JPH01141812A - Production of carbon-based fine hollow body - Google Patents

Production of carbon-based fine hollow body

Info

Publication number
JPH01141812A
JPH01141812A JP62299095A JP29909587A JPH01141812A JP H01141812 A JPH01141812 A JP H01141812A JP 62299095 A JP62299095 A JP 62299095A JP 29909587 A JP29909587 A JP 29909587A JP H01141812 A JPH01141812 A JP H01141812A
Authority
JP
Japan
Prior art keywords
carbon
temperature
oxide
particles
granules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62299095A
Other languages
Japanese (ja)
Inventor
Hiroyuki Baba
裕幸 馬場
Kazuhiro Uchino
内野 和博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP62299095A priority Critical patent/JPH01141812A/en
Publication of JPH01141812A publication Critical patent/JPH01141812A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain carbon-based fine hollow bodies having superior compressive strength and widely utilizable as a heat insulating lightweight filler at high temp. by thermally decomposing a gaseous hydrocarbon to form carbon coating layers on the surfaces of porous oxide granules and by carrying out heat treatment. CONSTITUTION:A gaseous hydrocarbon such as methane or propane is blown into a hot fluidized bed packed with porous granules of an oxide such as SiO2 or CuO as a heat medium. In the bed, the hydrocarbon is thermally decomposed to deposit carbon on the granules. The resulting carbon coated fine spheres are heat treated at a temp. above the m.p. of the oxide or the carbon-oxide reaction temp. in an inert atmosphere. The porous oxide granules in the spheres shrink owing to melting or are reduced by the coating carbon and hollow fine spheres of carbon and/or carbide are continuously obtd. The carbon-based fine hollow bodies have >=200kg/cm<2> compressive strength, are produced at a low cost and can be used as the above-mentioned filler.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、複合材料の充填剤等に使用される炭素あるい
は炭化物等の炭素系微小中空体の製造方法に間し、特に
多孔質酸化物粒子を利用することにより所望の特性の中
空体が安価に得られる製造方法に関する。
Detailed Description of the Invention <Industrial Application Field> The present invention relates to a method for producing carbon-based micro hollow bodies such as carbon or carbide used as fillers in composite materials, and in particular to a method for producing carbon-based micro hollow bodies such as carbon or carbide used as fillers in composite materials. The present invention relates to a manufacturing method that allows hollow bodies with desired characteristics to be obtained at low cost by using particles.

〈従来技術とその問題点〉 従来から製造されている炭素微小中空体は、例えば特開
昭61−14110号に開示されているようにコークス
炉等で発生するコールタールピッチ等を原料として、ま
たトルエン等を溶剤として製造され、複合材料の充填剤
(フィラー)等に利用されている。
<Prior art and its problems> Conventionally manufactured carbon micro hollow bodies are manufactured using coal tar pitch generated in coke ovens, etc. as a raw material, for example, as disclosed in JP-A-61-14110; It is produced using toluene as a solvent and is used as a filler in composite materials.

炭素微小中空体は、(1)炭素材料、(2)中空体、(
3)微小球体としての特徴を有する。
The carbon micro hollow body consists of (1) carbon material, (2) hollow body, (
3) It has characteristics as a microsphere.

すなわち、(1)炭素材°料としては耐熱性、導電性、
耐薬品性等が、(2)中空体としては、材料の軽量化、
断熱性、加工性等が(3)微小球体としては等方性等が
特徴的である。
That is, (1) the carbon material has heat resistance, electrical conductivity,
Chemical resistance, etc. (2) As a hollow body, lightweight material,
It is characterized by its heat insulation properties, workability, etc. (3) and isotropy as a microsphere.

そのため、多方面の材料に混入されて複合材として高温
断熱材および浮力材等への応用が考えられている。
Therefore, it is being considered that it can be mixed into various materials and used as a composite material for high-temperature insulation materials, buoyancy materials, etc.

例えば、特公昭48−28776号に開示される製造方
法によれば、フェノール樹脂等との複合化や化合物化等
により機械的強度が、170 kgf/cm”以上の値
が得られており、曲げ強度も1 f Okgf/cm’
以上と向上した。
For example, according to the manufacturing method disclosed in Japanese Patent Publication No. 48-28776, a mechanical strength of 170 kgf/cm or more is obtained by compounding or compounding with phenol resin, etc. Strength is also 1 f Okgf/cm'
This has improved.

また、特公昭58−42215号に開示されるように、
軽量化を推進しようとする試みもある。
Also, as disclosed in Japanese Patent Publication No. 58-42215,
There are also attempts to promote weight reduction.

しかし、従来の製造方法による炭素微小中空体は、さま
ざまな複合材料に要求される条件を必ずしも満足してお
らず、さらに優れた特性を要求されているのが現状であ
る。
However, the carbon microhollow bodies produced by conventional manufacturing methods do not necessarily satisfy the conditions required for various composite materials, and the current situation is that even more excellent properties are required.

特に機械的強度として、プレス成形による導電性断熱材
に用いる場合には圧縮強度200kgf/cm2以上、
電気抵抗の値として、0.1Ω・Cm以下、断熱特性と
して、1000℃において0 、 5 kcal/m−
hr・℃以下が望まれているが、未だこれらの特性を充
分満足するものは得られていない。
In particular, in terms of mechanical strength, when used as a conductive heat insulating material by press molding, the compressive strength is 200 kgf/cm2 or more,
The electrical resistance value is 0.1Ω・Cm or less, and the insulation property is 0.5 kcal/m- at 1000°C.
Although it is desired that the temperature is hr.° C. or lower, no product has yet been obtained that fully satisfies these characteristics.

従来コールタールピッチの炭化による製造工程で製造さ
れる炭素微小中空体には炭素膜に穴がある欠点があった
Conventionally, micro hollow carbon bodies manufactured by the carbonization process of coal tar pitch have had the disadvantage of having holes in the carbon membrane.

また、上述のコールタールピッチの炭化による従来法に
より製造される炭素微小中空体は製造コストが高く、用
途拡大を妨げる要因となっている。
Furthermore, the carbon microhollow bodies manufactured by the conventional method of carbonizing coal tar pitch are expensive to manufacture, which is a factor that hinders the expansion of their uses.

〈発明の目的〉 本発明の目的は、従来技術における問題点を解決し、圧
縮強度を200 kg/cm2以上の値とすることがで
き、製造コストも安価で高温での断熱・軽量性フィラー
に広く利用できる炭素系微小中空体の製造方法を提供し
ようとするにある。
<Object of the Invention> The object of the present invention is to solve the problems in the prior art, to provide a compressive strength of 200 kg/cm2 or more, to be inexpensive to produce, and to be a heat insulating and lightweight filler at high temperatures. The object of the present invention is to provide a method for manufacturing carbon-based micro hollow bodies that can be widely used.

〈発明の構成〉 本発明者らは高温流動層に着目し、多孔質酸化物粒子を
熱媒体として充填した高温流動層に炭化水素ガスを吹き
込むと、炭化水素の熱分解により生成した炭素が付着堆
積した炭素被覆微小球体が得られ、これを不活性ガス雰
囲気中、当該酸化物の融点または炭素との反応温度以上
の温度で熱処理すると、球体内部の多孔質酸化物が融解
のために収縮し、または、被覆炭素によって還元される
ことにより中空な炭素および/または炭化物微小球体が
連続的に得られることを見いだした。
<Structure of the Invention> The present inventors focused on a high-temperature fluidized bed, and when a hydrocarbon gas is blown into a high-temperature fluidized bed filled with porous oxide particles as a heat medium, carbon generated by thermal decomposition of hydrocarbons is attached. When deposited carbon-coated microspheres are obtained and heat treated in an inert gas atmosphere at a temperature higher than the melting point of the oxide or the reaction temperature with carbon, the porous oxide inside the spheres shrinks due to melting. Alternatively, it has been found that hollow carbon and/or carbide microspheres can be obtained continuously by reduction with coated carbon.

すなわち、本発明の第1態様は加熱下において流動状態
の多孔質酸化物粒子に炭化水素ガスを接触させ、該炭化
水素ガスの熱分解により、前記酸化物粒子表面上に炭素
被覆層を形成した後、該炭素被覆層を有する酸化物粒子
を熱処理することを特徴とする炭素系微小中空体の製造
方法を提供する。
That is, in the first aspect of the present invention, a hydrocarbon gas is brought into contact with porous oxide particles in a fluidized state under heating, and a carbon coating layer is formed on the surface of the oxide particles by thermal decomposition of the hydrocarbon gas. A method for producing carbon-based microhollow bodies is provided, which comprises subsequently heat-treating the oxide particles having the carbon coating layer.

ここで、前記多孔質酸化物粒子がSiO2である炭素系
微小中空体の製造方法が良い。
Here, a method for manufacturing a carbon-based micro hollow body in which the porous oxide particles are SiO2 is preferable.

また゛、前記炭素被覆層形成工程と、前期熱処理工程を
、別々の反応槽を用いて連続的に行う炭素系微小中空体
の製造方法が好ましい。
Furthermore, it is preferable to carry out the carbon coating layer forming step and the first heat treatment step continuously using separate reaction vessels.

以下に本発明を詳述する。The present invention will be explained in detail below.

第一図は、本発明の製造方法のフローシートである。FIG. 1 is a flow sheet of the manufacturing method of the present invention.

(炭素被覆工程) 熱媒体として多孔質酸化物粒子を用い、不活性ガスを多
孔質酸化物粒子の流動化開始速度以上の流速で流して高
温流動層とし、炭化水素ガスの実用的熱分解温度以上に
維持しつつ炭化水素ガスを吹き込むと、熱媒体粒子であ
る多孔質酸化物粒子の表面に熱分解炭素が付着堆積し、
炭素被覆多孔質酸化物粒子が生成する。
(Carbon coating process) Using porous oxide particles as a heating medium, an inert gas is flowed at a flow rate higher than the fluidization start speed of the porous oxide particles to form a high-temperature fluidized bed, and the practical thermal decomposition temperature of hydrocarbon gas is achieved. When hydrocarbon gas is blown in while maintaining the above temperature, pyrolytic carbon adheres and deposits on the surface of the porous oxide particles, which are heat transfer particles.
Carbon-coated porous oxide particles are produced.

熱媒体に用いる多孔質酸化物としては、表面に炭素被覆
された後、熱処理されて還元され、構成元素が炭素材の
機械的強度をあげるものであればいかなるものでもよい
が、目的に応じてS f 02 、Cu O,V203
を用いることができる。
The porous oxide used as a heat medium may be any material as long as the surface is coated with carbon and then heat-treated to reduce the material, and the constituent elements increase the mechanical strength of the carbon material, depending on the purpose. S f 02 , Cu O, V203
can be used.

不活性ガスは、アルゴン、ヘリウム、窒素等を用いる。Argon, helium, nitrogen, etc. are used as the inert gas.

被覆炭素原料となる炭化水素ガスは、いかなるものを用
いてもよいが、メタン、プロパン、ブタン等が好ましい
Any hydrocarbon gas may be used as the coating carbon raw material, but methane, propane, butane, etc. are preferable.

すなわち、本発明の製造方法の要件は、多孔質酸化物粒
子を熱媒体とする流動層を炭化水素の熱分解に必要な実
用的温度でかつ当該粒子の融点または炭素との反応温度
以下の温度に維持すること、および熱処理工程において
は、不活性ガス雰囲気中被覆球体内部での多孔質酸化物
の融解収縮または炭化反応に必要な温度を維持すること
である。
In other words, the requirements for the production method of the present invention are that the fluidized bed using porous oxide particles as a heat medium is at a practical temperature necessary for thermal decomposition of hydrocarbons, and at a temperature below the melting point of the particles or the reaction temperature with carbon. and, in the heat treatment step, to maintain the temperature necessary for the melting and shrinkage or carbonization reaction of the porous oxide inside the coated sphere in an inert gas atmosphere.

高温流動層内で炭素が析出する前に熱媒体である酸化物
粒子が還元されてしまうと、本発明の炭素系中空体が得
られないので、酸化物粒子としては、S i O2等を
用い、不活性ガス温度は、炭化水素の熱分解温度以下と
するのが良い。
If the oxide particles serving as a heat medium are reduced before carbon is precipitated in the high-temperature fluidized bed, the carbon-based hollow body of the present invention cannot be obtained. It is preferable that the inert gas temperature is lower than the thermal decomposition temperature of hydrocarbons.

炭素被覆工程は、処理時間、処理温度を調節すれば、被
覆炭素量を所望の値とすることができ、生成する微小中
空体の酸化物、炭素、炭化物の構成比を所望の値にする
ことができる。
In the carbon coating process, by adjusting the treatment time and treatment temperature, the amount of coated carbon can be set to a desired value, and the composition ratio of oxides, carbon, and carbides in the generated micro hollow bodies can be set to a desired value. Can be done.

(熱処理工程) 炭素被覆粒子を不活性ガス雰囲気高温流動層として流動
しつつ多孔質酸化物の融点または、炭素との反応温度以
上の温度で熱処理することにより、目的とする本発明の
炭素系微小中空体が得られる。
(Heat treatment step) The carbon-coated particles of the present invention are heated at a temperature higher than the melting point of the porous oxide or the reaction temperature with carbon while flowing the carbon-coated particles in an inert gas atmosphere as a high-temperature fluidized bed. A hollow body is obtained.

炭素被覆工程と熱処理工程とは、後に第2図で説明する
ように同一の反応槽を用いて行って゛もよいし、第3図
で説明するように別々の反応槽を用いて連続的に行って
もよい。
The carbon coating step and the heat treatment step may be carried out using the same reaction tank as explained later in FIG. 2, or may be carried out continuously using separate reaction tanks as explained in FIG. Good too.

次に、本発明の製造方法のうち、特に多孔質SiO2粒
子を用いる場合を例に挙げて説明する。
Next, among the manufacturing methods of the present invention, a case in which porous SiO2 particles are particularly used will be described as an example.

(炭素被覆工程) 熱媒体を流動化状態に保つための不活性ガスとしてはA
r、He%N2等を用いることができる。 熱媒体粒子
が5in2の場合、粒径は300〜500μmの範囲が
適当である。
(Carbon coating process) A is used as an inert gas to keep the heat medium in a fluidized state.
r, He%N2, etc. can be used. When the heat medium particles are 5 in 2 , the particle size is suitably in the range of 300 to 500 μm.

この範囲以下の粒径では流動化が困難となり、この範囲
以上の粒径では熱分解4反応の効率は低下する。
If the particle size is below this range, fluidization becomes difficult, and if the particle size is above this range, the efficiency of the pyrolysis 4 reaction will decrease.

炭素原料となる炭化水素ガスとしてはメタン(CH4)
、プロパン(Cs Ha )、ブタン(C4H+o)等
を用い、これらを800〜1500℃に加熱することに
より熱分解炭素を生成させる。
Methane (CH4) is a hydrocarbon gas that serves as a carbon raw material.
, propane (Cs Ha ), butane (C4H+o), etc., are heated to 800 to 1500°C to generate pyrolytic carbon.

炭化水素がプロパンの場合の反応は次のとおりである。The reaction when the hydrocarbon is propane is as follows.

C3Ha  →3 C+ 4 H2・・・ (1)(熱
処理工程) 炭素被覆工程と同様に炭素被覆粒子を不活性ガスで流動
化状態としつつ、温度調節し、熱処理する。
C3Ha →3 C+ 4 H2... (1) (Heat treatment step) As in the carbon coating step, the carbon coated particles are brought into a fluidized state with an inert gas, the temperature is adjusted, and heat treatment is performed.

多孔質S i 02  粒子の融点は1500〜170
0℃程度であり、不活性ガス雰囲気中の反応は1700
℃以上で次のように起こる。
The melting point of porous S i 02 particles is 1500-170
The temperature is about 0℃, and the reaction temperature in an inert gas atmosphere is 1700℃.
At temperatures above ℃, the following occurs.

5i02 +3C−=SiC+2CO・・・ (2)こ
れらの温度を考慮した上で炭素被覆粒子の熱処理条件を
決める。
5i02 +3C-=SiC+2CO... (2) After considering these temperatures, the heat treatment conditions for the carbon-coated particles are determined.

このように、多孔質5i02粒子を熱媒体、炭化水素原
料をCj H51として炭素および/または炭化物微小
中空体を製造するためには、粒子径を300〜500μ
mの範囲に選び、炭素被覆工程をaOO〜1500℃の
温度範囲で、また熱処理工程を1500℃以上の温度で
実施するとよい。 熱処理温度が1500〜1700℃
の場合は主として炭素中空体が、また1700℃以上の
場合は主として炭化物中空体が生成する。 この際、多
孔質酸化物と炭素との反応によって生じるCOガスは、
炭素膜の微細気孔を通って炭素量の外へ放出されるので
炭素膜が割れてしまうことはない。
In this way, in order to produce carbon and/or carbide micro hollow bodies using porous 5i02 particles as a heat medium and hydrocarbon raw material as Cj H51, the particle size should be set to 300 to 500μ.
m, and the carbon coating step is preferably carried out at a temperature range of aOO to 1500°C, and the heat treatment step is carried out at a temperature of 1500°C or higher. Heat treatment temperature is 1500-1700℃
When the temperature is 1700° C. or higher, mainly carbon hollow bodies are formed, and when the temperature is 1700° C. or higher, mainly carbide hollow bodies are formed. At this time, the CO gas generated by the reaction between the porous oxide and carbon is
Since the amount of carbon is released outside through the fine pores of the carbon film, the carbon film will not crack.

また、この微細気孔は、高温下でガスの通過に支障はな
いが、常温ないし、プラスチック等に充填して成型する
際の温度ではこのようなプラスチック等侵入はできない
程度の大きさなので使用上問題とはならない。
In addition, although these fine pores do not impede the passage of gas at high temperatures, they are large enough to prevent such plastics from entering at room temperature or at the temperature used to fill and mold plastics, which poses a problem in use. It is not.

次に本発明法を実施する好適な装置を図面に基づき説明
する。 本発明の方法を実施するために用いられる装置
はこれに限定されるものではない。
Next, a preferred apparatus for carrying out the method of the present invention will be explained based on the drawings. The apparatus used to carry out the method of the present invention is not limited to this.

炭素被覆工程には前述の高温流動層を用いる。 また熱
処理工程には、炭素被覆工程と同一のまたは別個の高温
流動層を用いることができるが、他の形式の熱処理炉を
用いることもできる。
The above-mentioned high-temperature fluidized bed is used in the carbon coating process. The heat treatment step can also use the same or separate high temperature fluidized bed as the carbon coating step, but other types of heat treatment furnaces can also be used.

第2図は、高温流動層型装置の一例を示す概略図である
FIG. 2 is a schematic diagram showing an example of a high temperature fluidized bed type device.

高温流動層型装置100は、内部に熱媒体粒子を有する
装置本体10、熱媒体粒子を流動させて流動層を形成さ
せるガス流を供給するガス供給装置20および熱媒体粒
子を加熱する加熱装置30等から構成されている。
The high-temperature fluidized bed device 100 includes a device body 10 that has heat medium particles inside, a gas supply device 20 that supplies a gas flow that causes the heat medium particles to flow and form a fluidized bed, and a heating device 30 that heats the heat medium particles. It is composed of etc.

装置本体10は、好ましくは下端に流動化ガス供給口1
9を備え、上端に排ガス配管13と連通ずる排ガス排出
口25を僅え、中央部に反応管11を有する。
The device body 10 preferably has a fluidizing gas supply port 1 at the lower end.
9, has an exhaust gas outlet 25 at the upper end communicating with the exhaust gas pipe 13, and has a reaction tube 11 in the center.

反応管11は流動化ガス供給口19の上部の適切位置に
ふるい状の分散板17を備え、分散板17の上部に多孔
質酸化物粒子が保持されるよう構成される。
The reaction tube 11 is provided with a sieve-shaped dispersion plate 17 at an appropriate position above the fluidizing gas supply port 19, and is configured such that the porous oxide particles are held above the dispersion plate 17.

反応管上部には、粒子供給口15が設けられ、分散板1
7付近には製造した炭素系微小中空体等の粒子をとり出
すための粒子排出口18が設けられる。
A particle supply port 15 is provided at the top of the reaction tube, and a dispersion plate 1
A particle outlet 18 is provided near the hole 7 for taking out particles such as the manufactured carbon-based micro hollow bodies.

流動化ガス供給口19は、ガス流量調整器24を経て、
不活性ガスボンベ23と連通される。 流動化用の不活
性ガスは、不活性ガスボンベ23よりガス流量調整器2
4で適切な流量で反応管11内に導入され、排ガス排出
口25より排出される。
The fluidizing gas supply port 19 passes through the gas flow rate regulator 24,
It is communicated with the inert gas cylinder 23. The inert gas for fluidization is supplied from the inert gas cylinder 23 to the gas flow regulator 2.
In step 4, the gas is introduced into the reaction tube 11 at an appropriate flow rate and discharged from the exhaust gas outlet 25.

反応管11内部には適切位置に発熱体32が設けられ外
部にある加熱用電源と接続され、反応管11内部を所定
の温度に加熱できる。
A heating element 32 is provided at an appropriate position inside the reaction tube 11 and is connected to an external heating power source to heat the inside of the reaction tube 11 to a predetermined temperature.

この温度は熱電対12により測定される。This temperature is measured by thermocouple 12.

反応管11の分散板17付近には、炭化水素ガス供給口
16が設けられ、反応管11外部にある炭化水素ガスボ
ンベ21よりガス流量調整器21を経て原料ガスが供給
される。
A hydrocarbon gas supply port 16 is provided near the dispersion plate 17 of the reaction tube 11, and raw material gas is supplied from a hydrocarbon gas cylinder 21 located outside the reaction tube 11 via a gas flow rate regulator 21.

反応管11内には粒子供給口15より多孔質酸化物粒子
が装入され分散板17上に保持され、これに流動化不活
性ガスボンベ23より流動化ガスをガス流量調整器24
、流動化ガス供給管19、分散板17を経由して吹き込
むことに゛より、多孔質酸化物粒子が不活性ガス流によ
り流動化し流動層14が形成される。
Porous oxide particles are charged into the reaction tube 11 through the particle supply port 15 and held on the dispersion plate 17, and fluidized gas is supplied to the particles from the fluidized inert gas cylinder 23 through the gas flow regulator 24.
By blowing in through the fluidizing gas supply pipe 19 and the dispersion plate 17, the porous oxide particles are fluidized by the inert gas flow and a fluidized bed 14 is formed.

多孔質酸化物粒子流動層14は、加熱用電源31および
発熱体32により、原料炭化水素ガス21の熱分解に必
要な800〜1500℃程度の温度に加熱される。 こ
の加熱された多孔質酸化物粒子流動層14に原料炭化水
素ガスボンベ21よりガス流量調整器22、原料炭化水
素ガス供給口16を経由して原料ガスを供給することに
より、供給された原料炭化水素ガスは熱分解により炭素
となって析出し、この析出炭素が流動層14を形成して
いる多孔質酸化物粒子の表面に付着堆積するので、最初
に粒子供給口15より装入された多孔質酸化物粒子は次
第に炭素被覆された球体となる。
The porous oxide particle fluidized bed 14 is heated by a heating power source 31 and a heating element 32 to a temperature of about 800 to 1500° C. required for thermal decomposition of the raw material hydrocarbon gas 21 . The raw material hydrocarbon is supplied by supplying the raw material gas from the raw material hydrocarbon gas cylinder 21 to the heated porous oxide particle fluidized bed 14 via the gas flow rate regulator 22 and the raw material hydrocarbon gas supply port 16. The gas is precipitated as carbon by thermal decomposition, and this precipitated carbon adheres and deposits on the surface of the porous oxide particles forming the fluidized bed 14. The oxide particles gradually become carbon-coated spheres.

炭素被覆が完了した後、原料炭化水素ガスの供給を止め
、流動化不活性ガスの流量をガス流量調整器24で調整
し流動化状態を補正しつつ、粒子内包酸化物と被覆炭素
が還元反応を行うのに必要な温度まで反応管11内部を
発熱体32により昇温する。反応温度に達した被覆粒子
流動層14を形成する粒子は、酸化物が粒子内部で溶融
し、被覆炭素と還元反応を起こす。
After the carbon coating is completed, the supply of the raw material hydrocarbon gas is stopped, and the flow rate of the fluidizing inert gas is adjusted with the gas flow rate regulator 24 to correct the fluidized state, and the particle-encapsulated oxide and the coated carbon undergo a reduction reaction. The temperature inside the reaction tube 11 is raised by the heating element 32 to the temperature required to carry out the reaction. When the particles forming the coated particle fluidized bed 14 reach the reaction temperature, the oxide melts inside the particles and causes a reduction reaction with the coated carbon.

還元反応の結果、被覆炭素は炭素化合物の殻となり中空
球体を形成する。生成した炭化物微小中空体は粒子排出
口18を経て装置本体10より取り出される。
As a result of the reduction reaction, the coated carbon becomes a shell of a carbon compound and forms a hollow sphere. The produced carbide micro hollow bodies are taken out from the apparatus main body 10 through the particle outlet 18.

製造工程の能率向上を図るため、第3図に示す装置を用
いて炭素被覆工程と熱処理工程を分割して行うこともで
きる。 第3図に本発明の製造方法に好適に使用される
装置の他の例を示す。
In order to improve the efficiency of the manufacturing process, the carbon coating process and the heat treatment process can be performed separately using the apparatus shown in FIG. FIG. 3 shows another example of an apparatus suitably used in the manufacturing method of the present invention.

第3図に示す装置は、炭素被覆工程と熱処理工程を同一
の反応管11で行わず、炭素被覆槽40と熱処理槽50
を設けて別々に行うものである。
The apparatus shown in FIG. 3 does not perform the carbon coating process and the heat treatment process in the same reaction tube 11, but instead uses a carbon coating tank 40 and a heat treatment tank 50.
This is done separately.

炭素被覆槽40と熱処理槽50の構成は、前述の装置本
体10と同様の構成とするが、炭素被覆槽40の粒子排
出口48と熱処理槽50の粒子供給口55を連通し、好
ましくは、炭素被覆槽40で生成された炭素被覆粒子が
粒子排出口48から排出される際に、粒子供給口55へ
と自然落下し、熱処理槽50内に充填される構成とする
The configurations of the carbon coating tank 40 and the heat treatment tank 50 are similar to those of the apparatus main body 10 described above, but the particle discharge port 48 of the carbon coating tank 40 and the particle supply port 55 of the heat treatment tank 50 are preferably connected to each other. When the carbon-coated particles produced in the carbon-coating tank 40 are discharged from the particle discharge port 48, they naturally fall into the particle supply port 55 and are filled into the heat treatment tank 50.

炭素被覆槽40で炭素被覆され重量の増した炭素被覆粒
子は、多孔質酸化物粒子流動層44の下部に沈降し粒子
排出口48から取り出される。 取り出された粒子は、
粒子供給口55を経由して熱処理槽50に装入され、熱
処理が行われる。 熱処理を終えた炭化物微小中空体は
、粒子排出口57より本発明の炭素系微小中空体として
取り出される。
The carbon-coated particles, which have been coated with carbon in the carbon-coating tank 40 and have increased in weight, settle to the lower part of the porous oxide particle fluidized bed 44 and are taken out from the particle outlet 48. The extracted particles are
The particles are charged into the heat treatment tank 50 via the particle supply port 55, and heat treatment is performed. After the heat treatment, the carbide microhollow bodies are taken out from the particle outlet 57 as the carbon-based microhollow bodies of the present invention.

〈実施例〉 以下に実施例により本発明を具体的に説明する。<Example> The present invention will be specifically explained below using Examples.

粒径範囲が297〜500μm(平均粒径395μm)
の多孔質のSin、  粒子2000gを内径98mm
の黒鉛反応管に充填し、1200℃に昇温して、流動化
ガスのアルゴン流量3.0J2/min、原料ガスのプ
ロパン流量1.0J2/winで16時間熱分解して多
孔質5in2粒子上に炭素を付着・堆積させた。
Particle size range is 297-500μm (average particle size 395μm)
Porous Sin, 2000g particles with an inner diameter of 98mm
was filled in a graphite reaction tube, heated to 1200°C, and thermally decomposed for 16 hours at a flow rate of argon as a fluidizing gas and a flow rate of propane as a raw material gas of 1.0 J2/win. Carbon was attached and deposited on.

その後、流動化ガスのアルゴン流量3.OL、温度20
00℃で6時間熱処理を行い炭化珪素微小中空体を製造
した。
Then, the argon flow rate of the fluidizing gas is 3. OL, temperature 20
Heat treatment was performed at 00° C. for 6 hours to produce silicon carbide micro hollow bodies.

その結果、被覆炭素重量1206g、生成微小中空体の
総重量1607g、平均粒径505μm、圧縮強度20
4kg/cm’であった。
As a result, the coated carbon weight was 1206 g, the total weight of the produced micro hollow bodies was 1607 g, the average particle diameter was 505 μm, and the compressive strength was 20
It was 4 kg/cm'.

これは従来のコールタールピッチの炭化法による高強度
微小中空球体と比較して、圧縮強度が1.2〜8倍と強
く、優れた特性が得られた。
The compressive strength was 1.2 to 8 times higher than that of the conventional high-strength microscopic hollow spheres produced by the conventional coal tar pitch carbonization method, and excellent properties were obtained.

また、生成微小中空体の元素分析結果は、炭化珪素89
.3wt%、炭素10.1wt%、シリカ(S i 0
2 ) 0. 5wt%であった。 これは、炭素被覆
粒子の熱処理における還元反応がほぼ完結しており、被
覆炭素量を制御することで、生成する微小中空体の酸化
物、炭素、炭化物の構成比を任意に選択することができ
ることを示す。
In addition, the elemental analysis results of the produced micro hollow bodies show that silicon carbide 89
.. 3wt%, carbon 10.1wt%, silica (S i 0
2) 0. It was 5wt%. This is because the reduction reaction in the heat treatment of the carbon-coated particles is almost complete, and by controlling the amount of coated carbon, the composition ratio of oxides, carbon, and carbides in the micro hollow bodies to be produced can be arbitrarily selected. shows.

さらに生成した炭素および炭化物微小中空体の外観を観
察した結果、従来コールタールピッチの炭化法による炭
素微小中空球体には殻に製造工程でできる穴があるのに
対し、本発明の製造方法では穴ができず、強度が高く、
複合材への充填物として優れた特性の炭素系微小中空体
が得られた。
Furthermore, as a result of observing the appearance of the produced carbon and carbide micro hollow bodies, it was found that while the carbon micro hollow spheres produced by the conventional coal tar pitch carbonization method have holes in the shell during the manufacturing process, the production method of the present invention has holes. is not possible, has high strength,
Carbon-based microhollow bodies with excellent properties as fillers for composite materials were obtained.

〈発明の効果〉 本発明の製造方法による炭素系微小中空体は、製造方法
に起因する殻の欠陥がなく、また、熱媒体粒子とする多
孔質酸化物を適当に選択することにより、多種の炭化物
材質および任意の粒径をもつ微小中空体を製造すること
が可能となり、軽量かつ高強度の複合材料の充填物とし
て好適である。
<Effects of the Invention> The carbon-based micro hollow bodies produced by the production method of the present invention have no shell defects caused by the production method, and by appropriately selecting the porous oxide used as the heat transfer medium particles, a variety of It is possible to produce micro hollow bodies made of carbide material and having arbitrary particle sizes, making them suitable as fillers for lightweight and high-strength composite materials.

本発明の製造方法は、製造工程が簡単で原料の多孔質酸
化物および炭化水素の種類を選択すれば規模の拡大も容
易なため、安価に上記の特性を持つ炭素系微小中空体が
製造できる。
The manufacturing method of the present invention has a simple manufacturing process and can be easily scaled up by selecting the types of porous oxide and hydrocarbon as raw materials, so that carbon-based microhollow bodies with the above characteristics can be manufactured at low cost. .

特に炭素被覆工程と熱処理工程を、別々の反応槽を用い
て連続的に行えば、大量生産が可能でより安価に製造で
きる。
In particular, if the carbon coating step and the heat treatment step are performed continuously using separate reaction vessels, mass production is possible and manufacturing is possible at a lower cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明法のフローシートである。 第2図は、本発明法に使用される装置の一例を示す概略
図である。 第3図は、本発明法に使用される装置の他の例を示す概
略図である。 符号の説明 100−・・高温流動層型装置、 10・・・高温流動層装置本体、 11・・・反応管、 12・・・熱電対、 13・・・排ガス配管、 14・・・流動層 15−・・粒子供給口、 16・・・原料炭化水素ガス供給口、 17・・・分散板、 18・・・粒子排出口、 19−・・流動化ガス供給口、 20・・・ガス供給装置、 21・・・炭化水素ガスボンベ、 22・・・ガス流量調整器、 23・・・不活性ガスボンベ、 24・・・ガス流量調整器、 25・・・排ガス排出口、 26・・・ガス流量調整器、 30・・・加熱装置、 31・・・加熱用電源、 32・・・発熱体、 40・・・炭素被覆槽本体、 42・・・温度測定用熱電対、 43・・・排ガス配管、 44・・・多孔質酸化物粒子流動層、 45・・・粒子供給口、 46・・・原料炭化水素ガス供給口、 47・・・分散板、 48・・・粒子排出口、 49・・・流動化ガス供給口、 50・・・熱処理槽、 52・・・温度測定用熱電対、 53・・・排ガス配管、 54・・・炭素被覆粒子流動層、 55・・・粒子供給口、 56・・・分散板、 57・・・粒子排出口、 58・・・流動化ガス供給口、 61・・・加熱用電源、 62・・・発熱体、 63・・・加熱用電源、 64・・・発熱体
FIG. 1 is a flow sheet of the method of the present invention. FIG. 2 is a schematic diagram showing an example of an apparatus used in the method of the present invention. FIG. 3 is a schematic diagram showing another example of the apparatus used in the method of the present invention. Explanation of symbols 100--High temperature fluidized bed device, 10...High temperature fluidized bed device main body, 11...Reaction tube, 12...Thermocouple, 13...Exhaust gas piping, 14...Fluidized bed 15--Particle supply port, 16--Raw material hydrocarbon gas supply port, 17--Dispersion plate, 18--Particle discharge port, 19---Fluidization gas supply port, 20--Gas supply Apparatus, 21... Hydrocarbon gas cylinder, 22... Gas flow rate regulator, 23... Inert gas cylinder, 24... Gas flow rate regulator, 25... Exhaust gas outlet, 26... Gas flow rate Regulator, 30... Heating device, 31... Power source for heating, 32... Heating element, 40... Carbon coated tank body, 42... Thermocouple for temperature measurement, 43... Exhaust gas piping , 44... Porous oxide particle fluidized bed, 45... Particle supply port, 46... Raw material hydrocarbon gas supply port, 47... Dispersion plate, 48... Particle discharge port, 49... - Fluidization gas supply port, 50... Heat treatment tank, 52... Thermocouple for temperature measurement, 53... Exhaust gas piping, 54... Carbon coated particle fluidized bed, 55... Particle supply port, 56 ...Dispersion plate, 57...Particle discharge port, 58...Fluidization gas supply port, 61...Heating power source, 62...Heating element, 63...Heating power source, 64...・Heating element

Claims (3)

【特許請求の範囲】[Claims] (1)加熱下において流動状態の多孔質酸化物粒子に炭
化水素ガスを接触させ、該炭化水素ガスの熱分解により
、前記酸化物粒子表面上に炭素被覆層を形成した後、該
炭素被覆層を有する酸化物粒子を熱処理することを特徴
とする炭素系微小中空体の製造方法。
(1) A hydrocarbon gas is brought into contact with porous oxide particles in a fluidized state under heating, and a carbon coating layer is formed on the surface of the oxide particle by thermal decomposition of the hydrocarbon gas, and then the carbon coating layer is formed on the surface of the oxide particle. 1. A method for producing a carbon-based micro hollow body, comprising heat-treating oxide particles having the following properties.
(2)前記多孔質酸化物粒子がSiO_2である特許請
求の範囲第1項に記載の炭素系微小中空体の製造方法。
(2) The method for producing a carbon-based micro hollow body according to claim 1, wherein the porous oxide particles are SiO_2.
(3)前記炭素被覆層形成工程と、前期熱処理工程を、
別々の反応槽を用いて連続的に行う特許請求の範囲第1
項または第2項に記載の炭素系微小中空体の製造方法。
(3) The carbon coating layer forming step and the first heat treatment step,
Claim 1: Continuously carried out using separate reaction vessels
A method for producing a carbon-based micro hollow body according to item 1 or 2.
JP62299095A 1987-11-27 1987-11-27 Production of carbon-based fine hollow body Pending JPH01141812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62299095A JPH01141812A (en) 1987-11-27 1987-11-27 Production of carbon-based fine hollow body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62299095A JPH01141812A (en) 1987-11-27 1987-11-27 Production of carbon-based fine hollow body

Publications (1)

Publication Number Publication Date
JPH01141812A true JPH01141812A (en) 1989-06-02

Family

ID=17868093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62299095A Pending JPH01141812A (en) 1987-11-27 1987-11-27 Production of carbon-based fine hollow body

Country Status (1)

Country Link
JP (1) JPH01141812A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380511A (en) * 1990-07-10 1995-01-10 Sumitomo Metal Industries, Ltd. Process for producing silicon carbide-base complex

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380511A (en) * 1990-07-10 1995-01-10 Sumitomo Metal Industries, Ltd. Process for producing silicon carbide-base complex

Similar Documents

Publication Publication Date Title
US6797251B1 (en) Method of making carbon foam at low pressure
Qian et al. Preparation of biomorphic SiC ceramic by carbothermal reduction of oak wood charcoal
Ding et al. Synthesis and textural evolution of mesoporous Si3N4 aerogel with high specific surface area and excellent thermal insulation property via the urea assisted sol-gel technique
AU2002318145B2 (en) Process for making carbon foam induced by process depressurization
WO2004028966A1 (en) Porous article and method for production thereof and electrochemical element using the porous article
CN110066175B (en) Preparation method of ultralight carbide ceramic foam
WO2021103560A1 (en) Long-time ablation-resistant ultra-high temperature ceramic having ultra-high melting point and containing nitrogen carbide, and application thereof
CN106633652A (en) Preparation method of bicontinuous-phase alumina/epoxy resin composite material
JP4438964B2 (en) Method for producing graphite-silicon carbide composite
CN113716966B (en) SiCN ceramic aerogel and preparation method and application thereof
CN106045571A (en) Manufacturing method of gradient porous silicon carbide ceramic tube
CN112047343A (en) Preparation method of hollow silicon carbide microspheres
Ortega‐Trigueros et al. Synthesis of high‐surface area mesoporous SiC with hierarchical porosity for use as catalyst support
Zhang et al. Fabrication, microstructure and ablation resistance of C/C–SiC composites, by using a novel precursor of SiC
US11365123B2 (en) Method for producing graphene nanospheres
JPH01141812A (en) Production of carbon-based fine hollow body
JP4473183B2 (en) Method for producing hollow metal body
Zhang et al. Preparation and characterization of lightweight SiC frameworks by connecting SiC fibers with SiC joints
CN106622041A (en) Chemical combination tower chamber for preparing powder by metal atomization
US5213770A (en) Methane conversion reactor
US7553470B2 (en) Method of controlling swelling and shrinkage during synthesis of coke
Zhang et al. In-situ formed SiC whisker strengthening of silicon carbide reticulated porous ceramics based on 3D printed lattices template
Shi et al. Effect of porous pre-coating on the phase composition and oxidation protective performance of SiC coating by gaseous silicon infiltration
CN206631566U (en) A kind of chemical combination tower room for metal atomization powder
JPH09287076A (en) Formation of composite carbon film