JPH01142220A - Fuel controller for gas turbine - Google Patents

Fuel controller for gas turbine

Info

Publication number
JPH01142220A
JPH01142220A JP29991287A JP29991287A JPH01142220A JP H01142220 A JPH01142220 A JP H01142220A JP 29991287 A JP29991287 A JP 29991287A JP 29991287 A JP29991287 A JP 29991287A JP H01142220 A JPH01142220 A JP H01142220A
Authority
JP
Japan
Prior art keywords
signal
pressure shaft
opening
rotational speed
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29991287A
Other languages
Japanese (ja)
Inventor
Yasuo Goshima
安生 五嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP29991287A priority Critical patent/JPH01142220A/en
Publication of JPH01142220A publication Critical patent/JPH01142220A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To reduce sudden fluctuation of rotational speed of a high pressure shaft, in a device for controlling a fuel quantity supplied from a fuel pump by the opening adjustment of a by-pass valve, by applying a differential arithmetic processing to the opening signal of an extraction valve in an air compressor so as to correct a low pressure shaft rotational speed command signal. CONSTITUTION:In a two-shaft gas turbine, a fuel pump 1 is driven through a gear train 2 by a high pressure shaft 9, and its discharging fuel is burned after being supplied to a combustor 7 together with high pressure air from an air compressor 8, so that the high pressure/high temperature gas generated there is supplied to a high pressure turbine 5 and a low pressure turbine 6 in this order so as to drive load 20 such as a generator or the like. And a fuel flow rate is controlled by adjusting the opening of a by-pass valve 3. In this occasion, two first-order lag opening signals having different time constants are generated on the basis of the opening signal of an extraction valve4, and a low pressure rotational speed correction signal is generated by the difference between both opening signals so as to correct the low pressure shaft rotational speed command signal. Thereby, the opening of the by-pass valve 3 is controlled on the basis of a command signal after the correction.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、ガスタービンの燃料制御装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a fuel control device for a gas turbine.

(従来の技術) 従来技術について、第2図、第5図、第6図を参照して
説明する。第2図は制御対象である二軸型ガスタービン
の構成図である。8は空気圧縮機で、大気より空気をと
りこみ所定の圧力まで圧縮して燃焼器7へ燃焼用空気を
供給する。空気圧縮機8は、後述する高圧タービン5と
高圧#9で直結されており、高圧タービン5より回転力
を得る。
(Prior Art) The prior art will be described with reference to FIGS. 2, 5, and 6. FIG. 2 is a configuration diagram of a two-shaft gas turbine to be controlled. An air compressor 8 takes in air from the atmosphere, compresses it to a predetermined pressure, and supplies combustion air to the combustor 7. The air compressor 8 is directly connected to a high pressure turbine 5 (described later) via high pressure #9, and obtains rotational force from the high pressure turbine 5.

4は抽気弁で、空気圧縮機8が低速時に、この抽気弁4
を開いて抽気を行うことにより、空気圧縮機8がサージ
領域に入ることを防止するためのものである。空気圧縮
機8が、定格回転数付近まで回転数が上昇すると、抽気
弁4を閉じて、効率の良い運転を行う、1は燃料ポンプ
で、高FEi1119゜ギア2を介して高圧タービン5
より回転力を得て、燃焼器7へ燃料を供給するに充分な
吐出圧を得る。
4 is a bleed valve, and when the air compressor 8 is at low speed, this bleed valve 4
This is to prevent the air compressor 8 from entering the surge region by opening and bleeding air. When the rotational speed of the air compressor 8 rises to around the rated rotational speed, the air bleed valve 4 is closed to perform efficient operation. 1 is a fuel pump, which is connected to a high pressure turbine 5 via a high FEi 1119° gear 2.
More rotational power is obtained, and sufficient discharge pressure is obtained to supply fuel to the combustor 7.

燃料は、燃料ポンプ1の出口と入口を結ぶバイパス弁3
の開度を制御することにより、燃焼器7への燃料流量を
調節される。燃焼器7では、燃料を空気と混合燃焼させ
て、高温、高圧の燃焼ガスを生成する。この高温、高圧
の燃焼ガスは、高圧り−ビン5に供給され、高圧タービ
ン5は回転力を得る。高圧タービン5を出た燃焼ガスは
、更に低圧タービン6に入り、低圧タービン6に回転力
を与える。低圧タービン6の回転力は低圧軸10を介し
て1発電機等の負荷20に伝達される。起動過程に於け
る回転数制御は、高圧軸9.低圧軸10のどちらか一方
について行い、他の軸は制御をかけない。今低圧軸IO
が回転数制御されている場合について、第5図を参照し
て説明する。101は低圧軸10の回転数指令信号、1
03は低圧軸10の回転数信号、11は加算器で、低圧
軸回転数指令信号101と低圧軸回転数信号103の差
をとり、低圧軸回転数偏差信号104を出力する。12
はP工演算を行う制御器で低圧軸回転数偏差信号104
を入力し、バイパス弁3の制御信号105を出力する。
The fuel is supplied through a bypass valve 3 that connects the outlet and inlet of the fuel pump 1.
By controlling the opening degree of the combustor 7, the fuel flow rate to the combustor 7 can be adjusted. In the combustor 7, fuel is mixed and burned with air to generate high temperature, high pressure combustion gas. This high-temperature, high-pressure combustion gas is supplied to a high-pressure turbine 5, and the high-pressure turbine 5 obtains rotational power. The combustion gas leaving the high-pressure turbine 5 further enters the low-pressure turbine 6 and provides rotational force to the low-pressure turbine 6. The rotational force of the low pressure turbine 6 is transmitted via the low pressure shaft 10 to a load 20 such as a generator. The rotation speed control during the startup process is performed by the high pressure shaft 9. Control is performed on either one of the low-pressure shafts 10, and the other shafts are not controlled. Now low pressure axis IO
The case where the rotation speed is controlled will be explained with reference to FIG. 101 is a rotation speed command signal of the low pressure shaft 10, 1
03 is a rotational speed signal of the low-pressure shaft 10, and 11 is an adder that takes the difference between the low-pressure shaft rotational speed command signal 101 and the low-pressure shaft rotational speed signal 103 and outputs a low-pressure shaft rotational speed deviation signal 104. 12
is a controller that performs P engineering calculations, and the low pressure shaft rotation speed deviation signal 104
is input, and a control signal 105 for the bypass valve 3 is output.

107はバイパス弁3の開度信号。13は加算器でバイ
パス弁開度信号107とバイパス弁制御信号105を夫
々反転させて和をとり、バイパス弁3の操作信号106
を出力する。低圧軸10を加速中は、低圧軸回転数指令
信号101がランプ状に増加する。 このため加算器1
1の出力である低圧軸回転数偏差信号104に正の偏差
を生じ、制御器12は出力であるバイパス弁制御信号1
05を増加させる。従って、加算器13の出力であるバ
イパス弁操作信号106は減少し、バイパス弁3が閉方
向に動き、バイパス弁開度信号107も減少し、更に、
バイパス弁3が閉方向に動くことにより、燃焼器7への
燃料流量が増加するため、高圧タービン5及び低圧ター
ビン6は加速され、低圧軸回転数信号103も増加する
。 このようにして、低圧軸10は低圧軸回転数指令信
号lotに安定に制御される。
107 is an opening signal of the bypass valve 3. 13 is an adder that inverts the bypass valve opening degree signal 107 and the bypass valve control signal 105 and calculates the sum, and outputs the operation signal 106 of the bypass valve 3.
Output. While the low-pressure shaft 10 is being accelerated, the low-pressure shaft rotation speed command signal 101 increases in a ramp-like manner. Therefore adder 1
1, the controller 12 generates a positive deviation in the low pressure shaft rotation speed deviation signal 104, which is the output of the bypass valve control signal 1.
Increase 05. Therefore, the bypass valve operation signal 106, which is the output of the adder 13, decreases, the bypass valve 3 moves in the closing direction, the bypass valve opening signal 107 also decreases, and further,
By moving the bypass valve 3 in the closing direction, the fuel flow rate to the combustor 7 increases, so the high pressure turbine 5 and the low pressure turbine 6 are accelerated, and the low pressure shaft rotation speed signal 103 also increases. In this way, the low pressure shaft 10 is stably controlled to the low pressure shaft rotational speed command signal lot.

(発明が解決しようとする問題点) 起動時間を短縮する目的で、低圧軸10の加速中に空気
圧縮機8の効率を上げるため抽気弁4を閉じることが考
えられる。しかしながら低圧軸10の加速中に油気弁4
を閉じると圧縮機8の負荷が増加するため、加速中の高
圧軸90回転数が一時的に減少する。第6図は、低圧軸
10の加速制御中に抽気弁4を閉じた場合の抽気弁開度
及び高圧軸9゜低圧軸10の回転数を横軸に時間をとっ
て示したものである。前述したように低圧軸10はスム
ーズに移行するが高圧軸9は一時的に回転数が低下する
(Problems to be Solved by the Invention) For the purpose of shortening the start-up time, it is conceivable to close the bleed valve 4 in order to increase the efficiency of the air compressor 8 while the low-pressure shaft 10 is accelerating. However, during acceleration of the low pressure shaft 10, the oil valve 4
When closed, the load on the compressor 8 increases, so the number of revolutions of the high pressure shaft 90 during acceleration temporarily decreases. FIG. 6 shows the opening of the bleed valve and the rotational speed of the high pressure shaft 9° and the low pressure shaft 10 over time on the horizontal axis when the bleed valve 4 is closed during acceleration control of the low pressure shaft 10. As described above, the low-pressure shaft 10 shifts smoothly, but the rotation speed of the high-pressure shaft 9 temporarily decreases.

第7図は、この時の空気圧縮機8の運転状態を示したも
ので横軸は流量i縦軸は圧力比である。点■は、抽気弁
4の閉まり始めの点で、抽気弁4が閉じると圧縮機8の
流量は減少し、圧力比は上昇。
FIG. 7 shows the operating state of the air compressor 8 at this time, where the horizontal axis represents the flow rate and the vertical axis represents the pressure ratio. Point ■ is the point at which the bleed valve 4 begins to close. When the bleed valve 4 closes, the flow rate of the compressor 8 decreases and the pressure ratio increases.

高圧軸9の回転数は減少する。従って空気圧縮機8の運
転点は第7図において、点!より点■に向って進み、サ
ージ限界に近づく方向に移行する。
The rotation speed of the high pressure shaft 9 decreases. Therefore, the operating point of the air compressor 8 is point ! in FIG. It moves towards point ■ and moves in a direction approaching the surge limit.

場合によっては、点■を通り超し、更にサージ限界を超
えることも考えられる。又燃焼器7の温度や高圧タービ
ン5の入口温度が急変するため、材料の寿命の点からも
好ましくない。
In some cases, it is conceivable that the point (2) may be exceeded and the surge limit may be further exceeded. Further, since the temperature of the combustor 7 and the inlet temperature of the high-pressure turbine 5 change suddenly, this is not preferable from the viewpoint of the life of the materials.

本発明の目的は、低圧軸10の加速中に抽気弁4を閉じ
てもサージ限界に対し余裕のもてる安全でかつ起動時間
の短いガスタービン燃料制御装置を提供することにある
An object of the present invention is to provide a gas turbine fuel control system that is safe and has a short start-up time, which allows a margin for the surge limit even when the bleed valve 4 is closed during acceleration of the low-pressure shaft 10.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記の問題点を解決するため空気圧縮機8の抽気弁4の
開度信号に微分的な演算処理を施して、この信号で低圧
軸lOの回転数指令信号101を補正することにより、
高圧軸回転数の急激な変動を減少させるよう構成したも
のである。
(Means for solving the problem) In order to solve the above problem, differential calculation processing is performed on the opening degree signal of the bleed valve 4 of the air compressor 8, and this signal is used to command the rotation speed of the low pressure shaft IO. By correcting the signal 101,
This structure is designed to reduce rapid fluctuations in the high-pressure shaft rotation speed.

(作用) 上述のガスタービン燃料制御装置によれば、圧縮機8の
運転状態がサージ限界に対して、余裕を持てる上に、燃
焼器7の温度や、高圧タービン5の入口温度の変化もゆ
るやかとなり材料の寿命の点からも好ましい。
(Function) According to the above-described gas turbine fuel control device, the operating state of the compressor 8 has a margin with respect to the surge limit, and the temperature of the combustor 7 and the inlet temperature of the high-pressure turbine 5 change gradually. Therefore, it is preferable from the viewpoint of the life of the material.

(実施例) 第1図は本発明による制御系の一実施例である。(Example) FIG. 1 shows an embodiment of a control system according to the present invention.

第1図に於いて、110は抽気弁4の開度信号、14は
時定数T、の一次遅れ演算器、15は前記T1より大き
い時定数T2の一次遅れ演算器、で抽気弁開度信号11
0を入力とし、夫々、第1の一次遅れ開度信号111.
第2の一次遅れ開度信号112を出力する。16は加算
器で、第1の一次遅れ開度信号111と第2の一次遅れ
開度信号112の差をとって、低圧軸回転数補正信号1
13を出力する。17は加算器で低圧軸回転数指令信号
101と低圧軸回転数補正信号113に調整パラメータ
Kを乗じたものの差をとって、低圧軸回転数修正指令信
号102を出力する。その他は、第5図に示した従来の
ものと同様である。
In FIG. 1, 110 is an opening signal of the bleed valve 4, 14 is a first-order lag calculator with a time constant T, and 15 is a first-order lag calculator with a time constant T2 larger than T1, which is the bleed valve opening signal. 11
0 as input, and the first primary delayed opening signal 111.
A second primary delayed opening signal 112 is output. 16 is an adder which takes the difference between the first primary delayed opening signal 111 and the second primary delayed opening signal 112, and outputs the low pressure shaft rotation speed correction signal 1.
Outputs 13. An adder 17 calculates the difference between the low pressure shaft rotation speed command signal 101 and the low pressure shaft rotation speed correction signal 113 multiplied by the adjustment parameter K, and outputs the low pressure shaft rotation speed correction command signal 102. The rest is the same as the conventional one shown in FIG.

上記のように構成された制御系を使用した場合について
説明する。低圧軸回転数補正信号113は、伝達関数的
には次のようになる。
A case will be described in which the control system configured as described above is used. The low pressure shaft rotational speed correction signal 113 has the following transfer function.

X□1o:抽気弁開度信号110の値 X113+低圧軸回転数補正信号113の値S ニラプ
ラス演算子 即ち、抽気弁開度信号110の微分的信号となり、抽気
弁4が全開又は全開に保持されると零に復帰する。抽気
弁開度信号110がステップ状に変化した場合の抽気弁
開度信号11O2第1の一次遅れ開度信号111.第2
の一次遅れ開度信号112.低圧軸回転数補正信号11
3の動きを第4図に示す。実際は抽気弁4の開度信号1
10はランプ状に変化するが、この時の積分時定数をT
oとした場合、T x < T < T 2 とすれば第8図に示すように、やはり微分的な信号を得
ることができる。このような信号で低圧軸回転数指令信
号101に補正をかけると、低圧軸回転数修正指令信号
102は、抽気弁4を閉じると、−時的に増方向に補正
される。低圧軸■0の加速中に空気圧縮機8の抽気弁4
を閉じる運転で本発明の制御系を適用すると、第3図に
示すように、低圧軸10の回転数は一時的に上昇し、高
圧軸9の回転数は一時的に減少する。この高圧軸9の回
転数の減少量及び減少速度は小さく急激な減少をおさえ
ることができる。
X□1o: Value of the bleed valve opening signal 110 Then it returns to zero. Bleed valve opening signal 11O2 when the bleed valve opening signal 110 changes stepwise; first primary delayed opening signal 111. Second
First-order delayed opening signal 112. Low pressure shaft rotation speed correction signal 11
The movement of No. 3 is shown in Figure 4. Actually, the opening signal 1 of the bleed valve 4
10 changes in a ramp-like manner, and the integral time constant at this time is T
o, if T x < T < T 2 , a differential signal can still be obtained as shown in FIG. When the low-pressure shaft rotational speed command signal 101 is corrected using such a signal, the low-pressure shaft rotational speed correction command signal 102 is corrected in the -temporal increasing direction when the bleed valve 4 is closed. Bleed valve 4 of air compressor 8 during acceleration of low pressure shaft ■0
When the control system of the present invention is applied in a closing operation, as shown in FIG. 3, the rotational speed of the low-pressure shaft 10 temporarily increases, and the rotational speed of the high-pressure shaft 9 temporarily decreases. The amount and rate of decrease in the rotational speed of the high-pressure shaft 9 are small and a rapid decrease can be suppressed.

このように、高圧軸の回転数減少がゆるやかになれば、
空気圧縮機8の運転状態は、サージ限界に対し、余裕が
持てるため、何らかの原因で外乱があったとしても安定
に運転可能となる。更に、燃焼器7の温度や高圧タービ
ン5の入口温度の急激な変化もおさえられるため、機器
材料の寿命の点からも好ましい。
In this way, if the rotation speed of the high-pressure shaft decreases gradually,
Since the operating state of the air compressor 8 has a margin with respect to the surge limit, stable operation is possible even if there is a disturbance for some reason. Furthermore, rapid changes in the temperature of the combustor 7 and the inlet temperature of the high-pressure turbine 5 can be suppressed, which is preferable from the viewpoint of the lifespan of equipment materials.

本説明中補正の元となる信号は、抽気弁開度信号110
となっているが、 この信号の代わりに抽気弁開指令信
号を用いても、同様の効果が得られる。
During this explanation, the signal that is the source of correction is the bleed valve opening signal 110.
However, the same effect can be obtained by using the bleed valve open command signal instead of this signal.

〔発明の効果〕 以上述べたように、本発明によれば二軸ガスタービンに
おいて、低圧軸■0の加速中に抽気弁4を閉じる高速起
動が安全かつ安定に行え、しかも機器の寿命上も好まし
いガスタービン燃料制御装置が提供できる。
[Effects of the Invention] As described above, according to the present invention, in a two-shaft gas turbine, high-speed startup can be performed safely and stably to close the bleed valve 4 during acceleration of the low pressure shaft A preferred gas turbine fuel control system can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の制御ブロック図、第2図はガスタービ
ンシステム構成図、第3図は本発明を実施した場合の回
転数の応答を示す特性図、第4図は本発明の補正回路の
ステップ応答を示す特性図、第5図は従来技術による制
御ブロック図、第6図は従来技術による回転数の応答を
示す特性図、第7図は空気圧縮機の特性図、第8図は本
発明の補正回路のランプ応答を示す特性図である。 1・・・燃料ポンプ   2・・・ギア3・・・バイパ
ス弁   4・・・抽気弁5・・・高圧タービン  6
・・・低圧タービン7・・・燃焼器     8・・・
空気圧縮機9・・・高圧軸     lO・・・低圧軸
代理人 弁理士 則 近 憲 佑 同  第子丸 健 り 奢悼 1ヤ赫l 頃5 隻幻 B奇問 第  3  図 第4図 相 4卜仲
Fig. 1 is a control block diagram of the present invention, Fig. 2 is a gas turbine system configuration diagram, Fig. 3 is a characteristic diagram showing the rotation speed response when the present invention is implemented, and Fig. 4 is a correction circuit of the present invention. 5 is a control block diagram according to the prior art, FIG. 6 is a characteristic diagram showing the rotation speed response according to the prior art, FIG. 7 is a characteristic diagram of the air compressor, and FIG. FIG. 3 is a characteristic diagram showing the ramp response of the correction circuit of the present invention. 1... Fuel pump 2... Gear 3... Bypass valve 4... Bleed valve 5... High pressure turbine 6
...Low pressure turbine 7...Combustor 8...
Air compressor 9...High pressure shaft 1O...Low pressure shaft Agent Patent attorney Nori Chika Ken Yudo Daishi Maru Healthy Congratulations 1 Yako 1 Koro 5 Fantasy B Strange Question 3 Figure 4 Figure 4 Phase 4 Naka

Claims (1)

【特許請求の範囲】[Claims] 二軸型ガスタービンの高圧軸よりギア等の伝達手段を介
して、駆動力を得る燃料ポンプと燃料ポンプの吐出燃料
の一部をその入口側に戻させるバイパス弁とを備え、バ
イパス弁の開度を変えることによって燃料の流量を制御
するものに於いて、高圧軸に直結された空気圧縮機の抽
気弁の開度信号に微分的な演算処理を施して、これによ
り、低圧軸の回転数指令信号を補正することにより、高
圧軸回転数の急激な変動を減少させることを特徴とする
ガスタービンの燃料制御装置。
It is equipped with a fuel pump that receives driving force from the high-pressure shaft of a two-shaft gas turbine via a transmission means such as a gear, and a bypass valve that returns a portion of the fuel discharged from the fuel pump to its inlet side. In systems that control the fuel flow rate by changing the speed, differential calculation processing is applied to the opening signal of the air compressor's bleed valve, which is directly connected to the high-pressure shaft. A fuel control device for a gas turbine, characterized in that it reduces rapid fluctuations in high-pressure shaft rotational speed by correcting a command signal.
JP29991287A 1987-11-30 1987-11-30 Fuel controller for gas turbine Pending JPH01142220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29991287A JPH01142220A (en) 1987-11-30 1987-11-30 Fuel controller for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29991287A JPH01142220A (en) 1987-11-30 1987-11-30 Fuel controller for gas turbine

Publications (1)

Publication Number Publication Date
JPH01142220A true JPH01142220A (en) 1989-06-05

Family

ID=17878429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29991287A Pending JPH01142220A (en) 1987-11-30 1987-11-30 Fuel controller for gas turbine

Country Status (1)

Country Link
JP (1) JPH01142220A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111771047A (en) * 2018-02-22 2020-10-13 三菱日立电力系统株式会社 Double-shaft gas turbine power generation equipment, control device and control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111771047A (en) * 2018-02-22 2020-10-13 三菱日立电力系统株式会社 Double-shaft gas turbine power generation equipment, control device and control method thereof
CN111771047B (en) * 2018-02-22 2022-11-04 三菱重工业株式会社 Double-shaft gas turbine power generation equipment, control device and control method thereof

Similar Documents

Publication Publication Date Title
US5752378A (en) Prevention of parameter excursions in gas turbines
JP3039947B2 (en) Gas turbine fuel control system
JP4838785B2 (en) Gas turbine operation control device and operation control method
JP2851618B2 (en) Gas turbine engine bleed control device and control method
JP3081215B2 (en) Apparatus and method for controlling gas turbine engine
US5953902A (en) Control system for controlling the rotational speed of a turbine, and method for controlling the rotational speed of a turbine during load shedding
US6792760B2 (en) Method for operating a turbine
CN112955639A (en) Control method for a turbomachine, computer program, electronic control module and turbomachine
JPH02115558A (en) Output controller for engine for aircraft
JP4796015B2 (en) Gas turbine operation control device and operation control method
JPS6130142B2 (en)
JP2002038972A (en) Gas turbine plant and control method for gas turbine plant
JPS63150435A (en) Device and method of controlling gas turbine engine
JPH01142220A (en) Fuel controller for gas turbine
JP2781407B2 (en) Control device
JP3540422B2 (en) Gas turbine controller
JPH0337304A (en) Start of steam turbine generation plant provided with turbine bypass device
JP3792853B2 (en) Combined cycle control device and gas turbine control device
JP2749123B2 (en) Power plant control method and device
JP4127911B2 (en) Steam turbine ground steam pressure controller
JP2006183608A (en) Excessive speed avoidance device of regenerative type gas turbine
JPH0459452B2 (en)
JPH059604B2 (en)
JPH03267512A (en) Steam turbine controller
JP2618419B2 (en) Steam turbine start-up method and single-shaft combined plant