 17 and added to the above-mentioned output voltage detection output (2).

誤差増幅器16の出力によって、共通の信号伝達手段2
2として機能するフォトカブラ22を構成する発光部2
2bの励起状態が制御される。従って、夫々の検出出力
Vl、V2に対して発光部22bは共通に使用されるこ
とになる。
By the output of the error amplifier 16, the common signal transmission means 2
A light emitting unit 2 constituting a photocoupler 22 functioning as a light emitting unit 2
The excited state of 2b is controlled. Therefore, the light emitting section 22b is commonly used for the respective detection outputs Vl and V2.

一方、1次コイル3a側に設けられた制御回路2oは以
下のように構成される。
On the other hand, the control circuit 2o provided on the primary coil 3a side is configured as follows.

受光部22aで受光した光信号は誤差電圧検出回路21
にて所定の誤差電圧に変換され、これがパルス幅制御信
号発生回路22に供給されて、誤差電圧に対応したパル
ス幅制御信号が形成される。
The optical signal received by the light receiving section 22a is sent to the error voltage detection circuit 21.
The error voltage is converted into a predetermined error voltage, and this is supplied to the pulse width control signal generation circuit 22 to form a pulse width control signal corresponding to the error voltage.

パルス幅制御信号によってパルス幅制御回路13が制御
されるから、これによってスイッチング信号がパルス幅
変調される。
Since the pulse width control circuit 13 is controlled by the pulse width control signal, the switching signal is pulse width modulated thereby.

従って、出力電圧が変動すると、その変動分を相殺する
°ようにスイッチング素子11に対するスイッチング信
号がパルス幅変調されて、負荷6Bに印加される出力電
圧の安定化が図られる。
Therefore, when the output voltage fluctuates, the switching signal to the switching element 11 is pulse width modulated to offset the fluctuation, thereby stabilizing the output voltage applied to the load 6B.

この状態で、過電流が検出されると、その検出出力V2
が出力電圧の検出出力■1と共に、上述した発光部22
bに供給されることになるので、誤差電圧は過電流検出
出力■2にも対応した値となる。ここで、過電流検出時
は、V2>Vlとなる。
In this state, when overcurrent is detected, the detection output V2
is the above-mentioned light emitting section 22 along with the output voltage detection output ■1.
b, so the error voltage has a value that also corresponds to overcurrent detection output (2). Here, when overcurrent is detected, V2>Vl.

その結果、ス、イツチング素子11はこの過電流検出出
力■2によってもパルス幅変調されるため、過電流状態
が発生すると、この例ではスイッチング素子11をオフ
するようなパルス幅制御信号が形成される。これによっ
て、負荷6B〜6Dに印加きれる出力電圧が零となって
、過電流より負荷6B〜6Dが保護される。
As a result, the switching element 11 is also pulse width modulated by this overcurrent detection output (2), so when an overcurrent condition occurs, a pulse width control signal is generated that turns off the switching element 11 in this example. Ru. As a result, the output voltage that can be applied to the loads 6B to 6D becomes zero, and the loads 6B to 6D are protected from overcurrent.

なお、上述した制御回路20としては、市販されている
IC,例えば三菱製M51977Pなどを使用すること
がで−きる。
Note that as the control circuit 20 described above, a commercially available IC such as M51977P manufactured by Mitsubishi can be used.

このスイッチング電源回路10の具体例を第2図に示す
。ただし、2次コイルとしては、説明の便宜上、1つの
みを示す。
A specific example of this switching power supply circuit 10 is shown in FIG. However, for convenience of explanation, only one secondary coil is shown.

商用交流源1は整流回路2によって所定の直流電圧に変
換きれた後、電源トランス3の1次コイル3aに供給さ
れる。
After the commercial AC source 1 has been converted into a predetermined DC voltage by the rectifier circuit 2, it is supplied to the primary coil 3a of the power transformer 3.

その2次コイル3b側には、ダイオード4aとコンデン
サ4bからなる整流回路4が接続され、整流された出力
電圧が端子5.6に供給されるようになされる。端子5
,6に負荷6Bが接続される。
A rectifier circuit 4 consisting of a diode 4a and a capacitor 4b is connected to the secondary coil 3b side, so that the rectified output voltage is supplied to a terminal 5.6. terminal 5
, 6 are connected to a load 6B.

1次コイル3a側に接続されるスイッチング素子11と
しては、MO3型FETトランジスタなどを使用するこ
とができる。
As the switching element 11 connected to the primary coil 3a side, an MO3 type FET transistor or the like can be used.

2次コイル3bに関連して出力電圧及び過電流の検出回
路30が設けられる。
An output voltage and overcurrent detection circuit 30 is provided in association with the secondary coil 3b.

出力電圧の検出回路15から説明しよう。Let's explain the output voltage detection circuit 15 first.

この例では、所定の直流電源端子牛Bと、一方の出力端
子6との間に、抵抗器31、フォトカブラ22を構成す
るフォトダイオード22b及び可変定電圧素子(この例
では可変ツェナーダイオード)32が直列接続される。
In this example, a resistor 31, a photodiode 22b forming a photocoupler 22, and a variable constant voltage element (variable Zener diode in this example) 32 are connected between a predetermined DC power supply terminal B and one output terminal 6. are connected in series.

一方1.出力端子5,6間には、分圧用の一対の抵抗器
33a、33bが接続され、その接続中点nに得られる
分圧電圧が可変ツェナーダイオード32の制御端子に供
給される。
On the other hand 1. A pair of voltage dividing resistors 33a and 33b are connected between the output terminals 5 and 6, and the divided voltage obtained at the connection midpoint n is supplied to the control terminal of the variable Zener diode 32.

出力電圧検出回路15に関連して、過電流の検出回路2
5Bが設けられる。
In relation to the output voltage detection circuit 15, an overcurrent detection circuit 2
5B is provided.

すなわち、電源端子牛Bと出力端子6との間には縦続接
続された複数、この例では4個の抵抗器35a〜35d
が接続され、接続中点pと接続点rすなわち出力端子6
との間には、定電圧素子(ツェナーダイオードなど)3
6が接続されることによって、接続中点qに得られる基
準電圧Vaが定電圧化される。この基準電圧Vaはオペ
アンプ37のマイナス端子に供給される。
That is, between the power supply terminal B and the output terminal 6, there are a plurality of resistors 35a to 35d connected in cascade, four in this example.
are connected, and the connection middle point p and the connection point r, that is, the output terminal 6
There is a constant voltage element (such as a Zener diode) 3 between
6 is connected, the reference voltage Va obtained at the connection midpoint q is made constant. This reference voltage Va is supplied to the negative terminal of the operational amplifier 37.

これに対し、接続点rっ去り出力端子6側の電圧vbが
オペアンプ37のプラス端子に供給される。
On the other hand, the voltage vb on the output terminal 6 side away from the connection point r is supplied to the positive terminal of the operational amplifier 37.

そして、この発明においては、オペアンプ37の出力が
抵抗器41B及び逆流阻止用のダイオード42Bを介し
て可変ツェナーダイオード32の制御端子(接続中−点
n)に供給される。従って、この例ではワイアードアン
ドによって加算器17が構成きれたことになる。
In the present invention, the output of the operational amplifier 37 is supplied to the control terminal (connection point n) of the variable Zener diode 32 via the resistor 41B and the reverse current blocking diode 42B. Therefore, in this example, the adder 17 is configured by wired AND.

なお、過電流検出用の他の検出回路25C,25Dも上
述したと同様な構成をとり、オペアンプの出力(検出出
力V2)が抵抗器及び逆流阻止用のダイオードを介して
可変ツェナーダイオード32の制御端子に供給されるよ
うに構成されている。
The other detection circuits 25C and 25D for overcurrent detection also have the same configuration as described above, and the output of the operational amplifier (detection output V2) controls the variable Zener diode 32 via a resistor and a diode for blocking reverse current. The terminal is configured to be supplied to the terminal.

図では、検出回路25C用の抵抗器41Cのみを示しで
ある。
In the figure, only the resistor 41C for the detection circuit 25C is shown.

なお、上述した所定の直流電圧十Bは2次コイル3bか
ら中間タップを導出し、その中間タップに得られる電圧
の整流出力を使用することができる。
Note that the above-mentioned predetermined DC voltage 10B can be derived from the intermediate tap from the secondary coil 3b, and the rectified output of the voltage obtained at the intermediate tap can be used.

このように構成されたスイッチング電源回路10におい
て、出力電圧及び過電流の検出と制御動作・を以下に簡
単に説明する。
In the switching power supply circuit 10 configured as described above, detection and control operations of output voltage and overcurrent will be briefly described below.

通常の状態においては、接続中点nに得られる分圧電圧
■1によフては、可変ツェナーダイオード32のツェナ
ー電圧が制御されている。
In a normal state, the Zener voltage of the variable Zener diode 32 is controlled by the divided voltage (1) obtained at the connection midpoint n.

ここで、端子5,6に接続された負荷6Bのインピーダ
ンスが低下することによって、出力電圧が高くなった場
合には、これが可変ツェナーダイオード32のツェナー
電圧を低くし、これに応じてフォトダイオード22bの
発光輝度が増し、これがフォトトランジスタ22aで受
光され、出力電圧に応じた誤差電圧を再生し、この誤差
電圧に応じてスイッチング素子11の出力パルスのパル
ス幅が狭くなるように制御されて、出力電圧の安定化が
図られる。
Here, when the output voltage becomes high due to a decrease in the impedance of the load 6B connected to the terminals 5 and 6, this lowers the Zener voltage of the variable Zener diode 32, and accordingly the photodiode 22b The luminance of the light increases, this light is received by the phototransistor 22a, an error voltage corresponding to the output voltage is reproduced, and the pulse width of the output pulse of the switching element 11 is controlled to be narrowed according to this error voltage, and the output The voltage is stabilized.

過電流保護動作は次のようになる。The overcurrent protection operation is as follows.

すなわち、定常動作時においては、基準電圧■aの方が
端子6の電圧vbよりも大きく選定されモいるため、そ
のときのオペアンプ37の出力V2では、n点に分圧電
圧■1を越える電圧は供給されず、出力電圧の変動に応
じてツェナーダイオード32のツェナー電圧が制御され
る。
That is, during steady operation, the reference voltage ■a is selected to be larger than the voltage vb at the terminal 6, so the output V2 of the operational amplifier 37 at that time has a voltage exceeding the divided voltage ■1 at the n point. is not supplied, and the Zener voltage of the Zener diode 32 is controlled according to fluctuations in the output voltage.

しかし、負荷側に、過電流が流れると、端子6に直列接
続された抵抗器35dの電圧降下が大きくなるため、端
子電圧vbの方が基準電圧Vaよりも大きくなる。
However, when an overcurrent flows to the load side, the voltage drop across the resistor 35d connected in series to the terminal 6 becomes large, so that the terminal voltage vb becomes larger than the reference voltage Va.

その結果、オペアンプ37の出力■2がハイレベルに反
転して分圧電圧v1より高くなり、抵抗器41及びダイ
オード42を介して可変ツェナーダイオード32の制御
端子に加えられる。これによって、ツェナーダイオード
32は分圧電圧V1に優先してオペアンプ37の出力■
2でツェナー電圧が制御される。
As a result, the output (2) of the operational amplifier 37 is inverted to a high level, becomes higher than the divided voltage v1, and is applied to the control terminal of the variable Zener diode 32 via the resistor 41 and diode 42. As a result, the Zener diode 32 has priority over the divided voltage V1 and outputs the output of the operational amplifier 37.
2 controls the Zener voltage.

すなわち、過電流検出時は、出力電圧の検出出力に優先
して過電流検出出力が出力されることになるから、誤差
電圧で制御tIJきれる安定化動作時に比べてスイッチ
ング素子11の出力パルスのパルス幅はざらに狭くなり
、これによって出力電圧は安定化動作時よりもざらに低
下する。
That is, when an overcurrent is detected, the overcurrent detection output is output with priority over the output voltage detection output, so the pulse of the output pulse of the switching element 11 is lower than that during the stabilization operation where the error voltage can control tIJ. The width becomes gradually narrower, and as a result, the output voltage decreases more gradually than during the stabilization operation.

その結果、負荷6B〜6Dが過電流より保護される。As a result, loads 6B to 6D are protected from overcurrent.

[発明の効果] 以上説明したように、この発明の構成によれば、共通に
設けられたフォトカブラを制御する可変定電圧素子に対
し、出力電圧検出出力に加えて過電流検出出力も供給す
るように構成したので、電源トランスの2次側を絶縁す
るための素子(信号伝達手段)を共通に使用することが
できる。
[Effects of the Invention] As explained above, according to the configuration of the present invention, in addition to the output voltage detection output, the overcurrent detection output is also supplied to the variable constant voltage element that controls the commonly provided photocoupler. With this configuration, the element (signal transmission means) for insulating the secondary side of the power transformer can be used in common.

その結果、フォトカブラを一対省略することができるた
め、従来よりも回路構成の簡略化を達成できる。
As a result, one pair of photocoupler can be omitted, so that the circuit configuration can be made simpler than before.

従って、この発明に係るスイッチング電源回路は、1次
側と2次側を電気的に絶縁する必要がある過電流保護機
能を有したスイッチング電源回路などに適用して極めて
好適である。
Therefore, the switching power supply circuit according to the present invention is extremely suitable for application to a switching power supply circuit having an overcurrent protection function that requires electrical isolation between the primary side and the secondary side.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係るスイッチング電源回路の一例を
示す要部の接続図、第2図はその具体例を示す接続図、
第3図は従来におけるスイッチング電源回路の要部の構
成図である。 3・・−a m源トランス 3a輪・・1次コイル 3b・・・2次コイル 10・・・スイッチング電源回路 11・・・スイッチング素子 12・・・発振回路 15・・・出力電圧検出回路 22・・・フォトカブラ 22a・・・フォトトランジスタ 22b・・・フォトダイオード 25B〜25D・・・過電流検出回路 30・・・検出回路 32・・・可変ツェナーダイオード 37・・・オペアンプ 特許出願人 日本ケミコン株式会社
FIG. 1 is a connection diagram of essential parts showing an example of a switching power supply circuit according to the present invention, and FIG. 2 is a connection diagram showing a specific example thereof.
FIG. 3 is a configuration diagram of main parts of a conventional switching power supply circuit. 3...-a m source transformer 3a wheel...primary coil 3b...secondary coil 10...switching power supply circuit 11...switching element 12...oscillator circuit 15...output voltage detection circuit 22 ...Photo coupler 22a...Phototransistor 22b...Photodiodes 25B to 25D...Overcurrent detection circuit 30...Detection circuit 32...Variable Zener diode 37...Operational amplifier patent applicant Nippon Chemi-Con Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)直流電圧を電源トランスの1次側の第1のコイル
に印加し、該第1のコイルに接続されたスイッチング素
子をスイッチングパルスで制御すると共に、前記電源ト
ランスの2次側に負荷へ供給される直流電圧の変動に応
じて発光素子の輝度を変化させる発光手段を設け、該発
光素子からの光を電源トランスの1次側に設けた受光素
子で受光し、該受光素子の出力に基づいて、前記スイッ
チングパルスのパルス幅を制御するようになされたスイ
ッチング電源回路であって、 前記電源トランスの2次側の過電流を検出すると共に、
この過電流検出出力が最優先して前記発光素子の輝度を
制御して前記スイッチングパルスのパルス幅の制御を行
なう過電流検出手段を設けたことを特徴とするスイッチ
ング電源回路。
(1) Apply a DC voltage to the first coil on the primary side of the power transformer, control the switching element connected to the first coil with a switching pulse, and apply the DC voltage to the secondary side of the power transformer to the load. A light-emitting means is provided to change the brightness of the light-emitting element in accordance with fluctuations in the supplied DC voltage, and light from the light-emitting element is received by a light-receiving element provided on the primary side of the power transformer, and the output of the light-receiving element is A switching power supply circuit configured to control the pulse width of the switching pulse based on the above, and detecting an overcurrent on the secondary side of the power transformer,
A switching power supply circuit comprising overcurrent detection means that controls the brightness of the light emitting element and controls the pulse width of the switching pulse by giving top priority to the overcurrent detection output.
JP62302878A 1987-11-30 1987-11-30 Switching power circuit Pending JPH01144359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62302878A JPH01144359A (en) 1987-11-30 1987-11-30 Switching power circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62302878A JPH01144359A (en) 1987-11-30 1987-11-30 Switching power circuit

Publications (1)

Publication Number Publication Date
JPH01144359A true JPH01144359A (en) 1989-06-06

Family

ID=17914189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62302878A Pending JPH01144359A (en) 1987-11-30 1987-11-30 Switching power circuit

Country Status (1)

Country Link
JP (1) JPH01144359A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354384U (en) * 1989-09-29 1991-05-27
JPH0648392U (en) * 1991-03-29 1994-06-28 新電元工業株式会社 Switching power supply control circuit
EP1195304A2 (en) 2000-10-05 2002-04-10 Mazda Motor Corporation Overall control system for a posture control apparatus and a continuously variable transmission of a vehicle
JP2002272110A (en) * 2001-03-13 2002-09-20 Yokogawa Electric Corp Switching power supply

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354384U (en) * 1989-09-29 1991-05-27
JPH0648392U (en) * 1991-03-29 1994-06-28 新電元工業株式会社 Switching power supply control circuit
EP1195304A2 (en) 2000-10-05 2002-04-10 Mazda Motor Corporation Overall control system for a posture control apparatus and a continuously variable transmission of a vehicle
JP2002272110A (en) * 2001-03-13 2002-09-20 Yokogawa Electric Corp Switching power supply

Similar Documents

Publication Publication Date Title
US4425613A (en) Forced load sharing circuit for inverter power supply
US4685039A (en) DC/DC converter
US4005352A (en) Protection circuit for magnetically controlled d-c to d-c converter
US5005112A (en) Regulated D.C.-D.C. power converter having multiple D.C. outputs
US6956754B2 (en) Switching power supply using controlled negative feedback in series with a switching device and responsive to the voltage and/or current to a load
JPH01144359A (en) Switching power circuit
JP3303010B2 (en) Error signal isolation circuit
JPH10248257A (en) Switching power supply
GB2147125A (en) Power supply
JPH01278265A (en) Control circuit for positive/negative output switching power source
JP3000829B2 (en) DC-DC converter parallel connection device
JP2002159181A (en) Switching power supply and electronic apparatus comprising it
JPH02294269A (en) Power supply device
JPH06284714A (en) Insulated dc-dc converter
JPH0545116Y2 (en)
CA1123130A (en) Variable loop length compensated optocoupled circuit
JP2846679B2 (en) Parallel redundant operation of power supply units
SU1292104A1 (en) Secondary electric power supply system
JPS60207292A (en) Firing device
SU1325430A1 (en) Alternating voltage stabilizer
JPS642503Y2 (en)
SU1480071A1 (en) Stabilized transistor voltage converter
JP2000322133A (en) Switching power supply circuit
CA1038031A (en) Protection circuit for magnetically controlled d-c to d-c converter
SU1272323A1 (en) Broad-band voltage stabilizer with protection

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090816

LAPS Cancellation because of no payment of annual fees