JPH0114183B2 - - Google Patents

Info

Publication number
JPH0114183B2
JPH0114183B2 JP9477183A JP9477183A JPH0114183B2 JP H0114183 B2 JPH0114183 B2 JP H0114183B2 JP 9477183 A JP9477183 A JP 9477183A JP 9477183 A JP9477183 A JP 9477183A JP H0114183 B2 JPH0114183 B2 JP H0114183B2
Authority
JP
Japan
Prior art keywords
oxide
sealing
sealing composition
beryllium
lanthanum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9477183A
Other languages
Japanese (ja)
Other versions
JPS59221373A (en
Inventor
Shigeru Yamazaki
Mitsuru Kitagawa
Soichiro Horikoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP9477183A priority Critical patent/JPS59221373A/en
Publication of JPS59221373A publication Critical patent/JPS59221373A/en
Publication of JPH0114183B2 publication Critical patent/JPH0114183B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、メタルハライドランプの発光管とし
て用いる透光性多結晶アルミナ管の端部に端キヤ
ツプ及び電極等を気密に封着するための封着用組
成物の改良に関する。 多結晶アルミナ管の端部に端キヤツプや電極等
を気密に封着するための封着用組成物として、従
来から一般的に知られているものは次のとおりで
ある。 酸化アルミニウム(Al2O3)とアルカリ土類
金属酸化物(例えば酸化カルシウム)を主成分
とするもの〔特公昭47―49290号〕。 これは、高圧ナトリウムランプの発光管に使
う場合には特に問題はないが、ハロゲンとの化
学反応性が大きいため、メタルハライドランプ
の発光管には全く使えない。 酸化アルミニウム(Al2O3)と酸化ホウ素
(B2O3)と酸化ベリリウム(BeO)と酸化ケイ
素(SiO2)を含むもの〔特公昭49―32301号〕、
あるいは、酸化ランタン(La2O3)と酸化ホウ
素(B2O3)と酸化リン(P2O5)と酸化アルミ
ニウム(Al2O3)と酸化マグネシウム(MgO)
を含むもの〔特開昭55―37496号〕。 これらは、封着用組成物の融点を下げ、ガラ
ス化するための酸化物として、耐ハロゲン性の
酸化ホウ素(B2O3)を選択したものである。 しかし、酸化ホウ素を含む封着用組成物は気
泡ができやすく、信頼性のある気密シールを行
うことが難しいという難点がある。 酸化アルミニウム(Al2O3)とその熱膨脹率
に近い熱膨脹率を有する希土類金属の酸化物を
含むもの〔U.S.P.3588573〕、あるいは、酸化ジ
スプロシウム(Dy2O3)と酸化アルミニウム
(Al2O3)と酸化ケイ素(SiO2)を含むもの
〔特公昭56―44025号〕。 前者は融点が高いため製造上問題があり、後
者は封着用組成物の熱膨脹率が多結晶アルミナ
に比べて小さいため、安定性のある気密シール
を形成できないという問題がある。 本発明は、以上のような点に鑑みてなされたも
ので、耐ハロゲン性、耐熱性、溶融温度、気密性
及び耐スポーリング性(気泡、クラツク等を生じ
ないこと)等の諸点において優れた性能を有する
封着用組成物を提供せんとするものである。 以下、本発明に係る封着用組成物について詳細
に説明する。 本発明では、封着用組成物の主成分として耐ハ
ロゲン性が大きく、しかも発光管を構成する多結
晶アルミナより熱膨脹率の大きいもの、特に酸化
ランタン(La2O3)又は酸化セリウム(CeO2
を選択する。 熱膨脹率が多結晶アルミナより大きいにもかか
わらず、酸化ランタンと酸化セリウムを選択した
理由、これらの希土類酸化物は融点が高く(例え
ば酸化ランタンは2300℃)、結局は酸化ベリリウ
ム等の融点降下剤を添加せざるを得ず、これを添
加すると熱膨脹率が下がるのを避けえないからで
ある。 第1図は、各種希土類酸化物の温度変化に対す
る線熱膨脹率の変化を、発光管を構成する多結晶
アルミナのそれと比較して示したものである。 なお、前記主成分としては、酸化セリウムより
酸化ランタンの方が安定しており扱い易いが、そ
の他の点ではそれほど違いがあるわけではない。 次に、本発明では、主成分に添加すべき融点降
下剤として、酸化ベリリウム及び酸化ケイ素を選
択する。 酸化ベリリウムは、酸化ランタンや酸化セリウ
ムに混ぜ合わせた場合に、それらの融点を降下さ
せる効果が大きい。酸化ケイ素は融点降下につい
ての効果はそれほど大きくないが、ガラス相を形
成する作用を持つており、気密性増大に寄与す
る。酸化ベリリウムと酸化ケイ素は両方添加する
ことが望ましいが、一方だけでも実施は可能であ
る。第2図及び第3図はそれぞれ、酸化ベリリウ
ムを酸化ランタンに混ぜ合わせた場合、及び酸化
ケイ素を酸化ランタンに混ぜ合わせた場合の平衡
状態図を示すものである。 さらに、本発明では、多結晶アルミナに対する
封着用組成物の接着強度を増大させるために、ア
ルミナとの反応性が大きく、しかも耐ハロゲン性
の希土類酸化物を添加する必要がある。これは、
酸化ランタンや酸化セリウムは基体の多結晶アル
ミナと殆んど反応しないためである。かかる目的
で使用する希土類酸化物としては、酸化ランタン
及び酸化セリウムを除く多くの希土類酸化物、例
えば酸化スカンジウム(Sc2O3)、酸化イツトリ
ウム(Y2O3)、酸化プラセオジム(Pr2O3)、酸化
ネオジム(Nd2O3)、酸化サマリウム(Sm2O3)、
酸化ユーロピウム(Eu2O3)、酸化ガドリニウム
(Gd2O3)、酸化テルビウム(Tb2O3)、酸化ジス
プロシウム(Dy2O3)、酸化ホルミウム
(Ho2O3)、酸化エルビウム(Er2O3)、酸化ツリ
ウム(Tm2O3)、酸化イツテリビウム(Yb2O3
及び酸化ルテチウム(Lu2O3)が適当である。特
に酸化イツトリウムの効果は大きい。なお、酸化
イツトリウムを用いた場合、多結晶アルミナとの
反応を迅速に行なわせてシール時間を短縮するに
は、封着用組成物に酸化アルミニウム(Al2O3
を添加しておいた方がよい。 以上の考え方に基づいて、第1表に示すような
種々の組成比の封着用組成物を作つて実験してみ
た。
The present invention relates to improvements in a sealing composition for airtightly sealing end caps, electrodes, etc. to the ends of translucent polycrystalline alumina tubes used as arc tubes of metal halide lamps. The following are commonly known sealing compositions for airtightly sealing end caps, electrodes, etc. to the ends of polycrystalline alumina tubes. The main components are aluminum oxide (Al 2 O 3 ) and alkaline earth metal oxides (e.g. calcium oxide) [Special Publication No. 47-49290]. This poses no particular problem when used in the arc tubes of high-pressure sodium lamps, but because of its high chemical reactivity with halogens, it cannot be used at all in the arc tubes of metal halide lamps. Those containing aluminum oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ), beryllium oxide (BeO) and silicon oxide (SiO 2 ) [Special Publication No. 32301 of 1972];
Alternatively, lanthanum oxide (La 2 O 3 ), boron oxide (B 2 O 3 ), phosphorus oxide (P 2 O 5 ), aluminum oxide (Al 2 O 3 ), and magnesium oxide (MgO)
[Unexamined Japanese Patent Publication No. 55-37496]. In these materials, halogen-resistant boron oxide (B 2 O 3 ) is selected as an oxide for lowering the melting point of the sealing composition and vitrifying it. However, sealing compositions containing boron oxide tend to form bubbles, making it difficult to achieve reliable airtight sealing. Aluminum oxide (Al 2 O 3 ) and a rare earth metal oxide with a thermal expansion coefficient close to that of aluminum oxide (USP 3588573), or dysprosium oxide (Dy 2 O 3 ) and aluminum oxide (Al 2 O 3 ). Contains silicon oxide (SiO 2 ) [Special Publication No. 56-44025]. The former has a high melting point, which poses a manufacturing problem, and the latter has a problem in that a stable airtight seal cannot be formed because the sealing composition has a smaller coefficient of thermal expansion than polycrystalline alumina. The present invention has been made in view of the above points, and has excellent properties such as halogen resistance, heat resistance, melting temperature, airtightness, and spalling resistance (no generation of bubbles, cracks, etc.). The present invention aims to provide a sealing composition with excellent performance. Hereinafter, the sealing composition according to the present invention will be explained in detail. In the present invention, the main component of the sealing composition is a material that has high halogen resistance and a higher coefficient of thermal expansion than the polycrystalline alumina that constitutes the arc tube, especially lanthanum oxide (La 2 O 3 ) or cerium oxide (CeO 2 ).
Select. The reason why we chose lanthanum oxide and cerium oxide, even though their coefficient of thermal expansion is larger than that of polycrystalline alumina, is that these rare earth oxides have a high melting point (for example, lanthanum oxide has a high melting point of 2300℃), so we ended up using melting point depressants such as beryllium oxide. This is because it is unavoidable that the coefficient of thermal expansion will decrease if this is added. FIG. 1 shows changes in the coefficient of linear thermal expansion of various rare earth oxides with respect to temperature changes, in comparison with that of polycrystalline alumina constituting the arc tube. As the main component, lanthanum oxide is more stable and easier to handle than cerium oxide, but there is not much difference in other respects. Next, in the present invention, beryllium oxide and silicon oxide are selected as melting point depressants to be added to the main component. When beryllium oxide is mixed with lanthanum oxide or cerium oxide, it has a great effect of lowering their melting points. Silicon oxide does not have a great effect on lowering the melting point, but it has the effect of forming a glass phase, contributing to increased airtightness. Although it is desirable to add both beryllium oxide and silicon oxide, it is also possible to add only one of them. FIGS. 2 and 3 respectively show equilibrium diagrams when beryllium oxide is mixed with lanthanum oxide and when silicon oxide is mixed with lanthanum oxide. Furthermore, in the present invention, in order to increase the adhesive strength of the sealing composition to polycrystalline alumina, it is necessary to add a rare earth oxide that is highly reactive with alumina and has halogen resistance. this is,
This is because lanthanum oxide and cerium oxide hardly react with the polycrystalline alumina of the base. Rare earth oxides used for this purpose include many rare earth oxides other than lanthanum oxide and cerium oxide, such as scandium oxide (Sc 2 O 3 ), yttrium oxide (Y 2 O 3 ), and praseodymium oxide (Pr 2 O 3 ) . ), neodymium oxide (Nd 2 O 3 ), samarium oxide (Sm 2 O 3 ),
Europium oxide (Eu 2 O 3 ), Gadolinium oxide (Gd 2 O 3 ), Terbium oxide (Tb 2 O 3 ), Dysprosium oxide (Dy 2 O 3 ), Holmium oxide (Ho 2 O 3 ), Erbium oxide (Er 2 O 3 ), thulium oxide (Tm 2 O 3 ), iteribium oxide (Yb 2 O 3 )
and lutetium oxide (Lu 2 O 3 ) are suitable. The effect of yttrium oxide is particularly large. Note that when using yttrium oxide, aluminum oxide (Al 2 O 3 ) is added to the sealing composition in order to quickly react with polycrystalline alumina and shorten the sealing time.
It is better to add Based on the above idea, experiments were conducted by making sealing compositions having various composition ratios as shown in Table 1.

【表】【table】

【表】 その結果、La2O3…40%,BeO…6%,SiO2
17%,Y2O3…25%,Al2O3…12%の封着用組成物
(No.4)が最も良い成績を示した。すなわち、上
記組成の封着用組成物は、融点が1360℃、熱膨脹
係数が1.2×10-5/degであり、気密性もよく、耐
ハロゲン性においても極めて優れた特性を示し
た。 上記組成比でなくても、従来のものに比較して
優れた特性の封着用組成物を得ることはできる。 例えば酸化ベリリウムを少なくしたり、酸化ケ
イ素を使用しないことも可能ではある。ただ、酸
化ベリリウムを一定値以上に少なくすれば組成物
の融点が上り封止作業性が悪くなる。また酸化ケ
イ素を用いなければ、封止部に亀裂が入り易くな
り信頼性の高いシールは得られない。 さらに、酸化イツトリウムがないと、基体アル
ミナと封着用組成物の十分な接着性が得られな
い。ただし、これは酸化ジスプロシウムその他の
希土類酸化物に代えても良い結果を得ることがで
きる。酸化アルミニウムを少くしたときは、シー
ル時間を長くして、基体アルミナへの拡散を十分
に行わせる必要がある。 このようにして、封着用組成物の各成分の有効
性と組成比の限界を確認したところ、主成分であ
る酸化ランタンと酸化セリウムは重量で30〜50%
の範囲内であれば特に効果が損われることがない
ことが判明した。また、酸化ベリリウムと酸化ケ
イ素は3〜30%,酸化イツトリウム等の希土類酸
化物及び酸化アルミニウムもそれぞれ3〜30%の
範囲内で変化させても特に問題はないことを確認
した。 以上の説明から明らかなように、本発明によた
ば、メタルハライドランプの発光管として用いる
透光性多結晶アルミナをシールするのに極めて好
適な封着組成物を得ることができる。
[Table] As a result, La 2 O 3 …40%, BeO…6%, SiO 2
The sealing composition (No. 4) containing 17%, Y2O3 ...25%, and Al2O3 ...12% showed the best results . That is, the sealing composition having the above composition had a melting point of 1360° C., a coefficient of thermal expansion of 1.2×10 −5 /deg, good airtightness, and extremely excellent halogen resistance. Even if the composition ratio is not the above, it is possible to obtain a sealing composition with superior properties compared to conventional compositions. For example, it is possible to reduce the amount of beryllium oxide or to not use silicon oxide. However, if the amount of beryllium oxide is reduced beyond a certain value, the melting point of the composition will increase and the sealing workability will deteriorate. Furthermore, if silicon oxide is not used, cracks tend to occur in the sealing portion, making it impossible to obtain a highly reliable seal. Furthermore, without yttrium oxide, sufficient adhesion between the base alumina and the sealing composition cannot be obtained. However, good results can be obtained by replacing this with dysprosium oxide or other rare earth oxides. When reducing the amount of aluminum oxide, it is necessary to increase the sealing time to ensure sufficient diffusion into the base alumina. In this way, we confirmed the effectiveness and limits of the composition ratio of each component of the sealing composition, and found that the main components, lanthanum oxide and cerium oxide, accounted for 30 to 50% by weight.
It has been found that the effect is not particularly impaired within the range of . Furthermore, it was confirmed that there is no particular problem even if the beryllium oxide and silicon oxide are varied within the range of 3 to 30%, and the rare earth oxides such as yttrium oxide and aluminum oxide are varied within the range of 3 to 30%, respectively. As is clear from the above description, according to the present invention, it is possible to obtain a sealing composition that is extremely suitable for sealing translucent polycrystalline alumina used as an arc tube of a metal halide lamp.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、多結晶アルミナと各種希土類酸化物
の温度変化に対する線膨脹率の変化を示す曲線
図、第2図はLa2O3―BeOの平衡状態図、第3図
はLa2O3―SiO2の平衡状態図である。
Figure 1 is a curve diagram showing changes in linear expansion coefficient with respect to temperature changes for polycrystalline alumina and various rare earth oxides, Figure 2 is an equilibrium diagram of La 2 O 3 -BeO, and Figure 3 is a diagram of La 2 O 3 -BeO equilibrium. -Equilibrium phase diagram of SiO 2 .

Claims (1)

【特許請求の範囲】 1 重量で30〜50%の酸化ランタン又は酸化セリ
ウムを主成分とし、 酸化ベリリウム、酸化ケイ素の両方又は一種
と、 酸化スカンジウム、酸化イツトリウム、酸化プ
ラセオジム、酸化ネオジム、酸化サマリウム、酸
化ユーロピウム、酸化ガドリニウム、酸化テルビ
ウム、酸化ジスプロシウム、酸化ホルミウム、酸
化エルビウム、酸化ツリウム、酸化イツテルビウ
ム、酸化ルテチウムのうちの一種と、 要すれば酸化アルミニウムと を含むことを特徴とする封着用組成物。 2 酸化ベリリウム、酸化ケイ素、酸化イツトリ
ウム、酸化アルミニウムがそれぞれ重量で3〜30
%であることを特徴とする特許請求の範囲第1項
記載の封着用組成物。
[Claims] 1 Main ingredient: 30 to 50% by weight of lanthanum oxide or cerium oxide, together with beryllium oxide and/or silicon oxide, scandium oxide, yttrium oxide, praseodymium oxide, neodymium oxide, samarium oxide, A sealing composition comprising one of europium oxide, gadolinium oxide, terbium oxide, dysprosium oxide, holmium oxide, erbium oxide, thulium oxide, ytterbium oxide, and lutetium oxide, and optionally aluminum oxide. . 2 Beryllium oxide, silicon oxide, yttrium oxide, and aluminum oxide each weigh 3 to 30
% of the sealing composition according to claim 1.
JP9477183A 1983-05-31 1983-05-31 Sealing composition Granted JPS59221373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9477183A JPS59221373A (en) 1983-05-31 1983-05-31 Sealing composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9477183A JPS59221373A (en) 1983-05-31 1983-05-31 Sealing composition

Publications (2)

Publication Number Publication Date
JPS59221373A JPS59221373A (en) 1984-12-12
JPH0114183B2 true JPH0114183B2 (en) 1989-03-09

Family

ID=14119353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9477183A Granted JPS59221373A (en) 1983-05-31 1983-05-31 Sealing composition

Country Status (1)

Country Link
JP (1) JPS59221373A (en)

Also Published As

Publication number Publication date
JPS59221373A (en) 1984-12-12

Similar Documents

Publication Publication Date Title
US4501799A (en) Composite body for gas discharge lamp
JP4262968B2 (en) Ceramic metal halide lamp
US20060008677A1 (en) Ceramic bonding composition, method of making, and article of manufacture incorporating the same
US4980236A (en) Composite body
US7741237B1 (en) Sealing composition for sealing aluminum nitride and aluminum oxynitride ceramics
EP0146188A1 (en) Glass composition suitable for use in a fluorescent lamp, tube and lamp envelope manufactured from said glass composition, and fluorescent lamp having a lamp envelope manufactured from said glass composition
US4740403A (en) Composite body
JP2000192034A5 (en)
CA1201581A (en) Luminescent screen
US7187128B2 (en) Joined bodies, luminous containers and assemblies for high pressure discharge lamps
US3441421A (en) Calcia-magnesia-alumina seal compositions
JPH0114183B2 (en)
JP2004220784A (en) Junction, assembly for high-pressure discharge lamp and high-pressure discharge lamp
JP2004362847A (en) Junction, luminescent vessel, assembly body for high-pressure discharge lamp, and high-pressure discharge lamp
EP0001710B1 (en) A heat resistant sealing composition, a method of making this composition, a method of making a ceramic-cermet seal in electric discharge devices and the device thus obtained
US4330629A (en) Heat-resistant sealing materials
JPH049750B2 (en)
JPH0411511B2 (en)
JPH01255151A (en) Metal vapor discharge lamp
JPS6186445A (en) Composition for sealing
JP2005267960A (en) Joint body, light emission vessel and assembly for high-pressure discharge lamp
JPS6110080A (en) Sealing composition
JPS58190877A (en) Sealing composition
JPS638270A (en) Sealing composition
JPS638272A (en) Sealing composition