JPH01142530A - Liquid crystal device - Google Patents

Liquid crystal device

Info

Publication number
JPH01142530A
JPH01142530A JP30058487A JP30058487A JPH01142530A JP H01142530 A JPH01142530 A JP H01142530A JP 30058487 A JP30058487 A JP 30058487A JP 30058487 A JP30058487 A JP 30058487A JP H01142530 A JPH01142530 A JP H01142530A
Authority
JP
Japan
Prior art keywords
liquid crystal
silicon oxide
crystal device
spherical bodies
spacers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30058487A
Other languages
Japanese (ja)
Inventor
Hiroaki Odai
尾台 弘章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP30058487A priority Critical patent/JPH01142530A/en
Publication of JPH01142530A publication Critical patent/JPH01142530A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To obtain a large-size and large-capacity liquid crystal device which has the thickness of the liquid crystal layer uniform within the plane and has good display quality by using spherical bodies essentially consisting of silicon oxide as the spacers within the surfaces of the transparent substrates of the large-sized liquid crystal device. CONSTITUTION:The spherical bodies essentially consisting of the silicon oxide are used as the spacers 17 within the surfaces of the transparent substrates 11a, 11b of the large-sized liquid crystal device, by which the liquid crystal layer 15 is formed to the uniform thickness with good accuracy with the number of the spherical bodies much smaller than the number of high-polymer spherical bodies. The degradation in the contrast by the reduction of the effective surface area is thereby prevented and the disturbance of the arrangement of the liquid crystal is extremely lessened. Since the spherical bodies essentially consisting of the silicon oxide are not made into a slender shape like the shape of glass fibers, the disconnection of the transparent substrates 11a, 11b on the substrates and the destruction of the thin film nonlinear element are extremely lessened. The unequal colors within the surface are thereby not admitted; in addition, the decrease of the contrast and the generation of the unequal contrast are obviated even if display is executed by impressing a voltage to the device.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、画像表示装置やコンピュータ端末等に用いら
れる大型で大容量の液晶装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a large-sized, high-capacity liquid crystal device used in image display devices, computer terminals, and the like.

〔発明の概要〕[Summary of the invention]

本発明は情報出力端末として煉用される大型液晶装置に
おいて、透明基板面内のスペーサーとして酸化硅素を主
成分とする球体を用いることにより、表示コントラスト
を低下させる一因となるスペーサーの個数を大幅に削減
し、かつ液晶層の厚みを精度よく均一に形成することを
可能にしたものである。
The present invention uses spheres whose main component is silicon oxide as spacers within the plane of a transparent substrate in large-sized liquid crystal devices used as information output terminals, thereby greatly reducing the number of spacers that cause a reduction in display contrast. This makes it possible to reduce the thickness of the liquid crystal layer and form the liquid crystal layer with a uniform thickness with high precision.

〔従来の技術〕[Conventional technology]

近年は表示情報量の増大に伴い、X−Yマトリクス状に
電極を形成したいわゆるドントマトリクス液晶表示装置
が、薄型軽量コンパクトな表示端未装置として注目を集
めており、液晶装置はますます大型化を要求されている
In recent years, with the increase in the amount of displayed information, so-called don-matrix liquid crystal display devices, in which electrodes are formed in an X-Y matrix, have attracted attention as thin, lightweight, and compact display devices, and liquid crystal devices are becoming larger and larger. is required.

第2図は液晶表示装置の構成を示す断面図である0図中
21a、21bはそれぞれ上下一対の透明電極基板で、
表面に配向膜が形成されている。該透明電極基板の間隙
には、所定量の旋光物質が添加されたネマチック液晶組
成物22a、22bが封入され、周辺シール剤23a、
23bでシールされている。
FIG. 2 is a cross-sectional view showing the structure of a liquid crystal display device. In FIG. 2, 21a and 21b are a pair of upper and lower transparent electrode substrates, respectively.
An alignment film is formed on the surface. Nematic liquid crystal compositions 22a and 22b to which a predetermined amount of optically active substance is added are sealed in the gap between the transparent electrode substrates, and a peripheral sealant 23a,
23b.

図中24a、24bは該透明電極基板の間隔を均一に形
成するためのスペーサーで、ある一定の分布密度を有す
るように配置されている。スペーサーとして用いられる
ものには、図中248に示す高分子球体、図中24bに
示すグラスファイバー等がある。
In the figure, 24a and 24b are spacers for uniformly spacing the transparent electrode substrates, and are arranged to have a certain distribution density. Examples of spacers used as spacers include polymer spheres shown at 248 in the figure and glass fibers shown at 24b in the figure.

高分子球体は、粒径の標準偏差が0.2μmから0.5
μmの範囲のものを100個/am”から500個7a
m”の範囲の分布密度で分散させ、グラスファイバーは
、粒径の標準偏差が0.1μmから0.2μmの範囲の
ものを10個/++n”から50個/■翻2の範囲の分
布密度で分散させる。大型液晶表示装置は、こうした構
成により液晶層の厚みを±0.1μmの精度で均一に形
成することが可能であった。
The standard deviation of the particle size of polymer spheres is 0.2 μm to 0.5
100 pieces/am” to 500 pieces in the μm range7a
The glass fibers are dispersed at a distribution density in the range of 10 pieces/++n' to 50 pieces with a standard deviation of particle diameters in the range of 0.1 μm to 0.2 μm/■ distribution density in the range of 2. to disperse it. With this configuration, the large liquid crystal display device has been able to form a liquid crystal layer with a uniform thickness with an accuracy of ±0.1 μm.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

大型液晶表示装置の透明基板面内のスペーサーとして高
分子球体を用いると、液晶層の厚みを均一に形成するた
めには、前述したように透明基板面内に100個/II
II!から500個/II1mtの範囲の分布密度をも
って均一に分散させる必要がある。このように多くの高
分子球体が表示面内に存在すること、有効表示面積を大
幅に削減してコントラストの低下をもたらしたり、液晶
の配列を乱したりするこ・ とがあるという問題点があ
った。
When polymer spheres are used as spacers within the plane of a transparent substrate of a large-sized liquid crystal display device, in order to form a liquid crystal layer with a uniform thickness, it is necessary to
II! It is necessary to uniformly disperse the particles with a distribution density ranging from 500 pieces/II1mt. The problem is that the presence of many polymer spheres within the display surface can significantly reduce the effective display area, resulting in a decrease in contrast and disrupting the alignment of the liquid crystal. there were.

また、大型液晶表示装置の透明基板面内のスペーサーと
してグラスファイバーを用いると、前述したように少な
い個数で液晶層の厚みを均一に形成することができるが
、グラスファイバーが硬くかつ細長い円柱形であるため
、基板上の透明電極を断線させることがあるという問題
点があった。
Furthermore, if glass fibers are used as spacers within the plane of the transparent substrate of a large liquid crystal display device, it is possible to form a liquid crystal layer with a uniform thickness with a small number of spacers, as described above, but the glass fibers are hard and have an elongated cylindrical shape. Therefore, there was a problem in that the transparent electrode on the substrate could be disconnected.

特に薄膜非線型素子を用いた液晶表示装置においては、
該スペーサーとしてのグラスファイバーが薄膜非線型素
子を破壊してしまうという問題点があうた。
Especially in liquid crystal display devices using thin film non-linear elements,
A problem arose in that the glass fiber used as the spacer destroyed the thin film nonlinear element.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点を解決するために、本発明では、大型液晶装
置の透明基板面内のスペーサーとして、酸化硅素を主成
分とする球体を用いることを特徴とするものである。
In order to solve the above problems, the present invention is characterized in that spheres containing silicon oxide as a main component are used as spacers within the plane of a transparent substrate of a large liquid crystal device.

〔作用〕[Effect]

前記酸化硅素を主成分とする球体を、大型液晶装置の透
明基板面内のスペーサーとして用いることにより、高分
子球体より大幅に少ない個数で液晶層の厚みを精度よく
均一に形成することができる。このため、有効表示面積
を削減することによるコントラストの低下を防ぐことが
でき、かつ液晶の配列を乱すことも極めて少なくするこ
とができる。
By using the spheres containing silicon oxide as a main component as spacers within the plane of a transparent substrate of a large liquid crystal device, the thickness of the liquid crystal layer can be formed accurately and uniformly with a significantly smaller number than polymer spheres. Therefore, it is possible to prevent a decrease in contrast due to a reduction in the effective display area, and it is also possible to extremely minimize disturbance of the alignment of liquid crystals.

また、酸化硅素を主成分とする球体は、グラスファイバ
ーのような細長い形状ではないため、基板上の透明基板
を断線させたり、薄膜非線型素子を破壊したりすること
が極めて少な(なる。
Furthermore, since the spheres whose main component is silicon oxide are not elongated like glass fibers, they are extremely unlikely to break the transparent substrate on the substrate or destroy the thin film nonlinear element.

さらに、熱硬化性あるいは熱可塑性の高分子化合物を酸
化硅素を主成分とする球体の表面に個して、透明基板面
内のスペーサーとして用いると、透明基板面内で接着す
ることにより、該酸化硅素を主成分とする球体の粒径の
ばらつきを吸収することが可能になる。
Furthermore, if a thermosetting or thermoplastic polymer compound is placed on the surface of a sphere mainly composed of silicon oxide and used as a spacer within the plane of the transparent substrate, the oxidation It becomes possible to absorb variations in particle size of spheres whose main component is silicon.

〔実施例〕〔Example〕

以下に本発明の実施例を図面を用いて詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明に係る液晶装置の構成を示す断面図であ
る0図中112.llbは上下一対の透明基板で、該透
明基板上に透明電極12a、12bがX−Yマトリクス
状になるように形成されている。
FIG. 1 is a cross-sectional view showing the structure of a liquid crystal device according to the present invention. llb is a pair of upper and lower transparent substrates, on which transparent electrodes 12a and 12b are formed in an XY matrix.

該透明電極の表面に印刷やディッピング、蒸着等によっ
て、ポリイミド、テフロン等の絶縁性薄膜を形成し、一
方向にラビング処理等による配向膜13a、L3bが設
けられている。透明基板11a、11bの外側には一対
の偏光板14a、14bが、透過軸または吸収軸と配向
膜の軸が所定の角度をなすように設置されている。また
、上下一対の透明基板の間隙には所定量の旋光物質が添
加されたネマチツク液晶FJ15が封入され、その厚さ
方向にねじれた螺旋構造を形成しており、接着剤15a
、16bによってシールされている。該ネマチック液晶
の厚みを精度よく均一に制御するため、透明基板113
゜11bの間隙には、酸化硅素を主成分とする球体がス
ペーサー17として配置されている0本発明では、酸化
硅素を主成分とする球体として、触媒化成工業社製の真
総球(平均粒径6.84μm粒径の標準偏差0.02μ
m)を使用した。この球体をイソプロパツールとフロン
の混合溶液に分散して湿式噴霧したところ、分散密度が
10個/1III112から20個/+ms”の範囲と
なり、精度よく均一に散布され、液晶層15の厚みは7
.0±0.05μmとなり、極めて精度の高いものとな
った。このようにして構成された液晶表示装置は、目視
観察で面内の色ムラは見られず、電圧を印加して表示し
てもコントラストが低下したりコントラストムラが発生
するようなことはない。
An insulating thin film of polyimide, Teflon, or the like is formed on the surface of the transparent electrode by printing, dipping, vapor deposition, or the like, and alignment films 13a, L3b are provided in one direction by rubbing or the like. A pair of polarizing plates 14a and 14b are installed outside the transparent substrates 11a and 11b so that the transmission axis or absorption axis and the axis of the alignment film form a predetermined angle. Further, a nematic liquid crystal FJ15 to which a predetermined amount of optically active substance is added is sealed in the gap between the pair of upper and lower transparent substrates, forming a spiral structure twisted in the thickness direction.
, 16b. In order to precisely and uniformly control the thickness of the nematic liquid crystal, a transparent substrate 113 is used.
In the gap 11b, a sphere containing silicon oxide as a main component is arranged as a spacer 17. In the present invention, as a sphere containing silicon oxide as a main component, a true total sphere (average particle Standard deviation of particle size: 6.84μm diameter: 0.02μm
m) was used. When these spheres were dispersed in a mixed solution of isopropanol and chlorofluorocarbons and wet-sprayed, the dispersion density ranged from 10 pieces/1III112 to 20 pieces/+ms'', and the spheres were uniformly and accurately dispersed, and the thickness of the liquid crystal layer 15 was 7
.. It was 0±0.05 μm, which was extremely accurate. In the liquid crystal display device configured in this way, no color unevenness within the surface is observed when visually observed, and even when a voltage is applied to display, there is no decrease in contrast or occurrence of contrast unevenness.

また、該真赫球の表面にポリメチルメタアクリレ−)(
PMMA)を0.1μmの厚さでコーティングしておい
て、前記と同様の液晶表示装置を作製した。すると該液
晶表示装置の液晶層の厚みは、7.0±0.03μmと
なり、真赫球の粒径のばらつきをPMMAが吸収して、
−層精度の高い液晶層厚を有する液晶表示装置となった
。さらに該真赫球は面内で接着されているため、重力や
振動等の外力によって面内で移動してしまうということ
がなく、本発明による液晶表示装置を立てて使用したり
、強い振動を与えたりしても液晶層厚が変化して表示面
に色ムラが発生することがなく、極めて堅牢な液晶表示
装置を実現することができた。
In addition, polymethyl methacrylate) (
PMMA) was coated to a thickness of 0.1 μm, and a liquid crystal display device similar to that described above was manufactured. Then, the thickness of the liquid crystal layer of the liquid crystal display device is 7.0±0.03 μm, and PMMA absorbs the variation in the particle size of the true spheres.
- A liquid crystal display device having a liquid crystal layer thickness with high layer accuracy was obtained. Furthermore, since the true light bulb is bonded within the plane, it will not move within the plane due to external forces such as gravity or vibration, and the liquid crystal display device of the present invention can be used standing up or exposed to strong vibrations. It was possible to realize an extremely robust liquid crystal display device without causing color unevenness on the display surface due to changes in the thickness of the liquid crystal layer even if the liquid crystal layer was applied.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、液晶層の厚みが
面内で均一で、表示品質の良い、大型大容量の液晶装置
とすることができる。
As described above, according to the present invention, it is possible to provide a large-sized, large-capacity liquid crystal device in which the thickness of the liquid crystal layer is uniform within the plane, and the display quality is good.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る液晶装置の構成を示す断面図、第
2図(al、 fblは従来の液晶装置の構成を示す断
面図である。 11 a 、 11 b・・・透明基板12a、12b
・・・透明電極 13a、 13b ・・’配向膜 14a、14b・・・偏光板 15  ・・・・・・液晶層 16a、16b・・・シール剤 17  ・・・・・・スペーサー 以上 出願人 セイコー電子工業株式会社 兼昂表示装置の構成°石示す断面図 第2図(α) 9燵の液晶表示装置の講彪示]坊面図 第2図(b)
FIG. 1 is a cross-sectional view showing the structure of a liquid crystal device according to the present invention, and FIG. 2 (al and fbl are cross-sectional views showing the structure of a conventional liquid crystal device. 11a, 11b...transparent substrate 12a, 12b
...Transparent electrodes 13a, 13b...'Alignment films 14a, 14b...Polarizing plate 15...Liquid crystal layers 16a, 16b...Sealant 17...Spacer and above Applicant Seiko Kaneko Denshi Kogyo Co., Ltd.Cross-sectional view showing the structure of the display device Figure 2 (α) Diagram of the 9-liter liquid crystal display device Figure 2 (b)

Claims (3)

【特許請求の範囲】[Claims] (1)所定量の旋光性物質が添加された正の誘電異方法
を有するネマチック液晶組成物を、相対峙する2枚の透
明電極基板間に封入し、該ネマチック液晶組成物がその
厚さ方向にねじれた螺旋構造を形成し、かつ該透明基板
の外側に一対の偏光板を具備した液晶装置において、酸
化硅素を主成分とする球体を透明基板面内のスペーサー
として用いたことを特徴とする液晶装置。
(1) A nematic liquid crystal composition having a positive dielectric anisotropy to which a predetermined amount of optically active substance is added is sealed between two transparent electrode substrates facing each other, and the nematic liquid crystal composition is A liquid crystal device having a twisted helical structure and having a pair of polarizing plates on the outside of the transparent substrate, characterized in that spheres containing silicon oxide as a main component are used as spacers within the plane of the transparent substrate. liquid crystal device.
(2)熱硬化性あるいは熱可塑性の高分子化合物を該酸
化硅素を主成分とする球体の表面に0.1μmから0.
5μmの範囲でコーティングしたことを特徴とする特許
請求の範囲第1項記載の液晶装置。
(2) A thermosetting or thermoplastic polymer compound is applied to the surface of the silicon oxide-based sphere from 0.1 μm to 0.0 μm.
The liquid crystal device according to claim 1, characterized in that the liquid crystal device is coated in a range of 5 μm.
(3)該酸化硅素を主成分とする球体を面内に分散させ
た個数を10個/mm^2から100個/mm^2とし
たこと特徴とする特許請求の範囲第1項記載の液晶装置
(3) The liquid crystal according to claim 1, characterized in that the number of spheres containing silicon oxide as a main component dispersed in the plane is from 10 pieces/mm^2 to 100 pieces/mm^2. Device.
JP30058487A 1987-11-28 1987-11-28 Liquid crystal device Pending JPH01142530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30058487A JPH01142530A (en) 1987-11-28 1987-11-28 Liquid crystal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30058487A JPH01142530A (en) 1987-11-28 1987-11-28 Liquid crystal device

Publications (1)

Publication Number Publication Date
JPH01142530A true JPH01142530A (en) 1989-06-05

Family

ID=17886600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30058487A Pending JPH01142530A (en) 1987-11-28 1987-11-28 Liquid crystal device

Country Status (1)

Country Link
JP (1) JPH01142530A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH049009A (en) * 1990-04-26 1992-01-13 Victor Co Of Japan Ltd Spatial optical modulating element
US6760089B1 (en) * 1999-03-11 2004-07-06 Nec Lcd Technologies Ltd. Liquid crystal display and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH049009A (en) * 1990-04-26 1992-01-13 Victor Co Of Japan Ltd Spatial optical modulating element
US6760089B1 (en) * 1999-03-11 2004-07-06 Nec Lcd Technologies Ltd. Liquid crystal display and manufacturing method thereof
US6954250B2 (en) 1999-03-11 2005-10-11 Nec Lcd Technologies, Ltd. Liquid crystal display and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4983429A (en) Process for producing cells for liquid crystal display devices
JP2939384B2 (en) Liquid crystal panel manufacturing method
JPS6290622A (en) Liquid crystal display device
JPH05241165A (en) Liquid crystal display device and its production
WO2021136008A1 (en) Liquid crystal cell and electronic apparatus
JP2729299B2 (en) Electrophoretic display
JPH01142530A (en) Liquid crystal device
JPH11183917A (en) Liquid crystal display device and its manufacture
JPH03102323A (en) Liquid crystal panel and its manufacture
JP5320986B2 (en) Light transmission adjustment device
JPH02232630A (en) Light control element
JPH04242719A (en) Liquid crystal display
JP2000214469A (en) Liquid crystal display element
JPH05232476A (en) Liquid crystal display element
JPS60212733A (en) Liquid crystal display element
JPS62166317A (en) Manufacture of liquid crystal display panel
JP4529407B2 (en) Refractive index distribution control optical element
JPH03197928A (en) Liquid crystal display device
JP3074805B2 (en) Display element
KR890003631B1 (en) The element of liquid crystal using conducting spacer
CN118057234A (en) Dimming device and preparation method thereof
US20020008835A1 (en) Liquid crystal display device
JPH03118517A (en) Liquid crystal display device
JPH04180026A (en) Liquid crystal element
JPH0221566B2 (en)