JPH01142354A - Ceiling blow-off structure for air-conditioning room - Google Patents
Ceiling blow-off structure for air-conditioning roomInfo
- Publication number
- JPH01142354A JPH01142354A JP30003287A JP30003287A JPH01142354A JP H01142354 A JPH01142354 A JP H01142354A JP 30003287 A JP30003287 A JP 30003287A JP 30003287 A JP30003287 A JP 30003287A JP H01142354 A JPH01142354 A JP H01142354A
- Authority
- JP
- Japan
- Prior art keywords
- air
- ceiling
- perforated plate
- room
- perforated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004378 air conditioning Methods 0.000 title claims abstract description 13
- 230000001143 conditioned effect Effects 0.000 claims abstract description 18
- 238000007664 blowing Methods 0.000 claims description 21
- 238000009423 ventilation Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract 1
- 230000010411 postconditioning Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 7
- 238000011144 upstream manufacturing Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000000428 dust Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Ventilation (AREA)
- Air-Flow Control Members (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、空調室の天井吹出構造に係り、特に被空調室
の室内側の風速分布を均一化するのに好適な空調室の天
井吹出構造に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a ceiling blowout structure for an air conditioned room, and particularly to a ceiling blowout structure for an air conditioned room suitable for uniformizing the wind speed distribution on the indoor side of the air conditioned room. It's about structure.
まず、従来の一般的な天井全面吹出構造の空調設備を第
2図を参照して説明する。First, a conventional general air conditioning system having a ceiling-wide outlet structure will be explained with reference to FIG.
第2図は、−例として床面吸込構造をとった従来の恒温
室の空調設備を示す略示構成図である。FIG. 2 is a schematic configuration diagram showing, as an example, an air conditioning system for a conventional constant temperature room having a floor suction structure.
第2図において、1は、被空調室に係る恒温室、2はチ
ラーユニット、3は空調機で、冷却器4、加熱器5.送
風機6を備えている。7は、チラー ゛ユニット2と冷
却器4とを結ぶ冷水配管で、これら空調機3、チラーユ
ニット2等の空調機器は室外に配置されている。In FIG. 2, reference numeral 1 indicates a constant temperature room for the air-conditioned room, 2 a chiller unit, 3 an air conditioner, a cooler 4, a heater 5. It is equipped with a blower 6. Reference numeral 7 denotes a cold water pipe connecting the chiller unit 2 and the cooler 4, and these air conditioning equipment such as the air conditioner 3 and the chiller unit 2 are placed outside.
8は、送風機6によって送風される空調空気を天井チャ
ンバ10に送り込む送風ダクト、9は、床チャンバ14
と空調機3とを接続する送風゛ダクトである。8 is a ventilation duct that sends conditioned air blown by the blower 6 into the ceiling chamber 10; 9 is a floor chamber 14;
This is a blower duct that connects the air conditioner 3 and the air conditioner 3.
恒温室1の天井は多孔板15により天井チャンバ10と
仕切られており、多孔板15の開口から空調空気を吹き
出す天井全面吹出構造となっている。また、恒温室1の
床13は空調空気を床チャンバ14に吸込む多数の開口
を有している。The ceiling of the constant temperature room 1 is separated from the ceiling chamber 10 by a perforated plate 15, and has a ceiling-wide blowout structure in which conditioned air is blown out from the openings of the perforated plate 15. Further, the floor 13 of the constant temperature room 1 has a large number of openings for sucking conditioned air into the floor chamber 14.
第2図の如き設備において、天井チャンバ10内に矢印
のように吹き込む空気流の動圧が、室内側への吹出風速
分布を不均一にする主要な原因となるので、天井チャン
バ10内に抵抗部材を設けたり、天井チャンバ10の高
さを十分大きくするなどの対策が必要であった。しかし
、現実には設備スペースが限られることから天井チャン
バの高さを大きくすることは難かしく、恒温室1内への
吹出風速について精度の高い分布を得ることは容易では
なかった。In the equipment shown in Fig. 2, the dynamic pressure of the air flow blown into the ceiling chamber 10 as shown by the arrow is the main cause of uneven air velocity distribution toward the indoor side, so there is resistance inside the ceiling chamber 10. It was necessary to take measures such as installing additional members or increasing the height of the ceiling chamber 10 sufficiently. However, in reality, it is difficult to increase the height of the ceiling chamber due to limited equipment space, and it is not easy to obtain a highly accurate distribution of the wind speed blown into the constant temperature room 1.
上記の従来技術において、第2図に示す恒温室1の天井
の吹出面に十分な抵抗を持たせる場合、−重構造の多孔
板15の吹出面では、その面風速がさほど速くないこと
から、十分な抵抗を得るには、かなり開口率の小さいも
のが必要となる。すなわち、穴径と穴ピッチとの比がか
なり小さいものが必要となる。In the above-mentioned conventional technology, when providing sufficient resistance to the air outlet surface of the ceiling of the thermostatic chamber 1 shown in FIG. In order to obtain sufficient resistance, a material with a fairly small aperture ratio is required. In other words, a material with a considerably small ratio of hole diameter to hole pitch is required.
しかし、多孔板の穴径を小さくすることは、加工技術、
加工コストの面で限界があり、また、塵埃による目詰り
で保守の手間が増えることも十分考えられる。この塵埃
による目詰りの問題は、例えば抵抗部材として繊維質等
の濾材を用いる場合も同様の問題がある。However, reducing the hole diameter of a perforated plate requires processing technology,
There is a limit in terms of processing cost, and it is also quite conceivable that maintenance efforts will increase due to clogging due to dust. The same problem of clogging due to dust occurs when a filter material such as fibrous material is used as the resistance member, for example.
また、多孔板の穴のピッチを大きくすることは、吹出面
直下の風速のばらつきが増えることになり有効ではなか
った。Furthermore, increasing the pitch of the holes in the perforated plate was not effective because it increased the variation in wind speed directly below the blowing surface.
本発明は、上記従来技術の問題点を解決するためになさ
れたもので、天井チャンバの吹込み空気流の動圧に対し
天井吹出面で適度の抵抗を与え、室内の風速分布を均一
化しうる空調室の天井吹出構造を提供することを、その
目的とするものである。The present invention has been made in order to solve the problems of the prior art described above, and can provide an appropriate resistance to the dynamic pressure of the air flow blown into the ceiling chamber at the ceiling blowing surface, thereby making it possible to equalize the indoor wind speed distribution. The purpose is to provide a ceiling blowout structure for an air conditioned room.
上記目的を達成するために、本発明に係る空調室の天井
吹出構造の構成は、被空調室外に少なくとも空調機器と
送風ダクトとを備え、被空調室の天井から室内に空気を
吹き出し床部あるいは床近傍から空気を吸い込んで空調
空気を循環せしめるものにおいて、前記天井の空気吹出
面を、主となる吹出面抵抗を与えるべき開口率の小さい
第1の多孔板、その第1の多孔板と開口率が同等あるい
は大きい複数の多孔板、ならびに、それらの多孔板より
開口率の大きい室内側の多孔板で構成したものである。In order to achieve the above object, the configuration of the ceiling blowing structure for an air conditioned room according to the present invention includes at least an air conditioning device and a ventilation duct outside the air conditioned room, and blows air into the room from the ceiling of the air conditioned room to the floor or In a device that circulates conditioned air by sucking air from near the floor, the air blowing surface of the ceiling is formed by a first porous plate with a small aperture ratio that provides the main blowing surface resistance, and the first porous plate and the opening. It is composed of a plurality of perforated plates with the same or larger aperture ratio, and a perforated plate on the indoor side with a larger aperture ratio than those perforated plates.
また、より詳しくは、複数の多孔板は、吹出空気の気流
を拡散しうる間隔を各々保つようにしたものである。More specifically, the plurality of perforated plates are arranged at intervals that allow the air flow of the blown air to be diffused.
なお付記すると、本発明は、室内における風速分布を均
一化しうる抵抗を、適切な間隔で多重に設けた多孔板に
より得ることを特徴とするものである。It should be noted that the present invention is characterized in that the resistance capable of making the wind speed distribution in the room uniform is obtained by providing multiple perforated plates at appropriate intervals.
室外の空調機器から送風ダクトを介して天井チャンバ内
に吹き込む空気流の動圧は、開口率の小さい複数の多孔
板によって主となる吹出面抵抗を与えられ、各々の多孔
板間の空間領域に流入し。The dynamic pressure of the air flow blown into the ceiling chamber from the outdoor air conditioner through the air duct is mainly given resistance by the multiple perforated plates with small opening ratios, and Inflow.
その空気流が拡散される。拡散された空気流は、最終的
に開口率の大きい、穴ピッチの小さい室内側の多孔板を
経て、均一な風速分布となって天井全面から室内に吹き
出される。したがって、室内の空調はむらなく行われ、
空調後の空気は床の開口を経て床チャンバに吸込まれ室
外の空調機器に戻り、以下循環する。That airflow is diffused. The diffused air flow finally passes through a perforated plate on the indoor side with a large aperture ratio and a small hole pitch, and is blown into the room from the entire surface of the ceiling with a uniform wind speed distribution. Therefore, indoor air conditioning is performed evenly,
The conditioned air is sucked into the floor chamber through the opening in the floor, returns to the outdoor air conditioning equipment, and is then circulated.
これによって恒温室は、所要の温度と清浄度を保つこと
ができる。This allows the constant temperature room to maintain the required temperature and cleanliness.
以下、本発明の一実施例を第1図および第3゜4図を参
照して説明する。Hereinafter, one embodiment of the present invention will be described with reference to FIG. 1 and FIGS. 3-4.
第1図は1本発明の一実施例に係る天井吹出構造を有す
る恒温室の空調設備を示す略示構成図、第3図は、吹出
面の抵抗と吹出風速分布との関係を示す線図、第4図は
、第1図の天井の2重多孔板構成を示す略示部分図であ
る。Fig. 1 is a schematic configuration diagram showing the air conditioning equipment of a constant temperature room having a ceiling blowing structure according to an embodiment of the present invention, and Fig. 3 is a diagram showing the relationship between the resistance of the blowing surface and the blowing wind speed distribution. , FIG. 4 is a schematic partial view showing the double perforated plate configuration of the ceiling of FIG.
、 第1図中、第2図と同一符号のものは、従来技術と
同等部分であるから、その説明を省略する。, Components in FIG. 1 with the same reference numerals as those in FIG. 2 are the same parts as in the prior art, so their explanation will be omitted.
第1図に示す本実施例の恒温室と第2図に示す従来の恒
温室との相違点は空気吹出面となる天井の構造であり、
本実施例の天井吹出構造は、第1゜第2の多孔板をある
間隔をおいて配置した2重板構成としたものである。The difference between the thermostatic chamber of this embodiment shown in FIG. 1 and the conventional thermostatic chamber shown in FIG. 2 is the structure of the ceiling that serves as the air blowing surface.
The ceiling air blowing structure of this embodiment has a double plate structure in which a first and a second perforated plate are arranged at a certain interval.
第1,4図において、11は、開口率の小さい第1の多
孔板で、穴ピッチPLの開口11aを有している。12
は、第1の多孔板11より開口率の大きい第2の多孔板
で、この第2の多孔板12は第1の多孔板11の穴パッ
チPIより小さい穴ピッチP2の開口12aを有してい
る。第1の多孔板11と第2の多孔板12とは、吹出空
気の気流を拡散しうる間隔悲を保つように2重板の天井
を構成している。これらの多孔板は、被空調室の室内環
境または建築条件に合わせて、アスベスト。In FIGS. 1 and 4, 11 is a first porous plate with a small aperture ratio, and has openings 11a with a hole pitch PL. 12
is a second perforated plate having a larger aperture ratio than the first perforated plate 11, and this second perforated plate 12 has openings 12a with a hole pitch P2 smaller than the hole patch PI of the first perforated plate 11. There is. The first perforated plate 11 and the second perforated plate 12 constitute a double plate ceiling so as to maintain a distance that allows the air flow of the blown air to be diffused. These perforated plates are made of asbestos to suit the indoor environment or architectural conditions of the conditioned room.
木、金属、プラスチック等いずれの材質を採用してもよ
い。Any material such as wood, metal, or plastic may be used.
第4図に示す2重板の天井吹出構造の設定の考え方を第
1,4図に加え第3図を参照して説明する。The concept of setting the double-plate ceiling blowout structure shown in FIG. 4 will be explained with reference to FIG. 3 in addition to FIGS. 1 and 4.
天井の空気吹出面の抵抗と吹出空気流の風速分布との間
には第3図に示すような設備固有の相関関係がある。There is an equipment-specific correlation between the resistance of the air blowing surface of the ceiling and the wind speed distribution of the blowing air flow, as shown in FIG.
第3図において、横軸は、天井の空気吹出面の吹出面抵
抗ΔPと、送風ダクト8から天井チャンバ10へ空気が
吹き込む天井吹込部動圧Pvとの比(無次元値)をとり
、縦軸は天井から室内に吹込む空調空気の風速のばらつ
きδV (実測値)をとって、その関係が実線のように
リニアであることを示している。したがって、被空調室
である恒温室1内の吹出空気流を目的の風速分布にする
には、ある必要な抵抗値を選定すればよい。本実施例は
、その必要な吹出面抵抗を第4図に示す2重多孔板によ
って得るものである。In FIG. 3, the horizontal axis is the ratio (dimensionless value) of the air blowing surface resistance ΔP of the air blowing surface of the ceiling and the dynamic pressure Pv of the ceiling blowing part where air is blown from the air duct 8 to the ceiling chamber 10, and the vertical axis is The axis shows the variation δV (actually measured value) in the wind speed of conditioned air blown into the room from the ceiling, and the relationship is linear as shown by the solid line. Therefore, in order to make the blown air flow in the constant temperature room 1, which is an air-conditioned room, a desired wind speed distribution, a certain necessary resistance value may be selected. In this embodiment, the necessary blowout surface resistance is obtained using a double perforated plate shown in FIG.
第4図に示す第1の多孔板11は、空気流の上流側に配
置するもので、2重多孔板全体の主となる吹出面抵抗を
生むような開口率の小さな多孔板であり、その下流に配
置する第2の多孔板12は、第1の多孔板と比較して穴
ピッチの小さいものである。The first perforated plate 11 shown in FIG. 4 is placed on the upstream side of the air flow, and is a perforated plate with a small aperture ratio that produces the main blowout surface resistance of the entire double perforated plate. The second perforated plate 12 disposed downstream has a smaller hole pitch than the first perforated plate.
上流側の第1の多孔板11と下流側の第2の多孔板12
との間隔Qは、第1の多孔板11から吹き出した空気流
を十分拡散しうる間隔であり1例えば、次式(1)を満
足するように設定する。The first perforated plate 11 on the upstream side and the second perforated plate 12 on the downstream side
The distance Q between the first perforated plate 11 and the first perforated plate 11 is such that the air flow blown out from the first perforated plate 11 can be sufficiently diffused.
ここで、d:上流側多孔板の穴径
(開口11aの直径)
β:上流側多孔板の開口率
上記の式(1)は、「空気調和・衛生工学会論文集」N
α31,1986年6月刊、門久義他3名による「連続
して設置した絞りの抵抗とその干渉。Here, d: Hole diameter of the upstream perforated plate (diameter of opening 11a) β: Open area ratio of the upstream perforated plate
α31, June 1986, "Resistance of consecutively installed apertures and their interference" by Hisayoshi Kado and three others.
第2報−2枚の有孔板の干渉」に開示されている。・上
記文献は2枚の有孔板の干渉について論じているが、そ
の対象はポンプ設備などの円管の水量測定等に関わり、
2枚の多孔板の間隔を小さくし干渉を利用して、管内の
水流にキャビテーションをおこさずに抵抗を与えるよう
にしたもので、本発明のように空調室の天井吹出構造と
は全く別異のものであり、天井吹出面からの風速分布を
均一化する如き技術思想は開示されていないものである
。2nd report - Interference between two perforated plates''. - The above document discusses the interference between two perforated plates, but the subject is related to water flow measurement in circular pipes such as pump equipment, etc.
This system uses interference by reducing the distance between two perforated plates to provide resistance to the water flow inside the pipe without causing cavitation, and is completely different from the ceiling blowout structure of an air-conditioned room like the present invention. However, there is no disclosure of a technical idea such as making the wind velocity distribution uniform from the ceiling airflow surface.
第1図に示す本実施例では、ある恒温室空調設備に対し
て、所要の風速分布を得るためには。In the present embodiment shown in FIG. 1, in order to obtain the required wind speed distribution for a constant temperature room air conditioning equipment.
ΔP > 0 、22 rm A q を必要とし、
抵抗係数K〉360を必要とする。ΔP > 0, requires 22 rm A q,
A resistance coefficient K>360 is required.
なお、ここで抵抗係数には式(2)のように定義される
。Note that here, the resistance coefficient is defined as shown in equation (2).
Pvc
ここで、ΔP:吹出面抵抗
Pvc:吹出面平均風速の動圧
そして、この吹出面平均風速の動圧Pvcは下記により
定義される。Pvc Here, ΔP: Resistance on the outlet surface Pvc: Dynamic pressure of the average wind speed on the outlet surface, and the dynamic pressure Pvc of the average wind speed on the outlet surface is defined as follows.
g
ここで、γ :比重量
vc :吹出面の平均風速
g :重力の加速度
第1図の実施例で、例えば第1の多孔板11の開口11
aの穴直径dを3膿、穴ピッチP1を10mとすると抵
抗係数は、K4335となり、第2の多孔板12の開口
12aの穴直径を3閣。g Here, γ: Specific weight vc: Average wind speed on the blowing surface g: Acceleration of gravity In the example of FIG.
If the hole diameter d of a is 3 m and the hole pitch P1 is 10 m, the resistance coefficient will be K4335, and the hole diameter of the opening 12a of the second perforated plate 12 will be 3 m.
穴ピッチPzを6+n+++とすると抵抗係数は、K4
35となる。このとき、詳細な計算は示さないが2重板
の間隔Ωは、式(1)からQ”55mmと設定すれば、
吹出空気の気流の拡散が可能である。If the hole pitch Pz is 6+n+++, the resistance coefficient is K4
It becomes 35. At this time, although detailed calculations are not shown, if the distance Ω between the double plates is set to Q''55 mm from equation (1), then
Diffusion of the air flow of the blown air is possible.
このような2重多孔板吹出面により、ΔP=0.23m
Aqの吹出面抵抗が得られ、所要の風速分布が得られる
。With such a double perforated plate blowout surface, ΔP=0.23m
The blowout surface resistance of Aq is obtained, and the required wind speed distribution is obtained.
なお、前述の実施例では、被空調室として恒温室の例を
説明したが、この室は、環境試験室、電子計算機室、あ
るいは精密な生産技術を扱うクリーンルーム等に広く適
用できるものである。In the above-mentioned embodiment, an example of a constant temperature room was explained as an air-conditioned room, but this room can be widely applied to an environmental test room, a computer room, or a clean room where precision production technology is handled.
また、前述の数値例では、上流側多孔板の開口は、φ3
XP10.下流側多孔板の開口は、φ3XP6と、同一
穴径の開口としたが、両多孔板の開口穴径を相違させて
も差支えない。In addition, in the above numerical example, the opening of the upstream perforated plate is φ3
XP10. Although the openings of the downstream perforated plate had the same hole diameter of φ3XP6, there is no problem even if the opening hole diameters of both the perforated plates are different.
・さらに、前述の実施例では、上流側の第1の多孔板と
下流側(室内側)の第2の多孔板との2重板構成の例を
説明したが、本発明は2重板構成のものに限定されるも
のではない。図示して説明しないが、主となる吹出面抵
抗を与えるべき開口率の小さい第1の多孔板、その第1
の多孔板と開口率が同等あるいは大きい複数の多孔板、
ならびに、それらの多孔板より関口率の大きい室内側の
多孔板の多重板構成を採用し、これら多重構成の多孔板
が、吹出空気の気流を拡散しうる間隔を各々保つように
しても差支えない。要は、上流側の複数の多孔板で、天
井チャンバ内に吹き込む空気流の動圧に主となる抵抗を
与えて風速分布の乱れを整え、多重板間に拡散した空気
流を室内側の多孔板を通して、室内に均一な風速分布で
吹き出させることができるように各多孔板の開口率を異
ならせればよい。・Furthermore, in the above-mentioned embodiment, an example of a double plate configuration including a first perforated plate on the upstream side and a second perforated plate on the downstream side (indoor side) was explained, but the present invention has a double plate configuration. It is not limited to those of. Although not shown or explained, a first perforated plate with a small aperture ratio that should provide the main blowout surface resistance;
multiple perforated plates with the same or larger aperture ratio than the perforated plate,
In addition, it is also possible to adopt a multi-plate configuration of perforated plates on the indoor side that have a larger exit ratio than those perforated plates, and to maintain intervals between these multi-perforated plates so that the airflow of the blown air can be diffused. . The key point is that the multiple perforated plates on the upstream side provide the main resistance to the dynamic pressure of the air flow blown into the ceiling chamber, adjusting the turbulence of the wind speed distribution, and the air flow diffused between the multiple plates is transferred to the porous holes on the indoor side. The aperture ratio of each perforated plate may be made different so that the air can be blown into the room through the plate with a uniform velocity distribution.
以上述べたように、本発明によれば、天井チャンバの吹
込み空気流の動圧に対し、天井吹出面で適度の抵抗を与
え、室内の風速分布を均一化しうる空調室の天井吹出構
造を提供することができる。As described above, the present invention provides a ceiling blowout structure for an air-conditioned room that can provide an appropriate resistance to the dynamic pressure of the air flow blown into the ceiling chamber on the ceiling blowout surface and can even out the indoor wind speed distribution. can be provided.
第1図は、本発明の一実施例に係る天井吹出構造を有す
る恒温室の空調設備を示す略示構成図。
第2図は、従来の恒温室の空調設備を示す略示構成図、
第3図は、吹出面の抵抗と吹出風速分布との関係を示す
線図、第4図は、第1図の天井の2重多孔板構成を示す
略示部分図である。
1・・・恒温室、2・・・チラーユニット、3・・・空
調機、8.9・・・送風ダクト、10・・・天井チャン
バ、11・・・第1の多孔板、12・・・第2の多孔板
、11a。
12a・・・開口、13・・・床。FIG. 1 is a schematic configuration diagram showing an air conditioning system for a constant temperature room having a ceiling blowout structure according to an embodiment of the present invention. Figure 2 is a schematic configuration diagram showing the air conditioning equipment of a conventional constant temperature room;
FIG. 3 is a diagram showing the relationship between the resistance of the blowing surface and the blowing air velocity distribution, and FIG. 4 is a schematic partial diagram showing the structure of the double perforated plate of the ceiling in FIG. 1. DESCRIPTION OF SYMBOLS 1... Constant temperature room, 2... Chiller unit, 3... Air conditioner, 8.9... Air duct, 10... Ceiling chamber, 11... First perforated plate, 12... - Second perforated plate, 11a. 12a...opening, 13...floor.
Claims (1)
備え、被空調室の天井から室内に空気を吹き出し床部あ
るいは床近傍から空気を吸い込んで空調空気を循環せし
めるものにおいて、前記天井の空気吹出面を、主となる
吹出面抵抗を与えるべき開口率の小さい第1の多孔板、
その第1の多孔板と開口率が同等あるいは大きい複数の
多孔板、ならびに、それらの多孔板より開口率の大きい
室内側の多孔板で構成したことを特徴とする空調室の天
井吹出構造。 2、特許請求の範囲第1項記載のものにおいて、複数の
多孔板は、吹出空気の気流を拡散しうる間隔を各々保つ
ようにしたことを特徴とする空調室の天井吹出構造。[Scope of Claims] 1. In a device that is equipped with at least an air conditioner and a ventilation duct outside the air-conditioned room, and circulates the conditioned air by blowing air into the room from the ceiling of the air-conditioning room and sucking air from the floor or near the floor. , the air blowing surface of the ceiling is formed by a first perforated plate with a small aperture ratio that provides the main blowing surface resistance;
A ceiling blowout structure for an air conditioned room, comprising a plurality of perforated plates having the same or larger aperture ratio than the first perforated plate, and a perforated plate on the indoor side having a larger aperture ratio than the first perforated plate. 2. A ceiling blowout structure for an air conditioned room according to claim 1, wherein the plurality of perforated plates are arranged at intervals that allow the air flow of the blown air to be diffused.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30003287A JPH01142354A (en) | 1987-11-30 | 1987-11-30 | Ceiling blow-off structure for air-conditioning room |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30003287A JPH01142354A (en) | 1987-11-30 | 1987-11-30 | Ceiling blow-off structure for air-conditioning room |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01142354A true JPH01142354A (en) | 1989-06-05 |
Family
ID=17879886
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30003287A Pending JPH01142354A (en) | 1987-11-30 | 1987-11-30 | Ceiling blow-off structure for air-conditioning room |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01142354A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5101847A (en) * | 1989-10-31 | 1992-04-07 | Yoshinori Oribe | Method and apparatus for equalizing airflow velocity |
JPH0666439A (en) * | 1992-08-13 | 1994-03-08 | Kawasaki Steel Corp | Clean room and air supply unit |
JP2002243233A (en) * | 2001-02-14 | 2002-08-28 | Rorze Corp | Air-cleaning device |
JP2002538408A (en) * | 1999-03-03 | 2002-11-12 | バールコール− エール・アクチエンゲゼルシヤフト | Air cooling element, air cooling method and air cooling device |
JP2012032133A (en) * | 2010-07-01 | 2012-02-16 | Takasago Thermal Eng Co Ltd | Air conditioning system |
CN102538161A (en) * | 2010-12-27 | 2012-07-04 | 高砂热学工业株式会社 | Air-conditioning system and air-conditioning system in information processing equipment room |
WO2016064320A1 (en) * | 2014-10-23 | 2016-04-28 | Qlean Air Scandinavia Ab | A room with perforated walls where the risk of turbulent air flow is minimised |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5210215A (en) * | 1975-07-07 | 1977-01-26 | Ciba Geigy Ag | Bromic compound its method of manufacturing and uses for flame proof materials |
-
1987
- 1987-11-30 JP JP30003287A patent/JPH01142354A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5210215A (en) * | 1975-07-07 | 1977-01-26 | Ciba Geigy Ag | Bromic compound its method of manufacturing and uses for flame proof materials |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5101847A (en) * | 1989-10-31 | 1992-04-07 | Yoshinori Oribe | Method and apparatus for equalizing airflow velocity |
JPH0666439A (en) * | 1992-08-13 | 1994-03-08 | Kawasaki Steel Corp | Clean room and air supply unit |
JP2002538408A (en) * | 1999-03-03 | 2002-11-12 | バールコール− エール・アクチエンゲゼルシヤフト | Air cooling element, air cooling method and air cooling device |
JP2002243233A (en) * | 2001-02-14 | 2002-08-28 | Rorze Corp | Air-cleaning device |
JP2012032133A (en) * | 2010-07-01 | 2012-02-16 | Takasago Thermal Eng Co Ltd | Air conditioning system |
CN102538161A (en) * | 2010-12-27 | 2012-07-04 | 高砂热学工业株式会社 | Air-conditioning system and air-conditioning system in information processing equipment room |
JP2012137244A (en) * | 2010-12-27 | 2012-07-19 | Takasago Thermal Eng Co Ltd | Air-conditioning system for information-processing equipment room |
CN102538161B (en) * | 2010-12-27 | 2016-12-28 | 高砂热学工业株式会社 | Air conditioning system and the air conditioning system of information processing equipment room |
WO2016064320A1 (en) * | 2014-10-23 | 2016-04-28 | Qlean Air Scandinavia Ab | A room with perforated walls where the risk of turbulent air flow is minimised |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0940585B1 (en) | Suction elbow provided with built-in guide blades | |
US20210207872A1 (en) | Air conditioning apparatus and method for controlling rotational speed of blower fan | |
CN105444387A (en) | Air outlet adjusting plate and indoor unit of air conditioner | |
JPH0660757B2 (en) | Air filtration distribution structure | |
JPH01142354A (en) | Ceiling blow-off structure for air-conditioning room | |
CN109405244A (en) | A kind of equal force feed wind apparatus of workshop | |
JP2009513919A (en) | Workstation system | |
JP2007003087A (en) | Branch chamber and ventilation device | |
JPH0666439A (en) | Clean room and air supply unit | |
JP2832503B2 (en) | Indoor individual air-conditioning method and indoor individual air-conditioning apparatus used therefor | |
JP2018036032A (en) | Method of adjusting damper and method of constructing air conditioning system | |
JP3040296B2 (en) | Air blower for air conditioning | |
Bhatia | HVAC-how to size and design ducts | |
CN211372716U (en) | Porous V-shaped air supply outlet | |
JP2536188B2 (en) | Air purifier | |
Bauman et al. | How low can you go? Air flow performance of low-height underfloor plenums | |
JP2849673B2 (en) | Combination air conditioner unit | |
JP3343023B2 (en) | Air supply system for turbulent clean room | |
JP2955519B2 (en) | Air conditioning method | |
Int-Hout | Basics of well-mixed room air distribution | |
JPH0315955Y2 (en) | ||
KR102712143B1 (en) | Fan filter unit including a pair of cross-flow fans | |
CN210179768U (en) | Integrated ceiling system with air conditioner airflow organization and sound absorption functions | |
JPH06213477A (en) | Air conditioning system | |
JP3082181B2 (en) | Underfloor air conditioning system |