JPH01141898A - Vapor growth method for iii-v compound semiconductor - Google Patents

Vapor growth method for iii-v compound semiconductor

Info

Publication number
JPH01141898A
JPH01141898A JP30094887A JP30094887A JPH01141898A JP H01141898 A JPH01141898 A JP H01141898A JP 30094887 A JP30094887 A JP 30094887A JP 30094887 A JP30094887 A JP 30094887A JP H01141898 A JPH01141898 A JP H01141898A
Authority
JP
Japan
Prior art keywords
group
compd
substrate
group iii
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30094887A
Other languages
Japanese (ja)
Inventor
Kazuo Mori
一男 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP30094887A priority Critical patent/JPH01141898A/en
Publication of JPH01141898A publication Critical patent/JPH01141898A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a high-quality epitaxial film at low temp. by using the specified org. compd. of a group III element, and decomposing the gas of the compd. before the gas is introduced onto a substrate crystal in the production of a compd. semiconductor by the vapor growth method using an org. volatile compd. of a group III element and a group V element. CONSTITUTION:The org. volatile compd. of a group III element and a group V element is supplied onto a substrate to grow a III-V compd. semiconductor in the vapor phase. The following constitution is used in the vapor growth. Namely, an org. compd. [e.g., diethylgallium chloride (DEGaCl)] having at least one group III element-halogen element bond is used as the org. volatile compd. of a group III element, and the raw gas 11 of the group III organometal (gaseous H2 12 is used as a carrier) is decomposed in a reaction tube 1 before introduced onto the substrate crystal 3, and then supplied onto the substrate crystal 3. Light irradiation (e.g., a deuterium lamp 9) and/or heating 5 (e.g., resistance heating, IR lamp heating, etc.) are preferably used as the heating source.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は■−V族化合物半導体の気相成長方法に係るも
のであり、特に低温で高品質なエピタキシャル膜を形成
するI−V族化合物半導体有機金属気相成長技術に関す
るものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for vapor phase growth of ■-V group compound semiconductors, particularly for IV group compound semiconductors that form high-quality epitaxial films at low temperatures. It is related to semiconductor organic metal vapor phase growth technology.

(従来の技術) ■−V族化合物半導体のエピタキシャル成長層は発光ダ
イオード、レーザーダイオードなどの光デバイスや、F
ETなとの高速デバイス等に広く応用されている。さら
に最近では、デバイス性能を向上させるために数〜数十
Aの薄膜半導体を積み重ねた微細な構造が要求されてい
る。たとえば、量子井戸構造を持つレーザダイオードで
は駆動電流の低減や温度特性の向上、また発振波長の短
波長化が可能である。また二次元電子ガスを利用したF
ETなどは、高速低雑音デバイスとして期待されている
(Prior art) ■-Epitaxially grown layers of group V compound semiconductors are used in optical devices such as light emitting diodes and laser diodes,
It is widely applied to high-speed devices such as ET. Furthermore, recently, in order to improve device performance, a fine structure in which thin film semiconductors of several to several tens of amperes are stacked is required. For example, a laser diode with a quantum well structure can reduce driving current, improve temperature characteristics, and shorten the oscillation wavelength. In addition, F using two-dimensional electron gas
ET and the like are expected to be used as high-speed, low-noise devices.

これらの薄膜エピタキシャル成長法としては、有機金属
気相成長法(MOCVD法)やハロゲン輸送法などのガ
スを用いる気相成長法(VPE法〉、また高真空中での
元素のビームを飛ばして成長を行う分子線エピタキシャ
ル成長法(MBE法)がiられている。この中で特に有
機金属気相成長法(MOCVD法)は装置が比較的安価
で一度に多数の基板を処理できるなめ、量産技術とし−
て最も期待されている。
These thin film epitaxial growth methods include vapor phase epitaxy (VPE) using gas such as metal organic chemical vapor deposition (MOCVD) and halogen transport, and growth using a beam of elements in a high vacuum. The molecular beam epitaxial growth method (MBE method) is widely used. Among these methods, the metal organic chemical vapor deposition method (MOCVD method) is particularly popular as a mass production technology because the equipment is relatively inexpensive and many substrates can be processed at once.
The most anticipated.

ところで、MOCVD法では通常V族原料としてアルシ
ン(AsH3)、ホスフィン(PH3)などのV放水素
化物を用いるが、これらは極めて毒性が強く危険である
なめ、安全対策を厳重にする必要があるなど取扱上極め
て不便である。
By the way, in the MOCVD method, V-hydrogenated compounds such as arsine (AsH3) and phosphine (PH3) are usually used as group V raw materials, but these are highly toxic and dangerous, so strict safety measures must be taken. It is extremely inconvenient to handle.

また、MOCVD法では通常600” C〜700’C
と成長温度が高いが、薄膜半導体を積み重ねた構造をデ
バイスに用いる場合、高温での熱処理による構成原子ど
うしの相互拡散がしばしば問題となる。成長したばかり
の微細な層構造がその上層の成長中に次々熱拡散によっ
て壊れてしまうことがあり、同様の理由で急峻な不純物
プロファイルも得にくい。もっと低温の少なくとも60
0°C以下で成長できるとよいのだが、V族水素化物原
料は低温での分解率が低く、特にホスフィンの場合実質
的に500’ Cではほとんど分解しない。このため低
温成長時にV族原子の供給効率が低くなり、成長膜の膜
質低下につながる。
In addition, in the MOCVD method, the temperature is usually 600"C to 700'C
However, when using a structure in which thin film semiconductors are stacked in a device, interdiffusion of constituent atoms due to heat treatment at high temperatures often becomes a problem. A newly grown fine layer structure may be successively destroyed by thermal diffusion during the growth of the upper layer, and for the same reason it is difficult to obtain a steep impurity profile. More low temperature at least 60
It would be good if it could be grown at temperatures below 0°C, but group V hydride raw materials have a low decomposition rate at low temperatures, and in the case of phosphine in particular, it hardly decomposes at 500'C. For this reason, the supply efficiency of group V atoms becomes low during low-temperature growth, leading to a decrease in the quality of the grown film.

これらの理由から、アルシン、ホスフィンと比べると分
解温度が低いV族有機化合物、例えばI・リエチルアル
シン(TEAs)、l・リエチルホスフィン(TEP)
等をV族原料として用いる試みが近年多くなされるよう
になった。V族有機化合物は、毒性もずっと弱く、また
液体であるため高圧ボンベもゼ・要ないため、アルシン
、ホスフィンに代る原料として期待される。しかし■族
有機化合物を原料とした成長では、成長膜にカーボンが
非常に多く収り込まれる。通常のMOCVDでは基板部
分のみを加熱しているが、基板上の境界層中での原料の
分解が完全でないため一部未分解のまま基板表面に到達
するためと考えられる。
For these reasons, group V organic compounds with lower decomposition temperatures than arsine and phosphine, such as I. ethyl arsine (TEAs) and l. ethyl phosphine (TEP), are preferred.
In recent years, many attempts have been made to use such materials as Group V raw materials. Group V organic compounds are much less toxic and, since they are liquids, do not require high-pressure cylinders, so they are expected to be used as raw materials to replace arsine and phosphine. However, in the case of growth using Group III organic compounds as raw materials, a large amount of carbon is incorporated into the grown film. In normal MOCVD, only the substrate portion is heated, but this is thought to be because the decomposition of the raw material in the boundary layer on the substrate is not complete, so that some of the material reaches the substrate surface undecomposed.

これを改良したのが雑誌「ジャーナル・オブ・エレクト
ロニック・マテリアルズ(Journal of El
ectronic Materials) J第14巻
第4号(1985年)の第433〜449項に説明され
ているV族原料としてヒ素メタルを用いる方法である。
This was improved by the magazine ``Journal of Electronic Materials'' (Journal of El
This is a method using arsenic metal as a group V raw material, as described in Sections 433 to 449 of Electronic Materials) J, Vol. 14, No. 4 (1985).

この方法であればV族原料の分解率の問題は本来なく、
また安全でもある。425〜475” Cに保たれたヒ
素メタル上に水素ガスを流し、この水素をキャリアとし
てヒ素蒸気を下流に輸送する。その下流の短い低温域で
■族有機金属原料であるトリメチルガリウム(TMG)
を混合して基板上へ供給しGaAsの成長をおこなった
With this method, there is no problem with the decomposition rate of group V raw materials,
It's also safe. Hydrogen gas is flowed over arsenic metal maintained at 425 to 475" C, and arsenic vapor is transported downstream using this hydrogen as a carrier. In a short low temperature region downstream, trimethyl gallium (TMG), a group II organometallic raw material, is produced.
were mixed and supplied onto the substrate to grow GaAs.

(発明が解決しようとする問題点) ■−V族化合物半導体薄膜のエピタキシャル成長法にお
いて、上記の従来技術の問題点を考えてみる。
(Problems to be Solved by the Invention) (1) Let us consider the above-mentioned problems of the prior art in the epitaxial growth method of a group V compound semiconductor thin film.

前記V族原料としてヒ素メタルを用いる方法で得られた
GaAs薄膜の表面状態は極めて悪く、多数の欠陥を含
んでいる。同じ装置でヒ素メタルのかわりにAsH3を
用いた場合には鏡面が得られることから、明らかにヒ素
メタルの使用に起因した問題である。このような結晶性
の低下が起こる原因としては次のように考えられる。
The surface condition of the GaAs thin film obtained by the method using arsenic metal as the Group V raw material is extremely poor and contains many defects. When AsH3 is used instead of arsenic metal in the same device, a mirror surface is obtained, so the problem is clearly caused by the use of arsenic metal. The reason for such a decrease in crystallinity is considered to be as follows.

上記従来技術ではV族元素蒸気と■族有機金属原料との
混合域から下流の配管はヒ素メタルの温度425〜47
5°Cよりはずっと低い中途半端な温度に保っていた。
In the above conventional technology, the temperature of the arsenic metal is 425 to 47 in the piping downstream from the mixing area of group V element vapor and group II organometallic raw material.
The temperature was kept at a moderate temperature, much lower than 5°C.

そのためヒ素は下流の低温混合域の管壁に一部析出して
しまう。一方■族有機金属原料として用いたトリメチル
ガリウム(TMG)は、熱分解すると蒸気圧の極めて低
い金属ガリウムとなるが、上記配管の温度はこの分解に
は十分高いためトリメチルガリウムは基板上へ到達する
前に一部金属ガリウムとして析出してしまう。また、そ
の雰囲気にはヒ素があるため気相中でのGaAsの核成
長も起こってしまう。そしてこの核成長物が基板上にも
到達するため多数の欠陥があり表面状態が極めて悪いG
aAs薄膜しか得られなかったと思われる。これはトリ
エチルガリウム(TEG)等を用いても同様である。
As a result, arsenic partially precipitates on the tube wall in the downstream low-temperature mixing zone. On the other hand, when trimethyl gallium (TMG) used as a group Ⅰ organic metal raw material is thermally decomposed, it becomes metallic gallium with an extremely low vapor pressure, but the temperature of the above piping is high enough for this decomposition, so trimethyl gallium does not reach the substrate. Some of the metal gallium precipitates out beforehand. Furthermore, since the atmosphere contains arsenic, GaAs nuclei grow in the gas phase. Since these nucleated substances also reach the substrate, there are many defects and the surface condition is extremely poor.
It seems that only an aAs thin film was obtained. The same holds true even when triethyl gallium (TEG) or the like is used.

ところで上記従来技術によると、とくに低温では■族有
機金属原料の分解率が低下し、またV族元素を用いるた
めAsH3からの活性な水素原子による分解促進のよう
な効果も期待出来ないため、■族原料からのカーボン汚
染が増大する。したがって、このことからは■族原料は
基板上へ供給する前に十分に分解してやる方が好ましい
By the way, according to the above-mentioned conventional technology, the decomposition rate of group Ⅰ organometallic raw materials decreases especially at low temperatures, and since group V elements are used, effects such as the promotion of decomposition by active hydrogen atoms from AsH3 cannot be expected. Carbon pollution from group raw materials increases. Therefore, from this point of view, it is preferable to fully decompose the Group 1 raw material before supplying it onto the substrate.

本発明の目的はこのような従来技術の欠点を克服し、低
温で高品質なエピタキシャル膜を形成するI−V族化合
物半導体気相成長技術を提供することにある。
An object of the present invention is to overcome the drawbacks of the prior art and to provide a IV group compound semiconductor vapor phase growth technique that forms high-quality epitaxial films at low temperatures.

(問題点を解決するための手段) 本発明によれば■族元素の有機揮発性化合物とV族元素
を基板上に供給することによる■−V族化合物半導体の
エピタキシャル成長方法において、■族元素の有機揮発
性化合物として■族元素とハロゲン元素の結合を少なく
とも1つ持つ有機化合物を用い、上記■族有機金属原料
ガスを上記基板結晶上に導入する前に分解させてから該
基板結晶上に供給することを特徴とする■−V族化合物
半導体の気相成長方法かえられる。
(Means for Solving the Problems) According to the present invention, in the epitaxial growth method of a ■-V group compound semiconductor by supplying an organic volatile compound of a group ■ element and a group V element onto a substrate, Using an organic compound having at least one bond of a group (III) element and a halogen element as the organic volatile compound, decomposing the group (III) organometallic raw material gas before introducing it onto the substrate crystal, and then supplying it onto the substrate crystal. 2) The method of vapor phase growth of group V compound semiconductors is changed.

(作用) ■族有機金属原料として3つのアルキル基をもつトリメ
チルガリウム(TMG)やトリエチルガリウム(T E
 G )等を用いた場合には、これらは分解すると蒸気
圧の極めて低い金属ガリウムとなり、基板上へ到達する
前に析出してしまう。また、その雰囲気にヒ素があれば
気相中でGaAsの核成長が起こってしまう。
(Function) Trimethyl gallium (TMG) and triethyl gallium (T E
When using materials such as G), these decompose into metallic gallium, which has an extremely low vapor pressure, and precipitates before reaching the substrate. Furthermore, if the atmosphere contains arsenic, GaAs nuclei will grow in the gas phase.

これに対して■族元素の有機金属原料として■族元素と
ハロゲン元素の結合を少なくとも1つ持つ有機化合物、
たとえばDEGaC1をもちいた場合には、この化合物
は分解すると2つのアルキル基のみ脱離してモノハロゲ
ン化金属、すなわちGaClが生成する。このG a 
CIは、通常用いられる約300’ C以上、9[+[
16C程度までの成長温度範囲では気相中で安定であり
、析出することなく基板上へ到達する。また、その雰囲
気にヒ素があっても吸着反応サイトを持つGaAs基板
がないかぎり、 GaCl”l/4As4”l/282 −+GaAs+
)IcIの反応は進行せず過飽和状態を保つため、気相
中でのG ’a A sの核成長や、反応管壁への成長
は起こらない。
On the other hand, organic compounds having at least one bond between a group ■ element and a halogen element are used as organometallic raw materials for group ■ elements.
For example, when DEGaCl is used, when this compound is decomposed, only two alkyl groups are eliminated to produce a metal monohalide, that is, GaCl. This G a
CI is approximately 300' C or more, which is commonly used, and 9[+[
It is stable in the gas phase in the growth temperature range up to about 16C and reaches the substrate without precipitation. Furthermore, even if there is arsenic in the atmosphere, unless there is a GaAs substrate with adsorption reaction sites, GaCl"l/4As4"l/282 -+GaAs+
) Since the reaction of IcI does not proceed and the supersaturated state is maintained, no nucleus growth of G'a As in the gas phase or growth on the reaction tube wall occurs.

以上のように、■族元素の有機金属化合物として■族元
素とハロゲン元素の結合を少なくとも1つ持つ有機化合
物を用いれば、基板結晶上に供給する前に、独立に温度
制御された分解領域中で、■族原料ガスを分解しておく
ことができるため、低温でも高品質なエピタキシャルを
形成するI−V族化合物半導体気相成長方法を実現でき
る。
As described above, if an organic compound having at least one bond between a group III element and a halogen element is used as an organometallic compound of a group III element, it can be prepared in an independently temperature-controlled decomposition region before being supplied onto a substrate crystal. Since the Group (1) source gas can be decomposed in advance, it is possible to realize a vapor phase growth method for Group IV compound semiconductors that forms high-quality epitaxial layers even at low temperatures.

(実施例) 以下、本発明の実施例について図面を参照して詳細に説
゛明する。
(Embodiments) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明を実施するための装置の一例を示す構成
図である。この成長装置を用いてGaASの成長を行な
った。反応容器1の中に石英サセプタ2があり、この上
に基板結晶3が置かれている。反応容器1の外側には抵
抗加熱または赤外線ランプ加熱装置4.5.6が設けら
れ、反応容器1全体を基板設置領域その上流の分解領域
、そしてさらに上流のAsメタル7の置かれたAs供給
領域の三つに分けて独立に加熱することができる。分解
領域の反応容器1には合成石英製の窓8があり、重水素
ランプ9の光が導入できるようになっている。■族有機
金属原料は石英管10で分解領域に直接導入するように
なっており、11〜14がその他ガス導入系統である。
FIG. 1 is a configuration diagram showing an example of an apparatus for implementing the present invention. GaAS was grown using this growth apparatus. There is a quartz susceptor 2 in a reaction vessel 1, on which a substrate crystal 3 is placed. A resistance heating or infrared lamp heating device 4.5.6 is provided on the outside of the reaction vessel 1, and the entire reaction vessel 1 is connected to the substrate installation area, the decomposition area upstream thereof, and the As supply where the As metal 7 is placed further upstream. It can be divided into three areas and heated independently. The reaction vessel 1 in the decomposition region has a synthetic quartz window 8 through which light from a deuterium lamp 9 can be introduced. The group (2) organometallic raw material is directly introduced into the decomposition region through a quartz tube 10, and 11 to 14 are other gas introduction systems.

11がDEGaclバブラであり、12がキャリアとな
るH2ガスである。それぞれのガスは流量制御装置13
とバルブ14を介して反応容器1に導入される。
11 is a DEGacl bubbler, and 12 is H2 gas serving as a carrier. Each gas is controlled by a flow rate control device 13.
is introduced into the reaction vessel 1 via the valve 14.

400 ’ Cに保ったAs供給領域を通してキャリア
H2ガスを717 m i n流し、基板設置領域を4
00〜600°C1分解領域を400〜900°Cに加
熱した。必要に応じて重水素ランプ7の光を分解領域に
照射した。しかる後にlXl0−’torrの分圧のD
EGaClを60m1n供給しGaASを〜2μm成長
した。
Carrier H2 gas was flowed for 717 min through the As supply area maintained at 400' C, and the substrate installation area was
The decomposition zone was heated to 400-900°C. The decomposition region was irradiated with light from a deuterium lamp 7 as needed. Then the partial pressure D of lXl0-'torr
60 ml of EGaCl was supplied to grow GaAS to a thickness of ~2 μm.

分解領域の温度と基板温度(基板設置領域)をともに4
50°Cとしかつ光を照射しない時、すなわちあらかじ
め■族原料ガスを積極的に分解しない時の成長膜は、p
型伝導を示し、ホール濃度は5 X 10 ”C11”
であった。この試料の77Kにおけるフォトルミネッセ
ンススペクトルはカーボンアクセプタに起因する弱い発
光のみが見られた。
The temperature of the decomposition area and the substrate temperature (substrate installation area) are both 4.
When the temperature is 50°C and no light is irradiated, that is, when the group III source gas is not actively decomposed in advance, the grown film is p.
type conduction, hole concentration is 5 x 10 "C11"
Met. In the photoluminescence spectrum of this sample at 77K, only weak light emission due to carbon acceptors was observed.

一方、分解領域の温度を800°Cとし、基板温度は4
50°C1かつ光は照射しない時には、p型ではあるが
ホール濃度は4 x 1016C11−3まで下がった
。次に分解領域の温度と基板温度をともに450°Cと
しかつ重水素ランプの光を照射した。この時得られた成
長膜はやはりp型であるがホール濃度はI X 10 
”cm−’であった。そこで分解領域の温度を800°
Cとし、かつ重水素ランプの光を照射した結果n型でエ
レクトロン濃度3X10”C11−’と純度のかなり高
いものが得られた。これらの成長で基板結晶より上流の
反応容器内壁には析出物は認められず、また得られた膜
はすべて鏡面であった。
On the other hand, the temperature of the decomposition region is 800°C, and the substrate temperature is 4
At 50°C1 and no light irradiation, the hole concentration decreased to 4 x 1016C11-3, although it was p-type. Next, the temperature of the decomposition region and the substrate temperature were both set to 450° C., and light from a deuterium lamp was irradiated. The grown film obtained at this time is still p-type, but the hole concentration is I x 10
``cm-''. Therefore, the temperature of the decomposition region was set to 800°.
As a result of irradiation with light from a deuterium lamp, an n-type crystal with an electron concentration of 3×10"C11-' and a fairly high purity was obtained. As a result of these growths, precipitates were formed on the inner wall of the reaction vessel upstream of the substrate crystal. was not observed, and all of the obtained films had a mirror surface.

以上から明らかなように、DF、GaClを■族有機金
属原料として用いることによって、V族ASメタルを用
い■族原料ガスをあらかじめ加熱または光照射によって
分解してから基板結晶上に供給しても、途中での析出や
気相核成長による供給効率の低下や結晶性の低下はなく
、成長膜への力−ボン不純物の取り込みを1〜2桁低減
させる事ができることが示された。また同様の結果はD
MInClとP粉末を用いたInPの成長でも得られる
。さらにAIと反応しやすい石英部品をSiCコートシ
たりカーボン製にかえればDEAICIとAsメタルを
用いたAlAsの成長などでも同様の結果が得られ、こ
れらの例に限らす混晶も含み広<m−v族化合物半導体
の成長に本発明を適用することかできる。■族有機金属
化合物を構成するアルキル基としては他のアルキル基で
もよく分解脱離が容易であるほど良い。光照射に用いる
光源としてはエキシマレーザ−でもよく、反応容器とし
てカーボン管を使用した場合、加熱手段として高周波を
使っても良い。
As is clear from the above, by using DF and GaCl as group II organic metal raw materials, it is possible to use group V AS metals and decompose the group III raw material gas by heating or light irradiation before supplying it onto the substrate crystal. It has been shown that there is no reduction in supply efficiency or crystallinity due to precipitation or vapor phase nuclear growth during the process, and that the incorporation of force-bonded impurities into the grown film can be reduced by one to two orders of magnitude. Also, the same result is D
It can also be obtained by growing InP using MInCl and P powder. Furthermore, if quartz parts that easily react with AI are replaced with SiC-coated or carbon-made ones, similar results can be obtained with the growth of AlAs using DEAICI and As metal. The present invention can be applied to the growth of group V compound semiconductors. The alkyl group constituting the group (2) organometallic compound may be any other alkyl group, and the easier it is to decompose and eliminate, the better. The light source used for light irradiation may be an excimer laser, and when a carbon tube is used as the reaction vessel, high frequency waves may be used as the heating means.

(発明の効果) 以上のように本発明によれば、独立に温度制御され、ま
たは光が照射された分解領域中で■族原料ガスを分解し
ておき、しかる後に基板結晶上に供給することができる
ため、低温でも高品質なエピタキシャル膜を形成する■
−V族化合物半導体気相成長方法が実現でき、発明の効
果が示された。
(Effects of the Invention) As described above, according to the present invention, the group (III) raw material gas is decomposed in a decomposition region whose temperature is independently controlled or irradiated with light, and then supplied onto the substrate crystal. Forms high-quality epitaxial films even at low temperatures.
-A group V compound semiconductor vapor phase growth method was realized, and the effects of the invention were demonstrated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施するための装置の一例を示
す構成図である。 1−反応容器、2−石英サセプタ、3一基板結晶、4.
5.6−抵抗または赤外線ランプ加熱装置、7−Asメ
タル、8−合成石英製の窓、9−重水素ランプ、10−
■族石英導入管、1l−DEGaC1バブラ、12−キ
ャリアH2ガス、13−流量制御装置、14−バルブ。
FIG. 1 is a block diagram showing an example of an apparatus for carrying out the method of the present invention. 1-reaction vessel, 2-quartz susceptor, 3-substrate crystal, 4.
5.6-Resistive or infrared lamp heating device, 7-As metal, 8-Synthetic quartz window, 9-Deuterium lamp, 10-
Group quartz introduction tube, 1l-DEGaC1 bubbler, 12-carrier H2 gas, 13-flow control device, 14-valve.

Claims (2)

【特許請求の範囲】[Claims] (1)III族元素の有機揮発性化合物とV族元素を基板
上に供給することにより成長を行うIII−V族化合物半
導体の気相成長方法において、III族元素の有機揮発性
化合物としてIII族元素とハロゲン元素の結合を少なく
とも1つ持つ有機化合物を用い、反応管中で、上記III
族有機金属原料ガスを上記基板結晶上に導入する前に分
解させてから該基板結晶上に供給することを特徴とする
III−V族化合物半導体の気相成長方法。
(1) In the vapor phase growth method of a III-V compound semiconductor, which is grown by supplying an organic volatile compound of a group III element and a group V element onto a substrate, the organic volatile compound of a group III element is Using an organic compound having at least one bond between an element and a halogen element, the above III.
The group organometallic raw material gas is decomposed before being introduced onto the substrate crystal, and then supplied onto the substrate crystal.
A method for vapor phase growth of III-V compound semiconductors.
(2)前記分解させる手段が光照射または加熱またはそ
の両方であることを特徴とする特許請求の範囲第1項記
載のIII−V族化合物半導体の気相成長方法。
(2) The method for vapor phase growth of a III-V compound semiconductor according to claim 1, wherein the means for decomposing is light irradiation, heating, or both.
JP30094887A 1987-11-27 1987-11-27 Vapor growth method for iii-v compound semiconductor Pending JPH01141898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30094887A JPH01141898A (en) 1987-11-27 1987-11-27 Vapor growth method for iii-v compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30094887A JPH01141898A (en) 1987-11-27 1987-11-27 Vapor growth method for iii-v compound semiconductor

Publications (1)

Publication Number Publication Date
JPH01141898A true JPH01141898A (en) 1989-06-02

Family

ID=17891017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30094887A Pending JPH01141898A (en) 1987-11-27 1987-11-27 Vapor growth method for iii-v compound semiconductor

Country Status (1)

Country Link
JP (1) JPH01141898A (en)

Similar Documents

Publication Publication Date Title
US4404265A (en) Epitaxial composite and method of making
US4147571A (en) Method for vapor epitaxial deposition of III/V materials utilizing organometallic compounds and a halogen or halide in a hot wall system
US4368098A (en) Epitaxial composite and method of making
JP3124861B2 (en) Thin film growth method and semiconductor device manufacturing method
EP0200766B1 (en) Method of growing crystalline layers by vapour phase epitaxy
Miller et al. Metalorganic chemical vapor deposition
EP1038056B1 (en) A method of growing a buffer layer using molecular beam epitaxy
US5891790A (en) Method for the growth of P-type gallium nitride and its alloys
JPH01141898A (en) Vapor growth method for iii-v compound semiconductor
US4920068A (en) Metalorganic vapor phase epitaxial growth of group II-VI semiconductor materials
JPH01141899A (en) Vapor growth method for iii-v compound semiconductor
JPH04151822A (en) Vapor growth method for compound semiconductor organic metal
JPH01179311A (en) Vapor growth of iii-v compound semiconductor
JPH01179312A (en) Vapor growth of iii-v compound semiconductor
JP2687371B2 (en) Vapor growth of compound semiconductors
CA1250511A (en) Technique for the growth of epitaxial compound semiconductor films
JPS63182299A (en) Vapor growth method for iii-v compound semiconductor
JPH0535719B2 (en)
JP2587624B2 (en) Epitaxial crystal growth method for compound semiconductor
JP3141628B2 (en) Compound semiconductor device and method of manufacturing the same
JP2714824B2 (en) Molecular beam epitaxial growth method and apparatus for implementing the method
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JP2743970B2 (en) Molecular beam epitaxial growth of compound semiconductors.
JP2700210B2 (en) Vapor phase epitaxial growth of compound semiconductors
JPH03119721A (en) Crystal growth