JPH0114189B2 - - Google Patents

Info

Publication number
JPH0114189B2
JPH0114189B2 JP58159024A JP15902483A JPH0114189B2 JP H0114189 B2 JPH0114189 B2 JP H0114189B2 JP 58159024 A JP58159024 A JP 58159024A JP 15902483 A JP15902483 A JP 15902483A JP H0114189 B2 JPH0114189 B2 JP H0114189B2
Authority
JP
Japan
Prior art keywords
fibers
group
cement
fiber
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58159024A
Other languages
Japanese (ja)
Other versions
JPS6051645A (en
Inventor
Hirosuke Watanabe
Tadahiko Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP15902483A priority Critical patent/JPS6051645A/en
Publication of JPS6051645A publication Critical patent/JPS6051645A/en
Publication of JPH0114189B2 publication Critical patent/JPH0114189B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はセメント補強用繊維、特にセメントと
の接着性の優れたセメント補強用繊維に関する。 従来技術 セメント、石コウ等の水硬化性原料を用いて天
井、壁、床仕上げを行つたりコンクリートブロツ
ク、セメント瓦、舗道用石、などが製造されてい
るが、周知の通りセメント成形品は曲げ強度、引
つ張り強度、衝撃強度が劣る為、これらセメント
製品を有効に利用する為に繊維等で補強すること
が行なわれている。繊維等の補強材としては石綿
が代表的なものであるが、近年スチールフアイバ
ー、ガラス繊維、ポリプロピレン繊維、ポリアミ
ド繊維、ポリビニルアルコール繊維、アラミド繊
維等が単独にもしくは組合せて用いられている。 石綿を用いる場合、添加率が15〜35%でも補強
の効果は比較的大きいが、石綿は発ガン物質では
ないかと疑われており、衛生上の問題点がある。
ガラス繊維はセメントの強アルカリ性に浸蝕され
るので補強材としての耐久性に乏しい。 一方、ポリプロピレン繊維、ポリアミド繊維、
ポリビニルアルコール繊維、アラミド繊維など
は、マトリツクスであるセメント類との接着性が
充分でなく補強材としての補強効果に限度があ
る。 セメント補強材として求められる性能は高ヤン
グ率、高強度、耐アルカリ性、そしてセメントマ
トリツクスとの高度な界面結合力である。換言す
れば、いかに高ヤング率、高強度の補強材を用い
ても補強材とセメントマトリツクス界面での接着
性がよくなければ高い補強効果は望めない。 従つて本発明者らはセメントマトリツクスとの
接着性が高い補強繊維を開発するべく鋭意研究の
結果、セメントマトリツクスとの接着性が極めて
高いセメント補強用繊維の開発に成功し本発明に
達したものである。 発明の構成 すなわち本発明は 「(1) 元素周期律表において、第族または第
族の第3周期、第4周期、第5周期、または第
族の第4周期に属する元素からなる群から選
ばれた1以上の元素の酸化物を水溶性接着剤で
繊維表面に付着せしめてなるセメント補強用繊
維 (2) 元素がアルミニウム、シリカ、チタン、ジル
コニウムからなる群から選ばれた特許請求の範
囲第1項に記載のセメント補強用繊維 (3) 繊維が芳香族ポリアミドである特許請求の範
囲第1項または第2項に記載のセメント補強用
繊維」 である。 ここに元素周期律表において第族の第3周
期、第4周期、第5周期に属する元素とは、アル
ミニウム、ガリウム、インジウムなどであり、第
族の第3周期、第4周期、第5周期に属する元
素とはケイ素、チタン、錫などである。第族の
第4周期に属する元素とは、コバルト、ニツケル
などである。これらの元素群から選ばれた1以上
の元素の酸化物は、酸化物であればよく結合酸素
の数は限定されない。 繊維は石綿、スチールフアイバー、ガラス繊
維、ポリプロピレン繊維、ポリアミド繊維、ポリ
ビニルアルコール繊維、アラミド繊維あるいはこ
れらの組合せからなる繊維などいずれを用いるこ
ともできるが、高ヤング率、高強度、耐アルカリ
性を兼備した繊維としてアラミド繊維を用いるの
で好ましい。特に下記繰返し単位(1)〜(4)からなる
芳香族ポリアミド繊維はアラミド繊維の中でも特
に耐アルカリ性が優れているので本発明に用いる
繊維として最も好ましい。 〔式中、Ar1,Ar2,Ar3は同一でも相異なつて
もよく、結合鎖が共に同軸方向または平行軸方向
に伸びている芳香族性炭素環残基、最大間隙を表
わす環原子によつて結合しなければならない芳香
族性複素環残基およびこれらの組合せを表わす。
Ar4,Ar5は同一でも相異つてもよく、パラフエ
ニレン基、メタフエニレン基より選ばれる。〕 繰返し単位のモル数の関係が実質的に(1)+(2)+
(3)+(4)=100モル%とする場合(3)は0〜90モル%、
(4)は5〜50モル%好ましくは10〜30モル%である
重合体からなる繊維である。結合鎖が同軸方向に
伸びている芳香族性炭素環残基とはたとえば1,
4―フエニレン、1,4―ナフチレンなどを意味
し、結合鎖が平行軸方向に伸びている芳香族性炭
素環残基とはたとえば1,5―ナフチレン、2,
6―ナフチレンなどを意味する。炭素数5以下の
アルキル基としては、メチル基、エチル基、プロ
ピル基、ブチル基、ペンチル基などが挙げられる
が、好ましくはメチル基である。以上の芳香族性
炭素環残基および芳香族性複素環残基には炭素原
子に置換基を結合していてもよい。このような置
換基には、ハロゲン基(たとえば塩素、臭素、フ
ツ素)、低級アルキル基(たとえばメチル、エチ
ル、イソプロピル、ノルマルプロピル基)、低級
アルコキシ基(たとえばメトキシ、エトキシ基)、
シアノ基、アセチル基、ニトロ基などが挙げら
れ、好ましくは塩素基とメチル基である。 元素周期律表において第族または第族の第
3周期、第4周期、第5周期、または第族の第
4周期に属する元素からなる群から選ばれた1以
上の元素の酸化物を繊維表面に付着せしめる方法
としては以下のごとき方法を用いることができ
る。 最も簡単な方法としては、紡糸直後において糸
条が固化していない状態で該酸化物粉末を付与す
る方法、あるいは製糸後該酸化物分散液を糸条に
付与する方法などが考えられるが、かかる方法で
は、紡糸以降の製糸工程において該酸化物粉末が
断糸、毛羽等の発生原因になつたり、該酸化物が
繊維から離脱し易く期待した効果が得られないな
どの問題があり、実用的でない。本発明において
は、以下のごとき方法によつて該酸化物を表面に
有するセメント補強用繊維を得た。まず繊維の表
面を通常の方法で脱脂する。ついでアルミニウ
ム、ジルコニウム、チタン、ケイ素などのアルコ
キシド水溶液にたとえばエポキシ基を有する水溶
性接着剤を添加した後、酸を添加して該アルコキ
シドを加水分解せしめる。得られた水溶液を製糸
後の繊維へスプレー法、塗布法、浸漬法など従来
公知の方法に従つて付与し熱処理を施す。その結
果ゲル状高分子の該酸化物がエポキシ基を有する
水溶性接着剤と共に繊維表面に付与され固定され
る。ここで用いる繊維の繊度は、単糸繊度として
は0.5〜3デニールの範囲が好ましく、特に1.5〜
3デニールの範囲が好ましい。単糸繊度が0.5デ
ニール未満では、製糸工程における毛羽や単糸切
れが発生し易くなるので好ましくない。3デニー
ルを越えるとコンクリート中での分散状態が悪化
するので、織物あるいは網状物などの形態を考え
る必要がある。 発明の効果 以上詳細に述べたごとく構成せしめた結果、本
発明のセメント補強用繊維で補強したセメント成
形品は、曲げ強度、引張強度が従来品に比し格段
に優れている。 実施例 以下実施例により本発明を具体的に説明する。 実施例 1 パラフエニレンジアミン25モル%、テレフター
ル酸クロライド50モル%、3,4′―ジアミノジフ
エニルエーテル25モル%を共重縮合して得られた
共重合体を、通常の方法で湿式紡糸し、ついで温
度500℃、延伸倍率10倍で延伸し、1500デニール、
1000フイラメントの全芳香族ポリアミド繊維を得
た。該繊維をジルコニウムのペントキシド;Zr
(OC5H114、ケイ素のエトキシド;Si(OC2H54
の混合水溶液(混合比は容積比でZr(OC5H114
Si(OC2H54=30/70)にエポキシ基を1個有す
るポリアミンエピクロルヒドリン(商品名ポリフ
イツクス;昭和高分子(株)製)を該混合水溶液に対
し20容量%の割合で添加し、さらに1重量%酢酸
水溶液を該溶液に対し5容量%添加したのち充分
撹拌した。ついで該混合水溶液中に上記の全芳香
族ポリアミド繊維を浸漬処理したのち温度500℃、
処理時間5分間の条件で熱処理を行つた。その結
果、ジルコニウムおよびケイ素とポリアミンエピ
クロルヒドリンを含有する均一な被覆層を表面に
有する繊維が得られた(以下繊維Aという)。ジ
ルコニウムのペントキシド、ケイ素のエトキシ
ド、ポリアミンエピクロルヒドリンの繊維表面の
付着量は4.5重量%であつた。次に強制絞りミキ
サーを用いてポルトランドセメント(三菱鉱業セ
メント(株)製)200Kgに粒径3mm以下の細石材(川
砂)400Kg及び粒径30mm以下の粗滑材(砕石)400
Kgを混合後、100Kgの水及び減少剤(ポゾリス物
産(株)製)0.5Kgを加え均一撹拌した。このときド
ライミキシング約40秒、ウエツトミキシング約80
秒実施後、先に得た表面被覆全芳香族ポリアミド
繊維A(カツト長、12mm)を容積比20%まで徐々
に投入しながら、均一に混合されるまで混練を続
けた。練り上つたコンクリートで曲げ試験用供試
体(角柱;10cm×10cm×40cm)及び引張試験用供
試体(円柱;直径10cm×高さ20cm)を作製し、温
度20℃、相対湿度80%RHの雰囲気中で24時間養
生した後、温度20℃、相対湿度65%RHの雰囲気
中に7日間放置した。得られた供試体の曲げ強度
および引張り強度をそれぞれアムスラー曲げ試験
機及びインストロン引張り試験機を用いて測定し
た。評価結果を表1に示した。 なお比較例は繊維補強がないこと以外は、実施
例と同様の条件で作製したコンクリートの場合で
ある。 【表】
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to cement reinforcing fibers, particularly to cement reinforcing fibers that have excellent adhesion to cement. Conventional technology Hydraulic raw materials such as cement and gypsum are used to finish ceilings, walls, and floors, and to manufacture concrete blocks, cement tiles, pavement stones, etc., but as is well known, cement molded products are Because of their poor bending strength, tensile strength, and impact strength, these cement products are reinforced with fibers or the like in order to make more effective use of them. Asbestos is a typical reinforcing material for fibers, but in recent years steel fibers, glass fibers, polypropylene fibers, polyamide fibers, polyvinyl alcohol fibers, aramid fibers, etc. have been used singly or in combination. When using asbestos, the reinforcing effect is relatively large even at an addition rate of 15 to 35%, but asbestos is suspected to be a carcinogen and poses a hygiene problem.
Glass fiber is corroded by the strong alkalinity of cement, so it has poor durability as a reinforcing material. On the other hand, polypropylene fiber, polyamide fiber,
Polyvinyl alcohol fibers, aramid fibers, and the like do not have sufficient adhesion to cement, which is a matrix, and their reinforcing effects as reinforcing materials are limited. The properties required for cement reinforcing materials are high Young's modulus, high strength, alkali resistance, and high interfacial bonding strength with the cement matrix. In other words, no matter how high Young's modulus and high strength reinforcing material is used, unless the adhesiveness at the interface between the reinforcing material and the cement matrix is good, a high reinforcing effect cannot be expected. Therefore, as a result of intensive research to develop reinforcing fibers that have high adhesion to cement matrix, the present inventors succeeded in developing cement reinforcing fibers that have extremely high adhesion to cement matrix, and have thus achieved the present invention. This is what I did. Structure of the Invention In other words, the present invention provides: ``(1) Elements selected from the group consisting of elements belonging to Group or the 3rd period, 4th period, 5th period of Group, or 4th period of Group in the Periodic Table of the Elements. A cement reinforcing fiber (2) comprising an oxide of one or more elements attached to the fiber surface with a water-soluble adhesive; The fiber for reinforcing cement according to claim 1 (3) The fiber for reinforcing cement according to claim 1 or 2, wherein the fiber is an aromatic polyamide. Here, the elements belonging to the 3rd period, 4th period, and 5th period of the group in the periodic table of elements are aluminum, gallium, indium, etc. Elements that belong to this group include silicon, titanium, and tin. Elements belonging to the fourth period of the group include cobalt, nickel, and the like. The oxide of one or more elements selected from these element groups is not limited in the number of bonded oxygens as long as it is an oxide. The fibers can be asbestos, steel fibers, glass fibers, polypropylene fibers, polyamide fibers, polyvinyl alcohol fibers, aramid fibers, or fibers made of a combination thereof, but fibers that have a high Young's modulus, high strength, and alkali resistance can be used. Preferably, aramid fibers are used as the fibers. In particular, aromatic polyamide fibers consisting of the following repeating units (1) to (4) have particularly excellent alkali resistance among aramid fibers, and are therefore most preferred as fibers for use in the present invention. [In the formula, Ar 1 , Ar 2 , and Ar 3 may be the same or different, and are aromatic carbocyclic residues in which the bonding chains extend coaxially or in parallel axes; represents aromatic heterocyclic residues and combinations thereof that must be bonded accordingly.
Ar 4 and Ar 5 may be the same or different and are selected from paraphenylene groups and metaphenylene groups. ] The relationship between the number of moles of repeating units is essentially (1) + (2) +
When (3) + (4) = 100 mol%, (3) is 0 to 90 mol%,
(4) is a fiber comprising a polymer having a content of 5 to 50 mol%, preferably 10 to 30 mol%. Aromatic carbocyclic residues with bond chains extending coaxially are, for example, 1,
4-phenylene, 1,4-naphthylene, etc., and aromatic carbocyclic residues with bond chains extending in the parallel axis direction include, for example, 1,5-naphthylene, 2,
6-Naphthylene, etc. Examples of the alkyl group having 5 or less carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, etc., and a methyl group is preferable. A substituent may be bonded to the carbon atom of the above aromatic carbocyclic residue and aromatic heterocyclic residue. Such substituents include halogen groups (e.g., chlorine, bromine, fluorine), lower alkyl groups (e.g., methyl, ethyl, isopropyl, n-propyl groups), lower alkoxy groups (e.g., methoxy, ethoxy groups),
Examples include cyano group, acetyl group, and nitro group, with chlorine group and methyl group being preferred. The fiber surface is coated with an oxide of one or more elements selected from the group consisting of elements belonging to Group 3, 4, 5, or 4 of Group 4 in the Periodic Table of the Elements. The following methods can be used for adhering to the surface. The simplest method is to apply the oxide powder to the yarn immediately after spinning without solidifying it, or to apply the oxide dispersion to the yarn after spinning. However, there are problems with this method, such as the oxide powder causing yarn breakage, fuzz, etc. during the spinning process after spinning, and the oxide easily separating from the fibers, making it impossible to obtain the expected effect. Not. In the present invention, cement reinforcing fibers having the oxide on the surface were obtained by the following method. First, the surface of the fiber is degreased in the usual manner. Next, a water-soluble adhesive having an epoxy group, for example, is added to an aqueous solution of an alkoxide such as aluminum, zirconium, titanium, silicon, etc., and then an acid is added to hydrolyze the alkoxide. The obtained aqueous solution is applied to the spun fibers according to a conventionally known method such as a spray method, a coating method, or a dipping method, and heat treatment is performed. As a result, the oxide of the gel-like polymer is applied and fixed to the fiber surface together with a water-soluble adhesive having an epoxy group. The fineness of the fiber used here is preferably in the range of 0.5 to 3 deniers as a single yarn fineness, particularly 1.5 to 3 deniers.
A range of 3 denier is preferred. If the single yarn fineness is less than 0.5 denier, fluff and single yarn breakage are likely to occur during the spinning process, which is not preferable. If it exceeds 3 deniers, the state of dispersion in concrete will deteriorate, so it is necessary to consider the form of textiles or net-like materials. Effects of the Invention As a result of the structure described in detail above, the cement molded product reinforced with the cement reinforcing fiber of the present invention is significantly superior in bending strength and tensile strength to conventional products. EXAMPLES The present invention will be specifically explained below using examples. Example 1 A copolymer obtained by copolycondensing 25 mol% of paraphenylene diamine, 50 mol% of terephthalic acid chloride, and 25 mol% of 3,4'-diaminodiphenyl ether was wet-spun by a conventional method. Then, it was stretched to 1500 denier at a temperature of 500℃ and a stretching ratio of 10 times.
A fully aromatic polyamide fiber of 1000 filaments was obtained. The fiber is made of zirconium pentoxide; Zr
(OC 5 H 11 ) 4 , silicon ethoxide; Si(OC 2 H 5 ) 4
A mixed aqueous solution of Zr (OC 5 H 11 ) 4 /
Polyamine epichlorohydrin (trade name: Polyfix; manufactured by Showa Kobunshi Co., Ltd.) having one epoxy group on Si (OC 2 H 5 ) 4 = 30/70) was added at a ratio of 20% by volume to the mixed aqueous solution, Furthermore, 5% by volume of 1% by weight acetic acid aqueous solution was added to the solution, and the mixture was thoroughly stirred. Next, the above fully aromatic polyamide fibers were immersed in the mixed aqueous solution, and then heated at a temperature of 500°C.
The heat treatment was carried out for a treatment time of 5 minutes. As a result, a fiber having a uniform coating layer containing zirconium, silicon, and polyamine epichlorohydrin on its surface was obtained (hereinafter referred to as fiber A). The amount of zirconium pentoxide, silicon ethoxide, and polyamine epichlorohydrin deposited on the fiber surface was 4.5% by weight. Next, using a forced squeezing mixer, 200 kg of Portland cement (manufactured by Mitsubishi Mining Cement Co., Ltd.) was mixed with 400 kg of fine stone (river sand) with a particle size of 3 mm or less and 400 kg of rough lubricant (crushed stone) with a particle size of 30 mm or less.
After mixing 100 kg of water and 0.5 kg of a reducing agent (manufactured by Pozolis Bussan Co., Ltd.), the mixture was stirred uniformly. At this time, dry mixing takes about 40 seconds and wet mixing takes about 80 seconds.
After a few seconds, the previously obtained surface-coated wholly aromatic polyamide fiber A (cut length, 12 mm) was gradually added to a volume ratio of 20%, and kneading was continued until uniformly mixed. Specimens for bending tests (prismatic; 10 cm x 10 cm x 40 cm) and tensile test specimens (cylindrical; diameter 10 cm x height 20 cm) were made from the mixed concrete and placed in an atmosphere with a temperature of 20°C and a relative humidity of 80% RH. After curing for 24 hours in an atmosphere of 20° C. and relative humidity of 65% RH for 7 days. The bending strength and tensile strength of the obtained specimens were measured using an Amsler bending tester and an Instron tensile tester, respectively. The evaluation results are shown in Table 1. Note that the comparative example is a case of concrete produced under the same conditions as the example except that there is no fiber reinforcement. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 元素周期律表において、第族または第族
の第3周期、第4周期、第5周期または第族の
第4周期に属する元素からなる群から選ばれた1
以上の元素の酸化物の水溶液に水溶性接着剤を加
えたのち加水分解してなる溶液を繊維に付着せし
め、次いで高温で熱処理して繊維表面に均一な酸
化物被覆層を形成せしめることを特徴とするセメ
ント補強用繊維の製造方法。
1 1 selected from the group consisting of elements belonging to Group 3, 4th period, 5th period, or 4th period of Group in the Periodic Table of Elements
A water-soluble adhesive is added to an aqueous solution of oxides of the above elements, and then hydrolyzed, the resulting solution is adhered to fibers, and then heat treated at high temperatures to form a uniform oxide coating layer on the fiber surface. A method for producing fibers for reinforcing cement.
JP15902483A 1983-09-01 1983-09-01 Fiber for cement reinforcement Granted JPS6051645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15902483A JPS6051645A (en) 1983-09-01 1983-09-01 Fiber for cement reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15902483A JPS6051645A (en) 1983-09-01 1983-09-01 Fiber for cement reinforcement

Publications (2)

Publication Number Publication Date
JPS6051645A JPS6051645A (en) 1985-03-23
JPH0114189B2 true JPH0114189B2 (en) 1989-03-09

Family

ID=15684583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15902483A Granted JPS6051645A (en) 1983-09-01 1983-09-01 Fiber for cement reinforcement

Country Status (1)

Country Link
JP (1) JPS6051645A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970005874B1 (en) * 1991-07-09 1997-04-21 쇼우 덴꼬우 가부시끼가이샤 Fibrous reinforcing material for civil engineering and construction work method of manufacturing the said material , and material for civil engineering and construction work including the material
US20020110678A1 (en) 1999-12-08 2002-08-15 Pyzik Aleksander J. Architectural concrete and process to make same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437174A (en) * 1977-08-30 1979-03-19 Fujikura Ltd Method of forming material of reinforced plastic

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437174A (en) * 1977-08-30 1979-03-19 Fujikura Ltd Method of forming material of reinforced plastic

Also Published As

Publication number Publication date
JPS6051645A (en) 1985-03-23

Similar Documents

Publication Publication Date Title
US5616683A (en) Process for maintaining of improving the mechanical properties of fibers of aromatic copolyamides in alkaline media and shaped articles containing such fibers
US4772328A (en) Hydraulic cementitious compositions reinforced with fibers containing polyacrylonitrile
EP0351302B1 (en) Method for the selection of one puzzolane to be incorporated in a composite material containing cement and glass
KR100410713B1 (en) Glass strand mat, method of manufacturing the same, and method of manufacturing a composite using the mat
JPH0114189B2 (en)
JPH03150241A (en) Carbon fiber for use in cement
WO1981000252A1 (en) Fiber-reinforced composite materials and shaped articles
JPS60260449A (en) Cement molded product
JPS6363504B2 (en)
JP2881256B2 (en) Method for producing carbon fiber reinforced concrete or similar composition
JP2660143B2 (en) Carbon fiber and cement composite for cement reinforcement
JP2521101B2 (en) Polyolefin fibers for reinforcing cement products
JP3270443B2 (en) Cement modifier, cement modification method and modified cement hardened material
JP3936014B2 (en) Carbon fiber bundle for cement reinforcement
JP2752871B2 (en) Carbon fiber and cement composite for cement reinforcement
JPS58151363A (en) Fiber reinforced cement product
JPH06192912A (en) Cement-reinforcing fiber
JPS624346B2 (en)
JP2005200263A (en) Fiber for reinforcing cement and the like
JP4768275B2 (en) Fiber reinforced cement products
JP4743358B2 (en) Glass fiber mixed concrete
JPS6129896B2 (en)
JP3847148B2 (en) Cement reinforcing fiber
JPH07291690A (en) Sized fiber for cement reinforcing
JP2756068B2 (en) Carbon fiber and cement composite for cement reinforcement