JPH01141389A - Scintillation detector - Google Patents

Scintillation detector

Info

Publication number
JPH01141389A
JPH01141389A JP29914587A JP29914587A JPH01141389A JP H01141389 A JPH01141389 A JP H01141389A JP 29914587 A JP29914587 A JP 29914587A JP 29914587 A JP29914587 A JP 29914587A JP H01141389 A JPH01141389 A JP H01141389A
Authority
JP
Japan
Prior art keywords
scintillation
output
scintillator
scintillators
waveform analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29914587A
Other languages
Japanese (ja)
Other versions
JP2560355B2 (en
Inventor
Seiichi Yamamoto
誠一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP62299145A priority Critical patent/JP2560355B2/en
Publication of JPH01141389A publication Critical patent/JPH01141389A/en
Application granted granted Critical
Publication of JP2560355B2 publication Critical patent/JP2560355B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Nuclear Medicine (AREA)

Abstract

PURPOSE:To suppress the deterioration of a space resolution in the periphery of a visual field by arranging the scintillators whose scintillation attenuation characteristics are different, in two layers. CONSTITUTION:Scintillators 1 whose scintillation attenuation characteristics are different such as a GSO 11 and a BGO 12, etc., are arranged in two layers in the depth direction and brought to optical coupling. Except the surface which is brought to optical coupling to a photoelectric multiplier 2, the scintillator 1 is covered with a reflecting material 19. An output of the photoelectric multiplier 2 is divided into an output signal A for showing a scintillation generated in a shallow part and an output signal B of a deep part by a waveform analyzer 3, and sent to a simultaneous counting circuit 4. It is also allowed to form a radiation detecting unit by coupling plural photoelectric multipliers to plural scintillators by a light guide. In such a way, by executing simultaneous counting of the output A of one waveform analyzer and the output B of the other waveform analyzer, the deterioration of a space resolution in the periphery of a visual field of a position annihilation point can be suppressed.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、リング型ECT (Emission C
omputedTomography )装置に好適な
シンチレーション検出器に関し、特にポジトロン放出性
核種を用いたリング型ECT装置に好適なシンチレーシ
ョン検出器に関する。
This invention is a ring type ECT (Emission C
The present invention relates to a scintillation detector suitable for a computed tomography (CT) device, and particularly to a scintillation detector suitable for a ring-type ECT device using a positron-emitting nuclide.

【従来の技術】[Conventional technology]

リング型ECT装置では、第4図に示すように、通常1
つのシンチレータ1に1つの光電子増倍管2を光結合し
た放射線検出器を多数リング型に配列している。なお、
シンチレータ1は光電子増倍管2に光結合される面を除
いて光を反射する反射材19で覆われ、シンチレーショ
ン発光の光電子増倍管2への入射効率を高めるようにし
ている。
In a ring-type ECT device, as shown in Fig. 4, usually 1
A large number of radiation detectors in which one photomultiplier tube 2 is optically coupled to one scintillator 1 are arranged in a ring shape. In addition,
The scintillator 1 is covered with a reflective material 19 that reflects light except for the surface optically coupled to the photomultiplier tube 2, so as to increase the incidence efficiency of scintillation light emission into the photomultiplier tube 2.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

しかしながら、このような1個のシンチレータと1個の
光電子増倍管とを組み合わせた検出器では、シンチレー
タに放射線が入射してシンチレーションが生じた場合、
そのシンチレーションがシンチレータのどの深さで生じ
たかの深さ方向の情報が得られないという問題がある。 特に、ボジト°ロンリング型ECT装置では、このよう
に深さ方向の情報が得られないため、空間分解能が視野
周辺で大きくなるという問題を生じる。すなわち、第4
図のように点Pでポジトロンが消滅して2つのγ線を実
線で示すように180°異なる方向に放出し、その一方
が隣接した1個または複数個のシンチレータ1を斜めに
突き抜け、あるシンチレータ1の深い部分でシンチレー
ションを生じた場合、その深さ方向の情報がないため、
点線上にポジトロン消減点が位置しているものとしてカ
ウントがなされてしまう。このような誤差(点線の実線
からの垂離)はγ線が斜めに入射するほど大きくなるた
め、空間分解能は第5図に示すように中心から離れるほ
ど劣化する。 この発明は、深さ方向の情報が得られ、リング型ECT
装置に適用した場合には視野周辺での空間分解能劣化を
抑えることができる、シンチレーション検出器を提供す
ることを目的とする。
However, in such a detector that combines one scintillator and one photomultiplier tube, when radiation enters the scintillator and scintillation occurs,
There is a problem in that depthwise information about the depth of the scintillator at which the scintillation occurs cannot be obtained. Particularly, in the case of the ECT device, since information in the depth direction cannot be obtained in this way, a problem arises in that the spatial resolution becomes large at the periphery of the field of view. That is, the fourth
As shown in the figure, the positron disappears at point P, and two γ-rays are emitted in 180° different directions as shown by the solid line, one of which penetrates diagonally through one or more adjacent scintillators 1, and a certain scintillator If scintillation occurs in the deep part of 1, there is no information in the depth direction, so
Counting is performed assuming that the positron extinction point is located on the dotted line. Such an error (perpendicular distance of the dotted line from the solid line) becomes larger as the gamma rays are incident obliquely, so the spatial resolution deteriorates as the distance from the center increases, as shown in FIG. This invention is a ring-type ECT that can obtain information in the depth direction.
It is an object of the present invention to provide a scintillation detector that can suppress deterioration of spatial resolution around the field of view when applied to a device.

【問題点を解決するための手段】[Means to solve the problem]

この発明によるシンチレーション検出器は、深さ方向に
少なくとも2層に並べられた、それぞれシンチレーショ
ン減衰特性の異なるシンチレータと、該シンチレータに
光結合された光電子増倍管と、該光電子増倍管の出力に
接続された波形分析器とからなる。
A scintillation detector according to the present invention includes scintillators arranged in at least two layers in the depth direction, each having different scintillation attenuation characteristics, a photomultiplier tube optically coupled to the scintillator, and an output of the photomultiplier tube. It consists of a connected waveform analyzer.

【作  用】[For production]

それぞれシンチレーション減衰特性の異なるシンチレー
タが深さ方向に少なくとも2層に並べられているので、
放射線が入射してシンチレーションが生じたとき、どの
層でシンチレーションが生じたかによって光電子増倍管
からの出力パルスの減衰時間が異なることになる。 そこで1、この光電子増倍管の出力パルスの波形を波形
分析器で弁別すれば、どの層でシンチレーションが生じ
たかが分かり、深さ方向の情報を取得することができる
Since scintillators with different scintillation attenuation characteristics are arranged in at least two layers in the depth direction,
When radiation is incident and scintillation occurs, the decay time of the output pulse from the photomultiplier tube will differ depending on in which layer the scintillation occurs. Therefore, 1. By distinguishing the waveform of the output pulse of this photomultiplier tube with a waveform analyzer, it is possible to determine in which layer scintillation occurs, and to obtain information in the depth direction.

【実 施 例】【Example】

第1図に示す実施例は、この発明にががるシンチレーシ
ョン検出器をポジトロンリング型ECT装置に適用した
ものである。この図において、シンチレータ1は深さ方
向に2層に並べられた、それぞれシンチレーション減衰
特性の異なるシンチレータ、たとえばG5011とBG
○12とからなる。これらGSollとBGO12とは
光結合されている。そしてこのシンチレータ1には光電
子増倍管2が光結合される。シンチレータ1は光電子増
倍管2に光結合される面を除いて光を反射する反射材1
9で覆われ、シンチレーション発光の光電子増倍管2へ
の入射効率を高めるようにしている。光電子増倍管2の
出力は波形分析器3に導かれ、浅い部分でシンチレーシ
ョン発光が生じたことを示す出力信号Aと深い部分でシ
ンチレーション発光が生じたことを示す出力信号Bとが
出力され、これらが同時計数回路4に送られる。 たとえば、点Pでポジトロンが消滅して2つのγ線を実
線で示すように180°異なる方向に放出し、その一方
が隣接した1個または複数個のシンチレータ1を斜めに
突き抜け、あるシンチレータ1の深い部分でシンチレー
ションを生じたとする。この場合、深いシンチレータ層
であるBGO12で発光が生じることになる。 ところで、G5011とBGO12のシンチレーション
発光に関する減衰特性は第2図のカーブa、bのように
大きく異なっている。したがって、光電子増倍管2の出
力パルスの波形を波形分析器3で判別することにより、
浅い層のGSollでシンチレーションが生−じたとき
出力Aを、深い層のBGO12でシンチレーションが生
じたとき出力Bを生じることができる。 そのため、この実施例では、一方の波形分析器3の出力
Aと他方の波形分析器3の出力Bとの同時計数を行なう
ことにより、実際にポジトロンが消滅した点Pが乗って
いる実線に近い直線上にポジトロン消減点があるものと
して同時計数できることになり、空間分解能の劣化を抑
えることができる。 なお、上記では1つのシンチレータ1に1つの光電子増
倍管2を光結合させた場合について述べたが、これに限
らず、第3図に示すような、複数のシンチレータ1に複
数の光電子増倍管2をライトガイド5で結合して1つの
放射線検出ユニットを形成する場合にも、そのシンチレ
ータ1を、それぞれシンチレーション減衰特性の異なる
浅い層のシンチレータ11と深い層のシンチレータ12
とで形成することで適用することができる。この場合、
放射線入射面の方向に上記の2層構造のシンチレータ1
が16個互いに光学的に分離して並べられ、これに光電
子増倍管2が4個結合されており、どのシンチレータ1
で発光が生じたがっまり入射面方向の位置弁別は、アン
ガ一方式により各光電子増倍管2の出力の大きさの比か
ら求めるようにしている。深さ方向の情報は、光電子増
倍管2の出力パルス波形を波形弁別することにより得ら
れる。もちろん、このように複数のシンチレータに複数
の光電子増倍管をライトガイドで結合して1つの放射線
検出ユニットを形成する場合は、この第3図以外の構成
とすることもできる。 さらに、上記の第1図、第3図ではいずれもシンチレー
タを深さ方向に2層にしたが、パルス波形が異なれば、
3層以上にすることもできる。
In the embodiment shown in FIG. 1, the scintillation detector according to the present invention is applied to a positron ring type ECT device. In this figure, scintillator 1 is composed of scintillators arranged in two layers in the depth direction, each having different scintillation attenuation characteristics, such as G5011 and BG.
○ Consists of 12. These GSoll and BGO12 are optically coupled. A photomultiplier tube 2 is optically coupled to this scintillator 1. The scintillator 1 is a reflective material 1 that reflects light except for the surface optically coupled to the photomultiplier tube 2.
9 to increase the incidence efficiency of scintillation light emission into the photomultiplier tube 2. The output of the photomultiplier tube 2 is guided to a waveform analyzer 3, which outputs an output signal A indicating that scintillation emission has occurred in a shallow portion and an output signal B indicating that scintillation emission has occurred in a deep portion. These are sent to the coincidence counting circuit 4. For example, the positron disappears at point P, and two γ-rays are emitted in 180° different directions as shown by the solid line, one of which penetrates one or more adjacent scintillators 1 diagonally, and a certain scintillator 1. Suppose that scintillation occurs in a deep part. In this case, light emission will occur in the BGO 12, which is a deep scintillator layer. Incidentally, the attenuation characteristics regarding scintillation light emission of G5011 and BGO12 are greatly different as shown by curves a and b in FIG. 2. Therefore, by determining the waveform of the output pulse of the photomultiplier tube 2 with the waveform analyzer 3,
When scintillation occurs in the shallow layer GSoll, output A can be generated, and when scintillation occurs in the deep layer BGO 12, output B can be generated. Therefore, in this embodiment, by performing coincidence counting between the output A of one waveform analyzer 3 and the output B of the other waveform analyzer 3, the point P where the positron actually disappears is close to the solid line on which the point P is located. Simultaneous counting can be performed assuming that the positron vanishing point is on a straight line, and deterioration in spatial resolution can be suppressed. In addition, although the case where one photomultiplier tube 2 is optically coupled to one scintillator 1 has been described above, the case is not limited to this. Even when the tubes 2 are combined by the light guide 5 to form one radiation detection unit, the scintillator 1 is divided into a shallow layer scintillator 11 and a deep layer scintillator 12, each having different scintillation attenuation characteristics.
It can be applied by forming it with. in this case,
The above two-layer scintillator 1 is placed in the direction of the radiation incident surface.
16 scintillators are arranged optically separated from each other, and 4 photomultiplier tubes 2 are connected to these, and which scintillator 1
Discrimination of the position in the direction of the incident surface where light emission occurs is determined from the ratio of the output magnitudes of the respective photomultiplier tubes 2 using Anger's method. Information in the depth direction is obtained by waveform discrimination of the output pulse waveform of the photomultiplier tube 2. Of course, when forming one radiation detection unit by coupling a plurality of scintillators and a plurality of photomultiplier tubes with a light guide in this way, a configuration other than that shown in FIG. 3 may be used. Furthermore, in both Figures 1 and 3 above, the scintillator is made of two layers in the depth direction, but if the pulse waveforms are different,
It can also have three or more layers.

【発明の効果】【Effect of the invention】

この発明のシンチレーション検出器によれば、簡単な構
成で深さ方向の情報を得ることができ、特にリング型E
CT装置の放射線検出器として用いた場合、視野周辺で
の空間分解能の劣化を軽減できる。
According to the scintillation detector of the present invention, information in the depth direction can be obtained with a simple configuration, and in particular, ring type E
When used as a radiation detector in a CT device, it is possible to reduce deterioration of spatial resolution around the field of view.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の模式図、第2図は各シン
チレータの減衰特性を示すグラフ、第3図は他の実施例
の模式図、第4図は従来例の模式図、第5図は従来にお
ける空間分解能の特性を示すグラフである。 1・・・シンチレータ、11・・・G50112・・・
BG○、19・・・反射材、2・・・光電子増倍管、3
・・・波形分析器、4・・・同時計数回路、5・・・ラ
イトガイド。
FIG. 1 is a schematic diagram of one embodiment of the present invention, FIG. 2 is a graph showing the attenuation characteristics of each scintillator, FIG. 3 is a schematic diagram of another embodiment, FIG. 4 is a schematic diagram of a conventional example, and FIG. FIG. 5 is a graph showing the characteristics of conventional spatial resolution. 1...Scintillator, 11...G50112...
BG○, 19... Reflective material, 2... Photomultiplier tube, 3
... Waveform analyzer, 4... Coincidence circuit, 5... Light guide.

Claims (1)

【特許請求の範囲】[Claims] (1)深さ方向に少なくとも2層に並べられた、それぞ
れシンチレーション減衰特性の異なるシンチレータと、
該シンチレータに光結合された光電子増倍管と、該光電
子増倍管の出力に接続された波形分析器とからなるシン
チレーション検出器。
(1) scintillators arranged in at least two layers in the depth direction, each having different scintillation attenuation characteristics;
A scintillation detector comprising a photomultiplier tube optically coupled to the scintillator and a waveform analyzer connected to the output of the photomultiplier tube.
JP62299145A 1987-11-27 1987-11-27 Positron ring type ECT device Expired - Fee Related JP2560355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62299145A JP2560355B2 (en) 1987-11-27 1987-11-27 Positron ring type ECT device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62299145A JP2560355B2 (en) 1987-11-27 1987-11-27 Positron ring type ECT device

Publications (2)

Publication Number Publication Date
JPH01141389A true JPH01141389A (en) 1989-06-02
JP2560355B2 JP2560355B2 (en) 1996-12-04

Family

ID=17868708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62299145A Expired - Fee Related JP2560355B2 (en) 1987-11-27 1987-11-27 Positron ring type ECT device

Country Status (1)

Country Link
JP (1) JP2560355B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998035242A1 (en) * 1997-02-10 1998-08-13 The University Of Alberta, Simon Fraser University, The University Of Victoria, And The University Of British Columbia, Doing Business As Triumf Segmented scintillation detector for photon interaction coordinates
JP2016017851A (en) * 2014-07-08 2016-02-01 株式会社島津製作所 Radiographic imaging apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55143580U (en) * 1979-03-31 1980-10-15
JPS59230180A (en) * 1983-03-31 1984-12-24 アトミツク エナジ− オグ カナダ リミテツド Detector for position for ionizing radiation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55143580U (en) * 1979-03-31 1980-10-15
JPS59230180A (en) * 1983-03-31 1984-12-24 アトミツク エナジ− オグ カナダ リミテツド Detector for position for ionizing radiation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998035242A1 (en) * 1997-02-10 1998-08-13 The University Of Alberta, Simon Fraser University, The University Of Victoria, And The University Of British Columbia, Doing Business As Triumf Segmented scintillation detector for photon interaction coordinates
JP2016017851A (en) * 2014-07-08 2016-02-01 株式会社島津製作所 Radiographic imaging apparatus

Also Published As

Publication number Publication date
JP2560355B2 (en) 1996-12-04

Similar Documents

Publication Publication Date Title
US5319204A (en) Positron emission tomography camera with quadrant-sharing photomultipliers and cross-coupled scintillating crystals
US4831263A (en) Position-sensitive radiation detector
JP5011590B2 (en) Radiation position detector
JPH0214666B2 (en)
JP4803565B2 (en) DOI type radiation detector
JPS6295483A (en) Positron radiation tomographic radiation camera
JP2000056023A (en) Pet detector capable of providing depth directional information
WO1991007673A3 (en) High resolution gamma ray detectors for positron emission tomography (pet) and single photon emission computed tomography (spect)
JPH0575990B2 (en)
JP2004532997A (en) PET scanner
WO2018223917A1 (en) Detector and emission imaging device having same
JP2006524327A (en) Detector element for spatially resolved detection of gamma rays
US7088901B2 (en) Light guide apparatus and method for a detector array
JPH04290983A (en) Scintillator block for radiation sensor
US5334839A (en) Position sensitive radiation detector
CN109490937B (en) Radiation position detection method, radiation position detector, and PET apparatus
US6462341B1 (en) Pixelated scintillation detector
JP2003021682A (en) Radiation three-dimensional position detector
JP3220239B2 (en) Radiation detector
CN108226988A (en) Radioactive ray method for detecting position, radioactive rays position detector and PET device
JPH01141389A (en) Scintillation detector
JPH0544991B2 (en)
JP2003240857A (en) Radiation detector
JPH07104072A (en) Ect device
JPH0524068Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees