JPH01143127A - Surface shape measuring method by scanning electron microscope - Google Patents

Surface shape measuring method by scanning electron microscope

Info

Publication number
JPH01143127A
JPH01143127A JP29933287A JP29933287A JPH01143127A JP H01143127 A JPH01143127 A JP H01143127A JP 29933287 A JP29933287 A JP 29933287A JP 29933287 A JP29933287 A JP 29933287A JP H01143127 A JPH01143127 A JP H01143127A
Authority
JP
Japan
Prior art keywords
sample
detectors
electron microscope
scanning electron
surface shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29933287A
Other languages
Japanese (ja)
Other versions
JP2650281B2 (en
Inventor
Makoto Kato
誠 加藤
Koichi Honma
弘一 本間
Fuminobu Furumura
文伸 古村
Hisahiro Furuya
寿宏 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62299332A priority Critical patent/JP2650281B2/en
Priority to US07/275,069 priority patent/US4912313A/en
Publication of JPH01143127A publication Critical patent/JPH01143127A/en
Application granted granted Critical
Publication of JP2650281B2 publication Critical patent/JP2650281B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0223Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by shape
    • B65D1/0261Bottom construction
    • B65D1/0284Bottom construction having a discontinuous contact surface, e.g. discrete feet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0207Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)

Abstract

PURPOSE:To shorten the process time and correctly calculate the normal line direction or inclination by using the relationship between the signals obtained from four detectors or their integral times detectors and differential coefficients of two directions crossing at right angles. CONSTITUTION:A sample is scanned by a focused electron beam, and secondary electrons emitted from the surface of the sample are detected by four detectors 401-404. The secondary electrons emitted from the secondary electron emission point 302 on the sample 301 are emitted in four directions according to the cosine rule. Since the four detectors are applied with the electric field between them and the sample to collect secondary electrons respectively, the secondary electrons emitted toward the first - fourth quadrants are gradually bent by the electric field on their orbits and detected when they reach the first-fourth detectors 401-404. In this case, the relational expression between the signals obtained by the detectors and the differential coefficients of two directions crossing at right angles in the normal line direction of the surface or on the horizontal plane is used to determine the differential coefficients of positions on the sample, the differential coefficients are added or integrated in sequence, and the surface shape of the sample is measured. The process time is thereby shortened, and the normal line direction or inclination can be correctly calculated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は走査電子顕微鏡(以下、SEMという)による
微細加工物等の表面形状測定方法に関し、特に高精度な
測定を可能とするSEMによる表面形状測定方法に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for measuring the surface shape of a microfabricated object using a scanning electron microscope (hereinafter referred to as SEM), and particularly relates to a method for measuring the surface shape of a microfabricated object, etc. using a scanning electron microscope (hereinafter referred to as SEM). Concerning a shape measurement method.

〔従来の技術〕[Conventional technology]

最近、画像の濃淡の情報を基にして表面形状を再構成す
る試みが盛んであるが、特開昭62−6112号公報に
は、SEMに4個の反射電子検出器を取付け、予め標準
試料を用いて求めた反射電子検出出力と法線との関係を
まとめておき、この関係を用いて試料上の各点の法線を
求め、この法線情報に基づいて試料表面の立体形状を求
める方法が開示されている。また、特開昭56−150
303号公報。
Recently, there have been many attempts to reconstruct the surface shape based on image shading information. Collect the relationship between the backscattered electron detection output and the normal line obtained using A method is disclosed. Also, JP-A-56-150
Publication No. 303.

特許登録第462147号(出願公告昭40−1799
9号)、ジャーナル・オブ・エレクトロン・マイクロス
コープ第34巻、第4号第328〜337頁(1985
年)(J ournal ofElectron Mi
croscopy vol、34.&4 pp、32g
−337(1985))では、SEMに対向する2つの
反射電子あるいは二次電子の検出器を取付け、それらの
検出出力の差あるいは平方の差が、2つの検出器を結ぶ
方向の傾きと概ね比例するという経験的事実を用いて、
2つの検出器を結ぶ方向の断面上の各点の傾きを求め、
この情報に基づいて断面形状を求めていた。
Patent Registration No. 462147 (Application published in 1979-1799)
9), Journal of Electron Microscopy Vol. 34, No. 4, pp. 328-337 (1985
(2013)
croscopy vol, 34. &4pp, 32g
-337 (1985)), two backscattered electron or secondary electron detectors facing each other are attached to the SEM, and the difference in their detection outputs or the square difference is approximately proportional to the slope in the direction connecting the two detectors. Using the empirical fact that
Find the slope of each point on the cross section in the direction connecting the two detectors,
The cross-sectional shape was determined based on this information.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記特開昭62−6112号公報では、標準試
料の値と比較して法線方向を決定する操作に時間がかか
り、また、基準試料の局所的な傷等が直接的に結果に影
響する等の不都合な点があった。
However, in the above-mentioned Japanese Patent Application Laid-open No. 62-6112, it takes time to determine the normal direction by comparing it with the value of the standard sample, and local scratches on the reference sample directly affect the results. There were some inconveniences, such as:

また、他の2つの検出器を用いる方法では、傾きの計算
式が経験的なもので、必ずしも正確でないこと、特に、
検出器を結ぶ方向と直交する方向に傾き成分がある場合
、傾きが不正確になるという問題があった。
In addition, in the method using the other two detectors, the formula for calculating the slope is empirical and is not necessarily accurate.
If there is a tilt component in a direction perpendicular to the direction in which the detectors are connected, there is a problem that the tilt becomes inaccurate.

本発明は上記事情に鑑みてなされたもので、その目的と
するところは、従来のSEMによる表面形状測定方法に
おける上述の如き問題を解消し、処理時間が短く、正確
に法線方向あるいは傾きを計算可能なSEMによる表面
形状測定方法を提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to solve the above-mentioned problems in the conventional SEM surface shape measurement method, shorten the processing time, and accurately measure the normal direction or inclination. An object of the present invention is to provide a method for measuring surface shape using SEM that allows calculation.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の上記目的は、試料上を集束した電子ビームで走
査し、試料の表面形状に応じて放出される二次電子を検
出し、検出信号量と画像濃度とを対応させて画像化する
SEMにおいて、試料を囲む如く、4個あるいはその整
数倍の個数の検出器を取付け、該検出器から得られた信
号と面の法線方向あるいは水平面内の直交する二方向の
微分係数との関係式を用いて、試料上の各点の前記微分
係数を求め、該微分係数を逐次的に加算あるいは積分す
ることにより試料の表面形状を測定することを特徴とす
る。SEMによる表面形状測定方法によって達成される
The above-mentioned object of the present invention is an SEM that scans a sample with a focused electron beam, detects secondary electrons emitted according to the surface shape of the sample, and creates an image by correlating the detected signal amount with the image density. , four detectors or an integer multiple thereof are installed surrounding the sample, and the relational expression between the signal obtained from the detectors and the differential coefficient in the normal direction of the surface or in two orthogonal directions in the horizontal plane is calculated. The method is characterized in that the surface shape of the sample is measured by determining the differential coefficients of each point on the sample using , and sequentially adding or integrating the differential coefficients. This is accomplished by a surface profile measurement method using SEM.

〔作用〕[Effect]

SEMでは、集束電子線で試料上を走査し、それに対応
して試料表面から放出される二次電子。
In SEM, a focused electron beam scans the sample, and secondary electrons are emitted from the sample surface in response.

反射電子等を検出し、その強度を画像濃度として同期し
て走査するCRT上に表示する。
Reflected electrons and the like are detected and their intensity is displayed as image density on a synchronously scanning CRT.

従来の方法の如く、経験的に画像濃度と法線方向あるい
は面の傾きを求めるのみでは不充分で、理論的な解析を
加えることにより正確な法線あるいは傾きが得られる。
As with conventional methods, it is not sufficient to empirically determine the image density and the normal direction or the inclination of the surface, but an accurate normal or inclination can be obtained by adding theoretical analysis.

上記二次電子は、例えば、第3図において、試料301
上の二次電子放出点302から、累で示される法線30
3を中心として「余弦則」に従った強度で放出される。
For example, in FIG. 3, the secondary electrons are
From the secondary electron emission point 302 above, the normal line 30 indicated by
It is emitted with an intensity according to the "cosine law" centered on 3.

これについては1例えば、C,W、オートレイ著、紀本
静雄訳「走査電子顕微鏡装置編」(コロナ社刊)の第4
章を参照することができる。
Regarding this, see 1. For example, C. W. Oatley, translated by Shizuo Kimoto, "Scanning Electron Microscope Equipment Edition" (published by Corona Publishing), Volume 4.
You can refer to the chapter.

具体的には、法線からαの方向の立体角dΩに放出され
る二次電子の数は、二次電子総数をNとすると、次の式
で与えられる。
Specifically, the number of secondary electrons emitted from the normal to a solid angle dΩ in the direction α is given by the following equation, where N is the total number of secondary electrons.

−cos a dΩ          −−−−(1
)π この二次電子を、第4図に示す如く、第1〜第4の四つ
の検出器401〜404で検出する。試料301上の二
次電子放出点302から放出された二次電子は、法線3
03の方向に最も多く放出されるが、前述の余弦則に従
い、四方に放出される。四つの検出器では、それぞれ、
二次電子を捕集するため試料との間に電場をかけである
。このため、第4図の第1象限の方向に放出された二次
電子は、次第に電場で軌道を曲げられ、第1検出器40
1に達し検出される。同様にして、第2象限の方向に放
出された二次電子は第2検出器402に、第3象限の方
向に放出された二次電子は第3検出器403に、第4象
限の方向に放出された二次電子は第4検出器404に検
出される。
−cos a dΩ −−−−(1
)π These secondary electrons are detected by four first to fourth detectors 401 to 404, as shown in FIG. The secondary electrons emitted from the secondary electron emission point 302 on the sample 301 are
It is emitted most in the direction 03, but it is emitted in all directions according to the above-mentioned cosine law. For each of the four detectors,
An electric field is applied between the sample and the sample to collect secondary electrons. Therefore, the secondary electrons emitted in the direction of the first quadrant in FIG.
1 and is detected. Similarly, secondary electrons emitted in the direction of the second quadrant are sent to the second detector 402, secondary electrons emitted in the direction of the third quadrant are sent to the third detector 403, and secondary electrons emitted in the direction of the fourth quadrant are sent to the second detector 402. The emitted secondary electrons are detected by the fourth detector 404.

なお、上述の物理的モデルに関しては、第33回応用物
理学関係連合講演会資料、pp、356(2a−ZA−
7)「微細形状の二次電子コントラストの理論解析」(
1986)の記載が参考になる。
Regarding the above-mentioned physical model, please refer to the 33rd Applied Physics Association Lecture Materials, pp. 356 (2a-ZA-
7) “Theoretical analysis of secondary electron contrast of minute shapes” (
1986) is helpful.

また、上記物理的モデルより i=1.2,3.4とし
、第i検出器の信号強度を 1.とすると、第3図に示
す接平面304上の立体角領域に関するそれぞれの象限
における次の立体角積分によって、■、を求めることが
できる。
Also, from the above physical model, i = 1.2, 3.4, and the signal strength of the i-th detector is 1. Then, ■, can be obtained by the following solid angle integral in each quadrant regarding the solid angle area on the tangential plane 304 shown in FIG.

I 4ニーf cosadΩ、i=1.2,3.4■ この式は、二次電子の放出総量Nを含んでいるが、最終
的にはNと無関係な式にまとめるので、表面の傾斜角等
によって変化するNに関する知見は不要である。
I 4 nee f cosad Ω, i = 1.2, 3.4 ■ This equation includes the total amount of secondary electron emission N, but in the end it is summarized into an equation that is unrelated to N, so the inclination angle of the surface Knowledge regarding N, which changes due to etc., is not required.

ここで、半球面上における次の三つの補題を証明してお
く。半球面上には、すべての法線方向が揃っているので
、半球面上での面の法線と画像濃度の関係は、そのまま
一般試料の表面の法線を求めるのに用いることができる
Here, we will prove the following three lemmas on the hemisphere. Since all normal directions are aligned on a hemispherical surface, the relationship between the surface normal and image density on a hemispherical surface can be used as is to determine the normal to the surface of a general sample.

〔補題1〕 IR=I4+I、tIt、= L+ Lとしたとき、I
R/N、IL/Nは第5図(a)の半球面501上のX
一定の断面502上で、一定値をとる。
[Lemma 1] When IR=I4+I, tIt, = L+ L, I
R/N and IL/N are X on the hemisphere 501 in FIG. 5(a).
It takes a constant value on a constant cross section 502.

(補題1の証明) 工8は X正方向に放出された二次電子の総和。(Proof of Lemma 1) 8 is the total sum of secondary electrons emitted in the X positive direction.

■、は X負方向に放出された二次電子の総和である(
N=IR+IL)、断面502上では、法線、接平面と
y−z平面(あるいは断面502)との位置関係は、X
軸を中心に回転しただけで不変である。これより、I 
Ry I Lに対する前記式(2)の積分の立体角領域
は、X軸を中心に回転しただけで不変であり、I R/
N、 I L/Nは不変である。
■ is the total sum of secondary electrons emitted in the negative direction of X (
N=IR+IL), on the cross section 502, the positional relationship between the normal line, the tangent plane, and the yz plane (or the cross section 502) is
It remains unchanged simply by rotating around the axis. From now on, I
The solid angle region of the integral of equation (2) above for Ry I L remains unchanged simply by rotating around the X axis, and I R/
N, IL/N remains unchanged.

〔補題2〕 半球上のy=Qの断面上で、次の式fは表面のX微分に
一致する。
[Lemma 2] On the cross section of y=Q on the hemisphere, the following equation f corresponds to the X differential of the surface.

(補題2の証明) 第6図に示すような通常の極座標表示をとる。(Proof of Lemma 2) A normal polar coordinate display as shown in FIG. 6 is taken.

■。に対する前記式(2)の積分は、法線をn=(si
nθ。、O,cosθo) とすると、次のようになる。
■. The integral of the above equation (2) for
nθ. , O, cos θo), then it becomes as follows.

但し、(θ、φ)の方向ベクトルを e = (sinθcosψ、 sinθsinψ、c
os O)として、π・ざ = sinθ、 sinθcosψ+cosθ、 co
sθまた、O□8は θの積分範囲の上限で、接平面に
より決定される。具体的には平面f”1J=oと、平面
y=tanψ・Xの交線のθを求めれば良い。
However, the direction vector of (θ, φ) is expressed as e = (sinθcosψ, sinθsinψ, c
os O), π・za=sinθ, sinθcosψ+cosθ, co
sθ Also, O□8 is the upper limit of the integral range of θ and is determined by the tangent plane. Specifically, it is sufficient to find θ of the intersection line between the plane f''1J=o and the plane y=tanψ·X.

0≦θ。くπ/2と考えると次の式で与えられる。0≦θ. Considering π/2, it is given by the following formula.

この積分は、解析的に評価でき、次の式で与えられる。This integral can be evaluated analytically and is given by the following equation.

■□= −(1+ sinθ。) 同様にして、 I L : −(1−sinθ、) これより、X微分すなわち−tanθ。が求まり、〔補
題3〕 第5図(b)において、半球上の点AにおけるX微分P
aと、点Bにおけるy微分q0が与えられると、点Cに
おける法線は次のように決定される。
■□=-(1+sinθ.) Similarly, IL: -(1-sinθ,) From this, the X differential, that is, -tanθ. [Lemma 3] In Figure 5(b), the X differential P at point A on the hemisphere
Given a and the y differential q0 at point B, the normal at point C is determined as follows.

T=(−pl−q+1)として、 (補題3の証明) 球の方程式をx 2+ y ” + z ” = R”
とすると、点AのX微分と点BのX微分は、それぞれ次
式で与えられる。
As T=(-pl-q+1), (Proof of Lemma 3) The equation of the sphere is x 2+ y ” + z ” = R”
Then, the X differential of point A and the X differential of point B are given by the following equations.

aZ     X ax  V17二コ2− az     y ay   I17:3p− これらを、それぞれPowqoとおくと1点CのX微分
、X微分は、それぞれ、 aZ      X az      y ay  (■−71ニア0 と表わされるので、pl、、qoを使って表わされ、頭
巾の式が得られる。
aZ Therefore, it is expressed using pl, , qo, and the equation for the hood is obtained.

以上の三つの補題を用い、第5図(b)の点Cにおける
法線を、点Cにおける 11.I2.I、、I4の値か
ら決定することができる。
Using the above three lemmas, the normal at point C in FIG. 5(b) can be calculated as follows: 11. I2. It can be determined from the values of I, , I4.

まず、補題1より、点Aの IR/N、IL/Nの値が
わかる。補題2の式(3)は 工、、I、に関して、分
母分子同次なので、これから点AのX微分を求めること
ができる。同様にして、I1とI2.I、とI4を組に
して(I、 、 I、とみなす)、同じ操作を繰り返す
ことにより、点BのX微分を求めることができる。
First, from Lemma 1, we can find the values of IR/N and IL/N at point A. Since Equation (3) of Lemma 2 is homogeneous in the denominator and numerator with respect to , I, we can find the X differential of point A from this. Similarly, I1 and I2. By combining I and I4 (considered as I, , I) and repeating the same operation, the X differential of point B can be found.

こ、こで補題3を用いれば、目的は達せられる。If Lemma 3 is used here, the purpose can be achieved.

その結果、点CのX微分pとy微分qは、次のように与
えられる。
As a result, the X differential p and y differential q of point C are given as follows.

・・・・(6) 73(I□+L”Ia”L)−2((Iz”IJ”(I
z”I□)2+(I□+L)2+(1,+I□)2)本
関係式は、経験的な式を用いていた従来の方法とは異な
り、正確な理論式である。
...(6) 73(I□+L"Ia"L)-2((Iz"IJ"(I
z''I□)2+(I□+L)2+(1,+I□)2) This relational expression is an accurate theoretical expression, unlike the conventional method that uses an empirical expression.

法線が得られれば、この情報を逐次加算積分することに
より、表面形状が得られる。
Once the normal line is obtained, the surface shape can be obtained by sequentially adding and integrating this information.

X ” 1 r ’/ = Jの点の高度、X微分、X
微分をそれぞれ、Z iJy piJ+ qiJとする
と、2.。を基準値として、ZiJは、例えば、次のよ
うに求められる。
X ” 1 r '/ = altitude of point J, X differential, X
Letting the differentials be Z iJy piJ+ qiJ, respectively, 2. . With Z as a reference value, ZiJ is obtained, for example, as follows.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図は、本発明の一実施例である、SEMに四個の二
次電子検出器を取付けた表面形状測定装置のハードウェ
ア構成図である。第2図において鏡体101の電子銃1
02から放出された電子線103は、電子レンズ系10
4により収束偏向させられ、試料台105上の試料10
6上に入射する。これに対応して、上記試料106から
二次電子107が放出され、第1検出器108.第2検
出器109.第3検出器110.第4検出器111によ
り検知される。
FIG. 2 is a hardware configuration diagram of a surface profile measuring apparatus in which four secondary electron detectors are attached to a SEM, which is an embodiment of the present invention. In FIG. 2, the electron gun 1 of the mirror body 101
The electron beam 103 emitted from the electron lens system 10
4, the sample 10 on the sample stage 105
6. Correspondingly, secondary electrons 107 are emitted from the sample 106, and the first detector 108. Second detector 109. Third detector 110. It is detected by the fourth detector 111.

その信号は、キーボード112からの指示に基づいて作
動するコンピュータ113により演算処理され、検出器
の信号そのもの、あるいは、演算処理された結果は、デ
イスプレィ114に表示される。
The signal is processed by a computer 113 that operates based on instructions from the keyboard 112, and the detector signal itself or the processed result is displayed on a display 114.

第1図は、本発明の一実施例における処理のフローチャ
ートである。ステップ201では各検出器の走査信号を
入力する。ステップ202では、作用の項で説明した如
き四つの検出器の信号から、面素のX軸方向の傾き成分
と、面素のX軸方向の傾き成分を求める。本実施例では
次の式を用いる。
FIG. 1 is a flowchart of processing in an embodiment of the present invention. In step 201, the scanning signals of each detector are input. In step 202, the slope component of the surface element in the X-axis direction and the slope component of the surface element in the X-axis direction are determined from the signals of the four detectors as described in the section of the function. In this embodiment, the following equation is used.

但し、上記検出器108〜111の信号を、それぞれ、
I、、I、、I、、I4としている。
However, the signals of the detectors 108 to 111, respectively, are
I,,I,,I,,I4.

ν′3(■、+I、+I、+L)−2((I、”I2)
”÷L+L)”+(工□+t)2+a、+rt)”)こ
こで、定数に1とに2は、事前にキャリブレーションを
して決めておく。すなわち、予め表面形状のわかってい
る試料を用いて測定を行い、上記定数に1とに2を、そ
の形状を最も忠実に表わすような値にとっておく。
ν'3(■, +I, +I, +L)-2((I,"I2)
"÷L+L)"+(D+t)2+a,+rt)") Here, the constants 1 and 2 are determined in advance by calibration. In other words, when using a sample whose surface shape is known in advance, The above constants are set to values of 1 and 2 that most faithfully represent the shape.

ステップ203では、上記ステップ202で求めた傾き
成分を基準点から一次元的に加算積分する。
In step 203, the slope components obtained in step 202 are one-dimensionally added and integrated from the reference point.

この加算積分は、例えば、前に示した式(7)に従って
行う。
This addition and integration is performed, for example, according to equation (7) shown above.

ステップ204では、この結果を表示する。In step 204, this result is displayed.

本実施例によれば、SEMの形像原理に基づいた理論式
を用いているので、歪みの少ない表面形状を高速に得ら
れるという効果がある。
According to this embodiment, since a theoretical formula based on the SEM imaging principle is used, there is an effect that a surface shape with little distortion can be obtained at high speed.

上記実施例は一例として示したものであり、本発明はこ
れに限定されるべきものではない。
The above-mentioned embodiment is shown as an example, and the present invention should not be limited thereto.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明によれば、試料上を集束した電
子ビームで走査し、試料の表面形状に応じて放出される
二次電子を検出し、検出信号量と画像濃度とを対応させ
て画像化するSEMにおいて、試料を囲む如く、4個あ
るいはその整数倍の個数の検出器を取付け、該検出器か
ら得られた信号と面の法線方向あるいは水平面内の直交
する二方向の微分係数との関係式を用いて、試料上の各
点の前記微分係数を求め、該微分係数を逐次的に加算あ
るいは積分することにより試料の表面形状を測定するよ
うにしたので、処理時間が短く、正確に法線方向あるい
は傾きを計算可能なSEMによる表面形状測定方法を実
現できるという顕著な効果を奏するものである。
As described above, according to the present invention, a sample is scanned with a focused electron beam, secondary electrons emitted according to the surface shape of the sample are detected, and the detected signal amount and image density are made to correspond. In the SEM for imaging, four or an integral multiple of four detectors are installed to surround the sample, and the differential coefficients of the signal obtained from the detector and the normal direction of the surface or two orthogonal directions in the horizontal plane are The differential coefficient of each point on the sample is determined using the relational expression, and the surface shape of the sample is measured by sequentially adding or integrating the differential coefficients, so the processing time is short. This has the remarkable effect of realizing a surface profile measurement method using SEM that can accurately calculate the normal direction or inclination.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における処理のフローチャー
ト、第2図はSEMに四個の二次電子検出器を取付けた
表面形状測定装置のハードウェア構成図、第3図はSE
Mの形像過程を示す図、第4図は試料の回りの平面図、
第5図、第6図は座標系を示す図である。 101:鏡体、102:電子銃、103:電子線、10
4:電子レンズ系、105:試料台、106:試料、1
07:二次電子、108 :第1検出器、109:第2
検出器、110:第3検出器、111:第4検出器、1
12:キーボード、113:コンピュータ、114:デ
イスプレィ。 \I  − 第   1   図 第   2   図 第   3   図 第   4   図 第  5  図 (a) (b)     y
Fig. 1 is a flowchart of processing in an embodiment of the present invention, Fig. 2 is a hardware configuration diagram of a surface profile measuring device in which four secondary electron detectors are attached to an SEM, and Fig. 3 is a diagram of a SEM.
A diagram showing the formation process of M, Figure 4 is a plan view around the sample,
FIG. 5 and FIG. 6 are diagrams showing the coordinate system. 101: mirror body, 102: electron gun, 103: electron beam, 10
4: Electron lens system, 105: Sample stage, 106: Sample, 1
07: Secondary electron, 108: First detector, 109: Second
Detector, 110: Third detector, 111: Fourth detector, 1
12: Keyboard, 113: Computer, 114: Display. \I - Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 (a) (b) y

Claims (1)

【特許請求の範囲】 1、試料上を集束した電子ビームで走査し、試料の表面
形状に応じて放出される二次電子を検出し、検出信号量
と画像濃度とを対応させて画像化する走査電子顕微鏡に
おいて、試料を囲む如く、4個あるいはその整数倍の個
数の検出器を取付け、該検出器から得られた信号と面の
法線方向あるいは水平面内の直交する二方向の微分係数
との関係式を用いて、試料上の各点の前記微分係数を求
め、該微分係数を逐次的に加算あるいは積分することに
より試料の表面形状を測定することを特徴とする、走査
電子顕微鏡による表面形状測定方法。 2、前記関係式は、試料を囲む4個の検出器の信号値、
あるいは4の整数倍の個数の検出器を同数の検出器から
成る4つの組に分けた各組の信号値の和を、それぞれ、
時計回りまたは反時計回りに、90度毎にI_A、I_
B、I_C、I_Dとし、I_AとI_Dの方向を二等
分した方向をx軸、I_BとI_Cの方向を二等分した
方向をy軸、高さ方向をz軸、表面の方程式をz=h(
x、y)とするとき、次の式であることを特徴とする特
許請求の範囲第1項記載の走査電子顕微鏡による表面形
状測定方法。 ▲数式、化学式、表等があります▼ 3、前記信号値I_A、I_B、I_C、I_dおよび
∂h/∂x、∂h/∂yは、走査電子顕微鏡の特性等を
考慮した、定数加算、定数乗算またはこれらの組合わせ
等の補正がなされたものであることを特徴とする特許請
求の範囲第2項記載の走査電子顕微鏡による表面形状測
定方法。
[Claims] 1. Scan the sample with a focused electron beam, detect secondary electrons emitted according to the surface shape of the sample, and create an image by correlating the detected signal amount with the image density. In a scanning electron microscope, four detectors or an integral multiple of four detectors are installed to surround the sample, and the signals obtained from the detectors and the differential coefficients in the normal direction of the surface or in two orthogonal directions in the horizontal plane are A surface using a scanning electron microscope, characterized in that the surface shape of the sample is measured by determining the differential coefficient of each point on the sample using the relational expression, and sequentially adding or integrating the differential coefficients. Shape measurement method. 2. The above relational expression is the signal value of the four detectors surrounding the sample,
Alternatively, if the number of detectors is an integral multiple of 4 is divided into four groups each consisting of the same number of detectors, the sum of the signal values of each group is calculated as follows.
I_A, I_ every 90 degrees clockwise or counterclockwise
B, I_C, and I_D, the direction that bisects the direction of I_A and I_D is the x axis, the direction that bisects the direction of I_B and I_C is the y axis, the height direction is the z axis, and the surface equation is z= h(
The surface shape measuring method using a scanning electron microscope according to claim 1, characterized in that when x, y), the following equation is satisfied. ▲There are mathematical formulas, chemical formulas, tables, etc.▼ 3. The signal values I_A, I_B, I_C, I_d and ∂h/∂x, ∂h/∂y are constant additions and constants that take into account the characteristics of the scanning electron microscope. 3. The surface shape measuring method using a scanning electron microscope according to claim 2, wherein correction such as multiplication or a combination thereof is performed.
JP62299332A 1987-11-27 1987-11-27 Surface shape measurement method by scanning electron microscope Expired - Fee Related JP2650281B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62299332A JP2650281B2 (en) 1987-11-27 1987-11-27 Surface shape measurement method by scanning electron microscope
US07/275,069 US4912313A (en) 1987-11-27 1988-11-22 Method of measuring surface topography by using scanning electron microscope, and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62299332A JP2650281B2 (en) 1987-11-27 1987-11-27 Surface shape measurement method by scanning electron microscope

Publications (2)

Publication Number Publication Date
JPH01143127A true JPH01143127A (en) 1989-06-05
JP2650281B2 JP2650281B2 (en) 1997-09-03

Family

ID=17871179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62299332A Expired - Fee Related JP2650281B2 (en) 1987-11-27 1987-11-27 Surface shape measurement method by scanning electron microscope

Country Status (1)

Country Link
JP (1) JP2650281B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620634A (en) * 1992-07-03 1994-01-28 Nippon Telegr & Teleph Corp <Ntt> Scanning electron microscope
US6674917B1 (en) 1998-09-29 2004-01-06 Hitachi, Ltd. Method of synthesizing an image for any light source position and apparatus therefor
US6870169B2 (en) 2002-12-11 2005-03-22 Hitachi, Ltd. Method and apparatus for analyzing composition of defects
US7181060B2 (en) 2001-07-18 2007-02-20 Hitachi, Ltd. Defect inspection method
JP2014211313A (en) * 2013-04-17 2014-11-13 株式会社アドバンテスト Method and device for inspecting pattern

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3959379B2 (en) 2003-08-27 2007-08-15 株式会社日立ハイテクノロジーズ Shape measuring apparatus and shape measuring method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60124852U (en) * 1984-02-01 1985-08-22 日本電子株式会社 electron beam equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60124852U (en) * 1984-02-01 1985-08-22 日本電子株式会社 electron beam equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620634A (en) * 1992-07-03 1994-01-28 Nippon Telegr & Teleph Corp <Ntt> Scanning electron microscope
US6674917B1 (en) 1998-09-29 2004-01-06 Hitachi, Ltd. Method of synthesizing an image for any light source position and apparatus therefor
US7181060B2 (en) 2001-07-18 2007-02-20 Hitachi, Ltd. Defect inspection method
US6870169B2 (en) 2002-12-11 2005-03-22 Hitachi, Ltd. Method and apparatus for analyzing composition of defects
JP2014211313A (en) * 2013-04-17 2014-11-13 株式会社アドバンテスト Method and device for inspecting pattern

Also Published As

Publication number Publication date
JP2650281B2 (en) 1997-09-03

Similar Documents

Publication Publication Date Title
US8946627B2 (en) Three-dimensional mapping using scanning electron microscope images
Noo et al. Analytic method based on identification of ellipse parameters for scanner calibration in cone-beam tomography
US6504957B2 (en) Method and apparatus for image registration
US4912313A (en) Method of measuring surface topography by using scanning electron microscope, and apparatus therefor
JPH0555802B2 (en)
JPH01101408A (en) Measuring method for pattern
JPH01143127A (en) Surface shape measuring method by scanning electron microscope
Lerma et al. Self-calibration of terrestrial laser scanners: Selection of the best geometric additional parameters
Jackson et al. Error analysis and calibration for a novel pipe profiling tool
Omidalizarandi et al. Comparison of target-and mutual informaton based calibration of terrestrial laser scanner and digital camera for deformation monitoring
JPH01115043A (en) Defect inspection device by scanning electronic microscope
Zhang et al. Freight train gauge-exceeding detection based on three-dimensional stereo vision measurement
CN115031927B (en) High-precision positioning method for centroid of elliptical Gaussian distribution light spot
Nguyen et al. A low-cost and easy-to-use phantom for cone-beam geometry calibration of a tomographic X-ray system
JPS6332314A (en) Sectional shape measurement system
Hughes et al. Preliminary investigation into the use of a network-based technique for calibration of 3D laser scanners.
Danuser et al. Calibration procedure for light-optical and scanning electron stereo-microscopy in micro-and nanorobotics
Liu et al. Compensation of geometric parameter errors for terrestrial laser scanner by integrating intensity correction
Abbas et al. Improvement in measurement accuracy for hybrid scanner
Li et al. Strain measurement for sheet metal forming based on close range photogrammetry
Govorov et al. Study of digital camera calibration on a flat test object
Henschel et al. Application of Focal Curves for X-Ray Microdiffraction Methods
Chekanov et al. 1-point RANSAC for circular motion estimation in computed tomography (CT)
Yu et al. Normal Line Invariance-Based Lens Distortion Calibration Applied in a Precision-Sensitive Self-Calibrated Planar Metrology System
Mason Surface Scanning Analysis with the Laser Antenna Surface Scanning Instrument

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees