JPH01141175A - Power steering - Google Patents

Power steering

Info

Publication number
JPH01141175A
JPH01141175A JP62299592A JP29959287A JPH01141175A JP H01141175 A JPH01141175 A JP H01141175A JP 62299592 A JP62299592 A JP 62299592A JP 29959287 A JP29959287 A JP 29959287A JP H01141175 A JPH01141175 A JP H01141175A
Authority
JP
Japan
Prior art keywords
pressure
control valve
oil
valve body
steering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62299592A
Other languages
Japanese (ja)
Inventor
Masahiko Noguchi
昌彦 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP62299592A priority Critical patent/JPH01141175A/en
Publication of JPH01141175A publication Critical patent/JPH01141175A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the extent of rectilinear safety at the time of high speed traveling by installing a flow regulating valve with a valve body, which moves according to a pressure differential equivalent to the discharge and force of a spring with a nonlinear spring characteristic, at the discharge side of a hydraulic pump feeding a power cylinder with pressure oil. CONSTITUTION:A power steering is provided with a directional control valve 2 which selects the feeding direction of pressure oil out of a hydraulic pump P to a steering auxiliary hydraulic cylinder according to a steering torque and a steering direction at the time when performing its steering operation. In this case, a flow control valve 1 is installed in a front stage of the directional control valve 2 in a discharge passage 4 of the hydraulic pump P. This flow control valve 1 is provided with a valve body 12 which is moved according to a pressure differential equivalent to discharge of the hydraulic pump P at both upper and down streams of a contracted diametral part 14a, and an energizing force of a spring 15 being added to the reverse direction to the acting direction of this pressure differential pressure, and it is constituted to discharge the excessive oil from a discharge port 11b according to movement of this valve body 12. As for the spring 15, such one that has a characteristic for producing a nonlinear displacement to the load is used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は操舵補助用の油圧シリンダへの圧油の送給方向
を舵輪の操作方向に応じて切換える油圧制御弁と、該油
圧制御弁の切換え動作を拘束する拘束装置を備えた油圧
式の動力舵取装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a hydraulic control valve that switches the supply direction of pressure oil to a hydraulic cylinder for steering assistance according to the operating direction of a steering wheel, and The present invention relates to a hydraulic power steering device equipped with a restraint device that restrains switching operations.

〔従来技術〕[Prior art]

油圧式の動力舵取装置は、舵取機構中に配設した油圧シ
リンダにより操舵補助力を発生せしめ、舵輪操作に要す
る力の軽減を図るものであり、該油圧シリンダの両袖室
と、エンジンにより駆動される油圧ポンプとを、舵輪の
回動操作に応じて油路の切換えを行う回転式の方向制御
弁を介して連結した構成となっている。
A hydraulic power steering device uses a hydraulic cylinder installed in the steering mechanism to generate steering assist force to reduce the force required to operate the steering wheel. The hydraulic pump driven by the steering wheel is connected via a rotary directional control valve that switches the oil passage in response to rotation of the steering wheel.

この方向制御弁は、舵輪に連動して回動する入力軸と、
舵取機構に連動して軸心回りに回動する出力軸とをトー
ションバーを介して同軸上に連結すると共に、入力軸の
連結側端部を、その外周面に軸長方向に延びる長溝を複
数本等配に形成して弁体となす一方、出力軸の連結側端
部に、内周面に前記長溝と同木数の長溝を等配に形成し
てなる円筒状のケーシングを同軸をなして固着し、該ケ
ーシングに前記弁体を回動自在に内嵌せしめて構成され
、舵輪操作に伴い前記トーションバーに生じる捩れに応
じて、弁体とケーシングとの間に相対角変位を生ぜしめ
るべくなし、ケーシングの長溝を、前記油圧シリンダの
両油室に交互に連通させ、また弁体の長溝を、高圧源で
ある前記油圧ポンプと低圧に維持された油タンクとに交
互に連通させである。
This directional control valve has an input shaft that rotates in conjunction with the steering wheel,
The output shaft, which rotates around the axis in conjunction with the steering mechanism, is coaxially connected via a torsion bar, and the connecting end of the input shaft is provided with a long groove extending in the axial direction on its outer peripheral surface. A plurality of grooves are formed equally spaced to form a valve body, while a cylindrical casing having long grooves of the same number of trees as the aforementioned long grooves formed equally spaced on the inner peripheral surface is attached to the connecting end of the output shaft. The valve body is rotatably fitted into the casing, and a relative angular displacement is generated between the valve body and the casing in response to the torsion generated in the torsion bar as the steering wheel is operated. The long grooves of the casing are alternately communicated with both oil chambers of the hydraulic cylinder, and the long grooves of the valve body are alternately communicated with the hydraulic pump, which is a high pressure source, and an oil tank maintained at a low pressure. It is.

而して、舵輪が一方向に回動操作され、弁体とケーシン
グとの間に前述の如く相対角変位が生じた場合、油圧ポ
ンプに連通ずる弁体の長溝と、周方向両側にこれに相隣
するケーシングの長溝との間の間隙の面積が、前記相対
角変位に応じて一方は増大し他方は減少することになり
、面積が増大した間隙側のケーシングの長溝内の圧力と
、面積が減少した側のそれとの間に差異が生じる結果、
前記油圧シリンダが、この圧力差に対応する操舵補助力
を発生する。
Therefore, when the steering wheel is rotated in one direction and a relative angular displacement occurs between the valve body and the casing as described above, the long groove of the valve body communicating with the hydraulic pump and the circumferentially both sides thereof The area of the gap between the long grooves of adjacent casings increases on one side and decreases on the other according to the relative angular displacement, and the pressure in the long groove of the casing on the side of the gap where the area has increased and the area As a result, there is a difference between the side where the
The hydraulic cylinder generates a steering assist force corresponding to this pressure difference.

さて、舵輪操作に要する力は車速に応して異なり、低速
走行時及び停止時においては、舵輪操作に大きい操作力
が必要である一方、高速走行時においては、小さい操作
力により舵輪操作を行うことができる。従って動力舵取
装置においては、低速走行時及び停止時には、運転者の
労力負担を低減せしめるべく、操舵補助用の油圧シリン
ダに可及的に大きい操舵補助力を生せしめる特性が要求
される一方、高速走行時に低速走行時及び停止時と同様
の操舵補助力を生ぜしめた場合、直進状態にあるときに
、舵輪に加えられるわずかな操作力により舵取りがなさ
れ、直進安定性の悪化を招来するため、高速走行時には
、舵輪に適度の剛性を付与せしめるべく、前記油圧シリ
ンダに操舵補助力を殆ど生ぜしめない特性が要求される
。これらの相反する両特性を実現する動力舵取装置とし
て、特開昭61−200063号公報に開示されている
動力舵取装置がある。
Now, the force required to operate the steering wheel varies depending on the vehicle speed, and while driving at low speeds and when stopped, a large operating force is required to operate the steering wheel, while when driving at high speeds, a small operating force is required to operate the steering wheel. be able to. Therefore, in a power steering system, in order to reduce the driver's labor burden when driving at low speeds and when stopping, the hydraulic cylinder for steering assistance is required to have characteristics that allow it to generate as large a steering assistance force as possible. If the same steering assist force is generated when driving at high speeds as when driving at low speeds or when stopped, steering will be performed with a small amount of operational force applied to the steering wheel when the vehicle is traveling straight, resulting in a deterioration of straight-line stability. When traveling at high speeds, the hydraulic cylinder is required to have a property of generating almost no steering assist force in order to impart appropriate rigidity to the steering wheel. As a power steering device that realizes these contradictory characteristics, there is a power steering device disclosed in Japanese Patent Application Laid-Open No. 61-200063.

この動力舵取装置は、高速走行時等、大きい操舵補助力
が不要な操舵状況にある場合に、前記弁体とケーシング
との間の相対角変位、換言すれば前記人力軸と出力軸と
の間の相対角変位を拘束することにより、方向制御弁に
おける油路の切換え動作を拘束する拘束装置を備えたも
のであり、この拘束装置は、入力軸の連結側端部を前記
弁体の形成部から更に延長すると共に、出力軸の連結側
端部を円筒状に成形し、この円筒部に入力軸の前記延長
部を内嵌せしめる一方、該円筒部にこれを半径方向に貫
通する態様にて形成された複数個の円孔の夫々に、該円
孔の軸長方向に摺動自在にプランジャを内嵌せしめ、更
に、前記円孔を相互に連通ずる態様にて前記円筒部の外
周に形成された環状油室内に、操舵状況に応じた圧力を
有する圧油を導入し、この圧油による押圧力により、前
記プランジャの先端を入力軸の延長部の外周面に押し付
け、出力軸と入力軸との相対角変位を拘束する構成とな
っており、前記環状油室には、前記油圧ポンプから方向
制御弁への油路を分岐し、可変絞りと固定絞りとをこの
順に通過して油タンクに至るようになした分岐油路中に
おける前記両絞り間の圧力が導かれている。
In this power steering device, when in a steering situation where a large steering assist force is not required, such as when driving at high speed, the relative angular displacement between the valve body and the casing, in other words, the relative angular displacement between the human power shaft and the output shaft. The device is equipped with a restraint device that restrains the switching operation of the oil passage in the directional control valve by restraining the relative angular displacement between the valve body and the connecting end of the input shaft. The connecting end of the output shaft is formed into a cylindrical shape, and the extended portion of the input shaft is fitted into the cylindrical portion, and the cylindrical portion is radially penetrated through the cylindrical portion. A plunger is fitted into each of the plurality of circular holes so as to be slidable in the axial direction of the circular hole, and a plunger is fitted around the outer periphery of the cylindrical portion in such a manner that the circular holes communicate with each other. Pressure oil having a pressure according to the steering situation is introduced into the formed annular oil chamber, and the pressing force of this pressure oil presses the tip of the plunger against the outer peripheral surface of the extension of the input shaft, thereby connecting the output shaft and the input shaft. It is configured to restrict relative angular displacement with the shaft, and an oil path from the hydraulic pump to the directional control valve is branched into the annular oil chamber, passing through a variable orifice and a fixed orifice in this order. The pressure between the two throttles is guided in the branched oil path leading to the tank.

該環状油室の圧力、換言すれば拘束装置が発生する拘束
力は、前記可変絞りの開度を、車速、操舵角度等の操舵
状況を示す物理量の検出結果に基づいて自動調節し、該
可変絞りと前記固定絞り間の圧力を変更して調整される
。例えば、検出重連の大小に応じて前記可変絞りの開度
を増減せしめた場合、可変絞りと固定絞り間の圧力は、
車速の大小に応じて高低となり、前記拘束装置が発生す
る前記拘束力は、車速の大小に応じて大小となる結果、
高速走行時には、大きい拘束力が得られ、この拘束力に
相当する剛性が舵輪に付与され、直進安定性の向上が図
れる一方、低速走行時には、方向制御弁の切換え動作が
殆ど拘束されず、小さい操作力にて弁体とケーシングと
の相対角変位が生せしめることができ、大きい操舵補助
力が得られるのである。
The pressure in the annular oil chamber, in other words, the restraint force generated by the restraint device, is determined by automatically adjusting the opening degree of the variable throttle based on the detection results of physical quantities indicative of steering conditions such as vehicle speed and steering angle. It is adjusted by changing the pressure between the throttle and the fixed throttle. For example, when the opening degree of the variable throttle is increased or decreased depending on the size of the detection chain, the pressure between the variable throttle and the fixed throttle is
The restraint force generated by the restraint device increases or decreases depending on the vehicle speed, and as a result, the restraint force generated by the restraint device increases or decreases depending on the vehicle speed.
When driving at high speeds, a large restraining force is obtained, and stiffness corresponding to this restraining force is imparted to the steering wheel, improving straight-line stability. On the other hand, when driving at low speeds, the switching operation of the directional control valve is hardly restrained and is small. The operating force can cause a relative angular displacement between the valve body and the casing, and a large steering assist force can be obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

さて前記拘束装置は、前述した如く、直進安定性の向上
のため、舵輪に剛性を付与することを目的としており、
高速での直進走行中に最大の拘束力の発生が要求される
。ところが前述の構成の従来の動力舵取装置においては
、前記拘束力に寄与する前記環状油室内の圧力、即ち前
記分岐油路中途の可変絞りと固定絞りとの間の圧力は、
可変絞りの開度と、前記分岐油路の分岐点上流側の圧力
とにより定まる一方、この分岐点上流側の圧力は、方向
制御弁に連なる側の油路の抵抗に応じて定まり、この抵
抗は主として前記方向制御弁内部の通流抵抗であるため
、方向制御弁の弁体とケーシングとの相対変位が生じて
いない直進走行時には、分岐点上流側に高い圧力が生じ
ず、環状油室内に高い圧力が導入されない結果、拘束装
置が大きい拘束力を発生できず、十分な剛性を舵輪に付
与できないという難点があった。
As mentioned above, the purpose of the restraint device is to provide rigidity to the steering wheel in order to improve straight-line stability.
Maximum restraint force generation is required during straight-line driving at high speeds. However, in the conventional power steering device configured as described above, the pressure within the annular oil chamber that contributes to the restraining force, that is, the pressure between the variable throttle and the fixed throttle in the middle of the branch oil path, is
While it is determined by the opening degree of the variable throttle and the pressure upstream of the branch point of the branch oil passage, the pressure upstream of this branch point is determined according to the resistance of the oil passage on the side connected to the directional control valve, and this resistance is mainly the flow resistance inside the directional control valve, so when driving straight ahead when there is no relative displacement between the valve body and the casing of the directional control valve, high pressure does not occur upstream of the branch point and there is no pressure inside the annular oil chamber. As a result of not introducing high pressure, the restraint device cannot generate a large restraint force and cannot provide sufficient rigidity to the steering wheel.

この難点は、前記油圧ポンプに十分大きり容量のものを
用いるか、又は前記特開昭61−200063号公報に
開示されている如く、拘束装置への油圧送給専用の他の
油圧ポンプを設けることにより解消できるが、このよう
にした場合、油圧ポンプの消費馬力が増大し、これに起
因してエンジンの燃料消費量が増大すると共に、油圧ポ
ンプにおける発生熱量の増大、及び発生騒音の増大とい
う新たな問題点が生じる。
This difficulty can be solved by using a sufficiently large capacity hydraulic pump, or by providing another hydraulic pump exclusively for supplying hydraulic pressure to the restraint device, as disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 61-200063. However, in this case, the horsepower consumption of the hydraulic pump increases, which increases the fuel consumption of the engine, and also increases the amount of heat generated by the hydraulic pump and increases the noise generated. A new problem arises.

本発明は斯かる事情に鑑みてなされたものであり、エン
ジンの燃料消費量、並びに油圧ポンプにおける発生熱量
及び発生騒音の増大を招来することなく、高速での直進
走行時に舵輪に十分な剛性を付与せしめることができ、
直進安定性の向上が図れる動力舵取装置を提供すること
を目的とする。
The present invention was made in view of the above circumstances, and provides sufficient rigidity to the steering wheel when traveling straight at high speed without increasing the fuel consumption of the engine, the amount of heat generated by the hydraulic pump, and the noise generated. can be granted,
An object of the present invention is to provide a power steering device that can improve straight-line stability.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る動力舵取装置は、エンジンにて駆動される
。油圧ポンプからの圧油の掻舵補助用油圧シリンダへの
送給方向を、舵輪の操作方向に応じて切換える方向制御
弁を備えると共に、前記油圧ポンプから操舵状況に応じ
て減圧されて送給される圧油の圧力に応じた力にて、前
記方向制御弁の切換え動作を拘束する拘束装置を備えた
動力舵取装置において、前記油圧ポンプの吐出側に流量
制御弁が設けてあり、該流量制御弁が、前記油圧ポンプ
の吐出量に相当する圧力差と、該圧力差の作用方向と逆
方向に加えられ、荷重に対して非線形な変位を生じるば
ねの付勢力とに応じて移動する弁体と、該弁体の移動に
応じて開口面積が変化する余剰油の排出孔とを具備する
ことを特徴とする。
The power steering device according to the present invention is driven by an engine. A direction control valve is provided for switching the direction of supply of pressure oil from the hydraulic pump to the steering assist hydraulic cylinder in accordance with the operating direction of the steering wheel, and the hydraulic oil is supplied from the hydraulic pump with reduced pressure depending on the steering condition. In the power steering device, the power steering device is equipped with a restraining device that restrains the switching operation of the directional control valve with a force corresponding to the pressure of the pressure oil. A control valve that moves in response to a pressure difference corresponding to the discharge amount of the hydraulic pump and a biasing force of a spring that is applied in a direction opposite to the acting direction of the pressure difference and causes a nonlinear displacement with respect to the load. The valve body is characterized by comprising a body and an excess oil discharge hole whose opening area changes according to the movement of the valve body.

〔作用〕[Effect]

本発明においては、エンジンにて駆動される油圧ポンプ
の吐出油は、前記流量制御弁の弁体の移動に応じて前記
排出孔と拘束装置及び方向制御弁とに分岐されて供給さ
れ、しかも、前記弁体が前記ばねの付勢力により非線形
な移動態様を示し、拘束装置及び方向制御弁側への圧油
送給量が、車速か高速となった場合に多くなり、これに
伴い、゛拘束装置において利用し得る最高の油圧が、車
速か高速である場合に高(なる。
In the present invention, the discharge oil of the hydraulic pump driven by the engine is branched and supplied to the discharge hole, the restraint device, and the direction control valve according to the movement of the valve body of the flow control valve, and further, The valve body exhibits a non-linear movement mode due to the biasing force of the spring, and the amount of pressure oil supplied to the restraint device and the directional control valve increases when the vehicle speed is high. The highest oil pressure available in the device is high when the vehicle speed is high.

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面に基づいて詳述する
。第1図は本発明に係る動力舵取装置の構成を、拘束装
置及び方向制御弁の縦断面図、並びに本発明の特徴たる
流量制御弁の縦断面図と共に示す模式図である。
The present invention will be described in detail below based on drawings showing embodiments thereof. FIG. 1 is a schematic diagram showing the configuration of a power steering device according to the present invention, together with a longitudinal cross-sectional view of a restraint device and a direction control valve, and a longitudinal cross-sectional view of a flow control valve that is a feature of the present invention.

本発明に係る動力舵取装置は、図示しないエンジンにて
駆動される油圧ポンプP、舵取機構中に構成された操舵
補助用の油圧シリンダS、前記油圧ポンプPの吐出側に
配設され、該ポンプPの吐出量を制御する流量制御弁l
、前記油圧シリンダSへの圧油の送給方向を、図示しな
い舵輪の操作方向に応じて切換える方向制御弁2、及び
該方向制御弁2に並設され、これの切換え動作を拘束す
る拘束装置3等にて構成されている。油圧ポンプPの吐
出油路4は、前記流量制御弁lを経て、第1の油路41
と第2の油路42との2本の油路に分岐され、第1の油
路41は、固定絞り5を介して前記方向制御弁2の圧油
導入孔22に連結してあり、第2の油路42は、可変絞
り6及び固定絞り7を介して前記油タンクTに連通させ
である。
The power steering device according to the present invention includes a hydraulic pump P driven by an engine (not shown), a hydraulic cylinder S for steering assistance configured in the steering mechanism, and disposed on the discharge side of the hydraulic pump P, A flow rate control valve l that controls the discharge amount of the pump P
, a direction control valve 2 that switches the feeding direction of pressure oil to the hydraulic cylinder S in accordance with the operating direction of a steering wheel (not shown), and a restraint device that is installed in parallel with the direction control valve 2 and restrains the switching operation thereof. It is composed of 3 etc. The discharge oil passage 4 of the hydraulic pump P passes through the flow rate control valve l and is connected to the first oil passage 41.
The first oil passage 41 is connected to the pressure oil introduction hole 22 of the directional control valve 2 via the fixed throttle 5. The second oil passage 42 communicates with the oil tank T via a variable throttle 6 and a fixed throttle 7.

方向制御弁2は、特開昭61−200063号公報に開
示されているものと同様であり、筒状をなすハウジング
80内に共に同軸回動自在に支承され、トーションバー
81を介して連結された入力軸8と出力軸9との連結部
に構成されている。前記入力軸8は、ハウジング80か
らの突出端部を図示しない舵輪に連結され、舵輪の回動
に伴って回動する中空軸であり、また前記出力軸9は、
その中途部外周に形成されたピニオン90を舵取機構中
のラック軸91に係合させ、該ランク軸91の軸長方向
への移動に伴って回動し、前記入力軸8との連結側を円
筒状に成形してなる中実軸である。
The directional control valve 2 is similar to that disclosed in Japanese Patent Application Laid-Open No. 61-200063, and is coaxially rotatably supported within a cylindrical housing 80 and connected via a torsion bar 81. The input shaft 8 and the output shaft 9 are connected to each other. The input shaft 8 is a hollow shaft whose protruding end from the housing 80 is connected to a steering wheel (not shown), and rotates as the steering wheel rotates.
A pinion 90 formed on the outer periphery of the middle part is engaged with a rack shaft 91 in the steering mechanism, rotates as the rank shaft 91 moves in the axial direction, and connects to the input shaft 8. It is a solid shaft formed by molding into a cylindrical shape.

方向制御弁2の弁体20は、前記入力軸8の中途部外周
面に、軸長方向に延びる複数本の長溝20a。
The valve body 20 of the directional control valve 2 has a plurality of long grooves 20a extending in the axial direction on the outer circumferential surface of the input shaft 8 in the middle.

20a・・・を周方向に等配をなして形成して構成され
ており、また方向制御弁2のケーシング21は、前記長
溝20a、20a・・・と同本数の軸長方向に延びる長
溝21a、 21a・・・をその内周面に周方向に等配
をなして形成してあり、また3本の環状溝21b、21
b、21bをその外周面に形成しである円筒状の部材で
あり、ハウジング80に回動自在に内嵌され、前記出力
軸9の連結側端部に固定ビン21cにて回動を拘束して
取付けである。そして方向制御弁2は、前記長溝20a
 、 20a・・・と長溝21a、21a・・・とが交
互に位置し、相隣するものが周方向に微小な間隙を介し
て連通ずるように位置決めし、前記弁体20をケーシン
グ21に内嵌させて構成されており、舵輪操作に伴い前
記トーションバー81に生じる捩れに応じて、舵輪に回
動を拘束された弁体20と、ラック軸91に回動を拘束
されたケーシング21との間に相対角変位が生ぜしめる
べくなしである。
20a... are formed equally spaced in the circumferential direction, and the casing 21 of the directional control valve 2 has the same number of long grooves 21a extending in the axial direction as the long grooves 20a, 20a... , 21a... are formed on the inner peripheral surface thereof at equal intervals in the circumferential direction, and three annular grooves 21b, 21
b, 21b are formed on its outer peripheral surface, and is rotatably fitted into the housing 80, and its rotation is restrained by a fixing pin 21c at the connecting end of the output shaft 9. It is installed by hand. The direction control valve 2 has the long groove 20a.
, 20a... and long grooves 21a, 21a... are positioned alternately so that adjacent ones communicate with each other through a small gap in the circumferential direction, and the valve body 20 is inserted into the casing 21. The valve body 20 whose rotation is restrained by the steering wheel and the casing 21 whose rotation is restrained by the rack shaft 91 correspond to the torsion generated in the torsion bar 81 as the steering wheel is operated. There should be no relative angular displacement between them.

このように構成された方向制御弁2においては、ケーシ
ング21の前記長?n 21a、21a・・・と弁体2
0の外周面との間に、これらに囲繞され、周方向に等配
をなす複数の空間が形成され、また弁体20の前記長溝
20a 、 20a・・・とケーシング21の内周面と
の間にも同様の空間が形成される。前者の空間は、ケー
シング21を半径方向に貫通する連通路を介して3本の
前記環状溝21b、21b、21bの内、軸長方向両側
の環状溝21b、 21bに交互に連通されており、後
者の空間は、1つ置きに位置するこれらの半数が、前記
連通路と同様に形成された連通路を介して中央の環状溝
21bに連通され、残りの半数が、弁体20を半径方向
に貫通する連通路を介して入力軸8の中空部に連通され
ている。一方、中央の環状溝21bは、ハウジング80
の外側に開口して形成された油導入孔22を介して、前
記第1の油路41に接続されており、両側の環状溝21
b、21bは、ハウジング80の外側に開口する油導出
孔23.24を介して、前記油圧シリンダSの両油室に
夫々接続させである。またハウジング80には、前記油
タンクTに接続された油排出孔25も形成されており、
核油排出孔25は、ハウジング80内において、入力軸
8の前記中空部に連通させである。
In the directional control valve 2 configured in this way, the length of the casing 21 is set as above. n 21a, 21a... and valve body 2
A plurality of spaces are formed between the long grooves 20a, 20a, . A similar space is also formed in between. The former space is alternately communicated with the annular grooves 21b, 21b on both sides in the axial direction of the three annular grooves 21b, 21b, 21b through communication passages passing through the casing 21 in the radial direction, Half of the latter spaces, which are located every other space, are communicated with the central annular groove 21b via communication passages formed similarly to the communication passages, and the remaining half are arranged so that the valve body 20 is radially connected to the annular groove 21b. The input shaft 8 is communicated with the hollow portion of the input shaft 8 via a communication path penetrating through the input shaft 8 . On the other hand, the central annular groove 21b
The first oil passage 41 is connected to the first oil passage 41 through an oil introduction hole 22 that is opened to the outside of the annular groove 21 on both sides.
b and 21b are connected to both oil chambers of the hydraulic cylinder S through oil outlet holes 23 and 24 opened to the outside of the housing 80, respectively. The housing 80 also has an oil discharge hole 25 connected to the oil tank T.
The kernel oil discharge hole 25 communicates with the hollow portion of the input shaft 8 within the housing 80 .

而して、油圧ポンプPからの圧油は、吐出油路4及び第
1の油路41を通流し、油導入孔22及び中央の環状溝
21bを介して弁体20の長溝20a内に4人され、更
に、該長溝20a両側の前記間隙を通過し、これに相隣
するケーシング21の長溝21a、21a内に導入され
る。舵輪に操作力が加えられておらず、弁体20とケー
シング21との間に相対角変位が生じていない場合、前
記長溝20a両側の間隙面積は等しく、これに相隣する
前記長溝21 a * 21 a間には圧力差が生じな
いから、これらの長溝21a、21a内に導入された圧
油は、前記長溝20aと反対側にこれに相隣する長溝2
0a 、 20a内に流入し、更に入力軸8の中空部を
通過して、前記油排出孔25を介して油タンクTに還流
し、油圧シリンダSの両袖室間に圧力差が発生せず、該
シリンダSは操舵補助力を発生しない。これは直進走行
状態である。
Pressure oil from the hydraulic pump P flows through the discharge oil passage 4 and the first oil passage 41, and enters the long groove 20a of the valve body 20 through the oil introduction hole 22 and the central annular groove 21b. Then, it passes through the gaps on both sides of the long groove 20a, and is introduced into the long grooves 21a, 21a of the casing 21 adjacent thereto. When no operating force is applied to the steering wheel and no relative angular displacement occurs between the valve body 20 and the casing 21, the gap areas on both sides of the long groove 20a are equal, and the adjacent long groove 21 a * Since no pressure difference occurs between the long grooves 21a, the pressure oil introduced into the long grooves 21a, 21a is transferred to the adjacent long groove 2 on the opposite side from the long groove 20a.
0a, 20a, further passes through the hollow part of the input shaft 8, and returns to the oil tank T through the oil discharge hole 25, so that no pressure difference is generated between both arm chambers of the hydraulic cylinder S. , the cylinder S does not generate any steering assist force. This is a straight-ahead running condition.

一方、舵取りを行わしめるべく舵輪に操作力が加えられ
た場合、これに伴うトーションバー81の捩れに応じて
、弁体20とケーシング21との間に相対角変位が生じ
、油圧ポンプPからの圧油が導入される前記長溝20a
の両側の間隙面積は、一方が増加し、他方が減少する結
果、面積が増加した側に前記長溝20aに相隣する長溝
21a内の圧力が、他側に相隣する長溝21a内の圧力
よりも大となり、前記油導出孔23.24を夫々介して
、これらの長溝21a、21aに夫々連通する油圧シリ
ンダSの両袖室間に圧力差が生じ、この圧力差に応じた
該シリンダSの動作により、前記舵輪の操作方向に対応
する方向の操舵補助力が得られるのである。
On the other hand, when an operating force is applied to the steering wheel to perform steering, a relative angular displacement occurs between the valve body 20 and the casing 21 in accordance with the accompanying twisting of the torsion bar 81. The long groove 20a into which pressure oil is introduced
The gap area on both sides increases on one side and decreases on the other. As a result, the pressure in the long groove 21a adjacent to the long groove 20a on the side where the area increased is higher than the pressure in the long groove 21a adjacent to the other side. Also, a pressure difference is created between both sleeve chambers of the hydraulic cylinder S which communicates with these long grooves 21a and 21a through the oil outlet holes 23 and 24, respectively, and the pressure of the cylinder S is increased according to this pressure difference. The operation provides a steering assist force in a direction corresponding to the operating direction of the steering wheel.

また拘束装置3は、第1図及びこれの■−■線による拡
大断面図である第2図に示す如く、出力軸9の円筒状に
成形された部分に、周方向に等配をなし、半径方向に貫
通する態様にて形成された4個の挿通孔30,30・・
・の夫々に、短寸円柱状をなすプランジャ31.31・
・・を軸長方向に摺動自在に嵌装する一方、該プランジ
ャ31.31・・・の装着位置と軸長方向に一致する部
分の入力軸8の外周に、各プランジャ31.31・・・
の半球形をなす内側端部に整合する半円形の軸断面形状
を有して、4個所の凹部32,32・・・を等配に形成
して構成されたものである。前記挿通孔30.30・・
・の夫々は、出力軸9の外周に形成された環状油室33
により相互に連通させてあり、該環状油室33には、ハ
ウジング80の外周に開口する油圧導入孔34から、前
記第2の油路42における可変絞り6と固定絞り7との
間の油圧が導入されている。
Further, as shown in FIG. 1 and FIG. 2, which is an enlarged sectional view taken along the line ■-■, the restraint device 3 is arranged equidistantly in the circumferential direction on the cylindrical portion of the output shaft 9. Four insertion holes 30, 30... formed in a manner that penetrates in the radial direction.
A short cylindrical plunger 31.31.
... are fitted so as to be slidable in the axial direction, and each plunger 31, 31... is fitted on the outer periphery of the input shaft 8 at a portion that matches the mounting position of the plunger 31, 31... in the axial direction.・
It has a semicircular axial cross-sectional shape that matches the inner end of the hemisphere, and is constructed by forming four concave portions 32, 32, . . . equally spaced. The insertion hole 30.30...
Each of the annular oil chambers 33 formed on the outer periphery of the output shaft 9
The annular oil chamber 33 receives hydraulic pressure between the variable throttle 6 and the fixed throttle 7 in the second oil passage 42 from a hydraulic pressure introduction hole 34 opened on the outer periphery of the housing 80. It has been introduced.

而してプランジャ31.31・・・は、油圧挿入孔34
から環状油室33内に導入された油圧を、その外側端面
に受け、各別の挿通孔30,30・・・に沿って、入力
軸8の軸心に向けて摺動し、夫々の先端部を入力軸8の
前記凹部に係合させて、入力軸8の出力軸9に対する相
対角変位、即ち方向制御弁2の弁体20のケーシング2
1に対する相対変位を拘束する。
Therefore, the plungers 31, 31... are inserted into the hydraulic insertion hole 34.
The oil pressure introduced into the annular oil chamber 33 is received by the outer end surface of the annular oil chamber 33, and it slides toward the axis of the input shaft 8 along the respective insertion holes 30, 30... is engaged with the recessed portion of the input shaft 8, thereby causing a relative angular displacement of the input shaft 8 with respect to the output shaft 9, that is, the casing 2 of the valve body 20 of the directional control valve 2.
Constrain relative displacement with respect to 1.

このように動作する拘束装置3が発生する拘束力の大小
は、環状油室33内の油圧の大小に対応し、この油圧の
大小は、前記可変絞り6における開度の大小に対応する
。可変絞り6の開度は、絞り制御部60からこれに与え
られる開閉信号に応じて自動調節されるようになしてあ
り、絞り制御部60は、図示しない車速センサからこれ
に入力される車速信号に応じて、車速か大である場合に
は開度を大きくし、車速か小である場合には開度を小さ
くするような前記開閉信号を発する。従って、前記拘束
装置3が発生する拘束力は、車速の大小に応じて大小と
なり、高速走行時に舵輪に操作力が加えられた場合、拘
束装置3が発生する大きい拘束力により弁体20とケー
シング21との間に相対角変位が生じないから、操舵補
助用の油圧シリンダSは操舵補助力を発生せず、入力軸
8の回転が、拘束装置3を介して出力軸9に直接的に伝
達され、更に出力軸9に形成されたピニオン90を介し
て、ランク軸91の軸長方向移動に変換されて舵取りが
なされることになり、舵輪に前記拘束力に相当する剛性
が付与される。
The magnitude of the restraint force generated by the restraint device 3 operating in this manner corresponds to the magnitude of the oil pressure in the annular oil chamber 33, and the magnitude of this oil pressure corresponds to the magnitude of the opening degree of the variable throttle 6. The opening degree of the variable diaphragm 6 is automatically adjusted according to an opening/closing signal given to it from a diaphragm control section 60, and the diaphragm control section 60 receives a vehicle speed signal input thereto from a vehicle speed sensor (not shown). Depending on the vehicle speed, the opening/closing signal is generated to increase the opening degree when the vehicle speed is high, and to decrease the opening degree when the vehicle speed is low. Therefore, the restraint force generated by the restraint device 3 increases or decreases depending on the vehicle speed, and when an operating force is applied to the steering wheel while driving at high speed, the large restraint force generated by the restraint device 3 causes the valve body 20 and the casing to 21, the hydraulic cylinder S for steering assistance does not generate any steering assistance force, and the rotation of the input shaft 8 is directly transmitted to the output shaft 9 via the restraint device 3. This is further converted into axial movement of the rank shaft 91 via a pinion 90 formed on the output shaft 9 for steering, and rigidity corresponding to the restraining force is imparted to the steered wheels.

このように動作する拘束装置3が発生し得る最大の拘束
力は、可変絞り6を全開した場合にこれと固定絞り7と
の間において得られる圧力に対応し、この圧力は、第1
の油路41と第2の油路42との分岐点における圧力に
対応する。従って、十分な拘束力を得るためには、前記
分岐点の圧力を高めることが要求され、これは、−第2
の油路42側の抵抗が一定であるから、油圧ポンプPの
吐出量を増加させることにより実現される。しかしなが
ら、無条件に油圧ポンプPの吐出量を増加させた場合、
該油圧ポンプPから送給される圧油により動作する前記
油圧シリンダSの動作速度が過大となり快適な操舵感覚
が得られなくなる虞があり、油圧ポンプPは、主として
油圧シリンダSの動作により舵取りが行われる間は一定
油量を吐出し、拘束装置3を介しての出力軸9の回転に
伴いビニオン90とラック軸91との間にてなされる運
動方向変換により、油圧シリンダSの動作によらず舵取
りがなされる場合に、十分に大きい油量を吐出すること
が要求される。
The maximum restraint force that can be generated by the restraint device 3 operating in this manner corresponds to the pressure obtained between the variable throttle 6 and the fixed throttle 7 when the variable throttle 6 is fully opened.
This corresponds to the pressure at the branch point between the oil passage 41 and the second oil passage 42 . Therefore, in order to obtain sufficient restraining force, it is required to increase the pressure at the branch point, which is
Since the resistance on the oil path 42 side is constant, this can be achieved by increasing the discharge amount of the hydraulic pump P. However, if the discharge amount of the hydraulic pump P is increased unconditionally,
There is a possibility that the operating speed of the hydraulic cylinder S, which is operated by pressure oil supplied from the hydraulic pump P, becomes excessive, and a comfortable steering feeling cannot be obtained. During this period, a constant amount of oil is discharged, and as the output shaft 9 rotates via the restraint device 3, the movement direction is changed between the binion 90 and the rack shaft 91, and the movement of the hydraulic cylinder S is controlled. When steering is performed, it is required to discharge a sufficiently large amount of oil.

本発明に係る動力舵取装置においては、油圧ポンプPの
吐出油路4の、前記分岐点よりも上流側に配設した前記
流量制御弁lにより、前述した如き吐出量特性を油圧ポ
ンプPに与える。この流量制御弁lは、第1図に示す如
く、円形の軸断面形状を有する弁孔11を、その軸心位
置に形成してなる有底筒状のケーシングlO1前記弁孔
11内に軸長方向に摺動自在に嵌装された弁体12、及
び弁孔11の開口部内周に螺合固定された蓋部材13等
から構成されている。
In the power steering device according to the present invention, the above-mentioned discharge amount characteristics are applied to the hydraulic pump P by the flow rate control valve l disposed on the upstream side of the branch point of the discharge oil passage 4 of the hydraulic pump P. give. As shown in FIG. 1, this flow control valve 1 consists of a bottomed cylindrical casing 1O1 having a valve hole 11 having a circular axial cross-sectional shape formed at its axial center position. The valve body 12 is comprised of a valve body 12 fitted so as to be slidable in a direction, a lid member 13 screwed and fixed to the inner periphery of the opening of the valve hole 11, and the like.

弁孔11の内周面には、2本の環状溝11a、 llb
が形成されており、開口部側に位置する環状溝11aは
油圧ポンプPに、また底部側に位置する環状溝11bは
油タンクTに夫々連通させである。また、蓋部材13は
、その軸心位置に、ケーシング10の内側部分に縮径部
14aを有する吐出孔14を形成して円筒状をなす部材
であり、前述の如く螺合固定された場合に、図示の如く
、その内側端面が、前記環状溝11aの開口部側の側壁
面と略整合するようになしである。而して、油圧ポンプ
Pからの圧油は、環状溝11aから弁孔11内に流入し
、前記縮径部14aを通過して吐出孔14内に流入し、
該吐出孔14に接続された前記吐出油路4に導入される
Two annular grooves 11a and llb are formed on the inner peripheral surface of the valve hole 11.
An annular groove 11a located on the opening side communicates with the hydraulic pump P, and an annular groove 11b located on the bottom side communicates with the oil tank T. Further, the lid member 13 is a cylindrical member with a discharge hole 14 having a reduced diameter portion 14a formed in the inner part of the casing 10 at its axial center position, and when screwed and fixed as described above. , as shown in the figure, its inner end surface is substantially aligned with the side wall surface on the opening side of the annular groove 11a. Thus, the pressure oil from the hydraulic pump P flows into the valve hole 11 from the annular groove 11a, passes through the diameter-reduced portion 14a, and flows into the discharge hole 14.
The oil is introduced into the discharge oil passage 4 connected to the discharge hole 14.

また前記弁体12は、ケーシング10の底部との間に介
装された圧縮ばね15により、蓋部材13に向けて押圧
力を加えられており、弁体12の蓋部材13側の端部に
は、前記吐出孔14のケーシング10内への開口径より
も大きい内径と、弁体12の他部の外径よりも十分率さ
い外径゛を有する薄肉の短寸円筒状をなし、周方向の複
数個所に切欠部16a、16a・・・を形成してなる突
出部16が連設されている。而して第1図に示す如く、
前記圧縮ばね15の押圧力により弁体12が蓋部材13
に向かって摺動した場合においても、前記突出部16の
先端が蓋部材13の内側端面に最初に当接し、以後の弁
体12の摺動を拘束するから、該弁体12と蓋部材13
との間に、突出部16の軸長寸法に相当する空間が形成
されることになり、前記環状溝11a内の圧油は、この
空間内に流入した後、複数の前記切欠部16a、16a
・・・を通過して、前述した如く、吐出孔14を経て吐
出油路4に流出することになる。
Further, the valve body 12 is applied with a pressing force toward the lid member 13 by a compression spring 15 interposed between it and the bottom of the casing 10, and the end of the valve body 12 on the lid member 13 side is is a thin short cylindrical shape having an inner diameter larger than the opening diameter of the discharge hole 14 into the casing 10 and an outer diameter sufficiently larger than the outer diameter of the other part of the valve body 12, and A protruding part 16 formed with notches 16a, 16a, . . . formed in a plurality of locations is continuously provided. Therefore, as shown in Figure 1,
The valve body 12 is pressed against the lid member 13 by the pressing force of the compression spring 15.
Even when the valve body 12 and the lid member 13 are slid toward each other, the tip of the protrusion 16 first contacts the inner end surface of the lid member 13 and restrains the valve body 12 from sliding thereafter.
A space corresponding to the axial length of the protrusion 16 is formed between the two, and after the pressure oil in the annular groove 11a flows into this space, it flows into the plurality of notches 16a, 16a.
. . , and flows out into the discharge oil passage 4 via the discharge hole 14 as described above.

圧縮ばね15は、第1図の部分拡大図である第3図に示
す如く、コイル間ピッチの小さい小ピツチ部15aと、
これの大きい大ピツチ部15bとを同軸的に有する不等
ピッチばねであり、圧縮により小ピツチ部15aにおけ
るコイル間の間隙がOとなる前には、小ピツチ部15a
のばね定数と、大ピツチ部15bのばね定数とを合成し
たばね定数を有し、前記間隙が0となった後においては
、大ビ・7チ部15bだけのばね定数を有するようにし
てあり、第4図に示す如く、圧縮量が所定N(図中のb
点)に達した後における圧縮量に対する押圧力の増加状
態は、それ以前と比較して大となる。
As shown in FIG. 3, which is a partially enlarged view of FIG. 1, the compression spring 15 has a small pitch portion 15a with a small pitch between the coils;
This is an uneven pitch spring having a large pitch portion 15b coaxially with the large pitch portion 15b, and before the gap between the coils in the small pitch portion 15a becomes O due to compression, the small pitch portion 15a
It has a spring constant that is a combination of the spring constant of the large pitch part 15b and the spring constant of the large pitch part 15b, and after the gap becomes 0, it has the spring constant of only the large pitch part 15b. , as shown in Fig. 4, the compression amount is a predetermined amount N (b
After reaching point ), the increase in the pressing force relative to the compression amount becomes larger than before.

また弁体12とケーシング10の底部との間に形成され
ている背圧室17は、連通油路18を介して、蓋部材1
3の外周に形成された環状?J13aに連通させてあり
、該背圧室17には、縮径部14a下流側の圧力が導入
されている。従って弁体12には、該背圧室17側の面
に縮径部14aの下流側の圧力が作用し、蓋部材13側
の面に縮径部14aの上流側の圧力が作用していること
になり、また、公知の如く、縮径部14a前後に生じる
圧力差は、該縮径部14aを通過する圧油の流量、換言
すれば、吐出油路4内に導入される圧油の流量に対応す
るから、弁体12は、吐出油路4内に導入される圧油の
流量に相当する押圧力により、前圧室17に向かう方向
に押圧されることになる。
Further, a back pressure chamber 17 formed between the valve body 12 and the bottom of the casing 10 is connected to the lid member 1 through a communication oil passage 18.
A ring formed around the outer circumference of 3? The pressure on the downstream side of the reduced diameter portion 14a is introduced into the back pressure chamber 17. Therefore, the pressure on the downstream side of the reduced diameter portion 14a acts on the surface of the valve body 12 on the back pressure chamber 17 side, and the pressure on the upstream side of the reduced diameter portion 14a acts on the surface on the lid member 13 side. Therefore, as is well known, the pressure difference that occurs before and after the reduced diameter portion 14a is the flow rate of the pressure oil passing through the reduced diameter portion 14a, in other words, the pressure difference that occurs before and after the reduced diameter portion 14a. Since the pressure corresponds to the flow rate, the valve body 12 is pressed in the direction toward the front pressure chamber 17 by a pressing force corresponding to the flow rate of the pressure oil introduced into the discharge oil passage 4 .

さて以上の如く構成された流量制御弁1の流量制御動作
につき次に説明する。
Now, the flow rate control operation of the flow rate control valve 1 configured as above will be explained next.

流量制御弁1の弁体12には、前述した如く、前記圧縮
ばね15による押圧力が、蓋部材13に向けて常時作用
している一方、環状溝11aを介して油圧ポンプPから
の圧油が導入された場合、該圧油が縮径部14aを通過
する際に生じる圧力差に伴う押圧力が、前記押圧力と逆
方向、即ち背圧室17に向かう方向に作用する。また、
油圧ポンプPは、前述した如く、エンジンにて駆動され
ており、該油圧ポンプPからの導入油量は、エンジン回
転数の増加に応じて増加するから、該縮径部14a前後
に生じる圧力差は、エンジン回転数の増加に伴って増加
する。従って、この圧力差に起因する押圧力の増大に応
じて弁体12は、圧縮ばね15を圧縮しつつ背圧室17
に向かう方向に移動し、この移動に応じて油タンクTに
連通ずる前記環状溝11bを開放して、油圧ポンプPか
らの導入油の一部を、吐出孔14から吐出油路4に送給
することなく、環状溝11bを介して油タンクTに還流
すべく動作し、この弁体12の動作により流量制御が行
われる。
As described above, the pressing force of the compression spring 15 is constantly acting on the valve body 12 of the flow rate control valve 1 toward the lid member 13, while pressure oil from the hydraulic pump P is applied to the valve body 12 through the annular groove 11a. When the pressurized oil passes through the diameter-reduced portion 14a, a pressing force due to a pressure difference acts in a direction opposite to the pressing force, that is, in a direction toward the back pressure chamber 17. Also,
As described above, the hydraulic pump P is driven by the engine, and the amount of oil introduced from the hydraulic pump P increases as the engine speed increases, so the pressure difference that occurs before and after the reduced diameter portion 14a. increases as the engine speed increases. Therefore, in response to an increase in the pressing force caused by this pressure difference, the valve body 12 compresses the compression spring 15 while compressing the back pressure chamber 17.
According to this movement, the annular groove 11b communicating with the oil tank T is opened, and a part of the oil introduced from the hydraulic pump P is sent from the discharge hole 14 to the discharge oil path 4. The valve element 12 operates to flow back to the oil tank T through the annular groove 11b, and the flow rate is controlled by the operation of the valve element 12.

第5図は、エンジン回転数の変化に対する吐出油路4へ
の圧油送給量の変化状態を示すグラフであり、まず、弁
体12の移動量が小さ(、その移動位置が環状溝11b
の形成位置に達する以前においては、流量制御弁lに導
入される圧油は、その全量が吐出油路4に送給されるか
ら、圧油送給間はエンジン回転数の増加に伴う油圧ポン
プPの吐出量の増加に対応して増加する。
FIG. 5 is a graph showing changes in the amount of pressure oil supplied to the discharge oil passage 4 with respect to changes in engine speed.
Before reaching the formation position, the entire amount of the pressure oil introduced into the flow rate control valve l is fed to the discharge oil passage 4, so that the hydraulic pump increases as the engine speed increases while the pressure oil is being fed. It increases in response to an increase in the amount of P discharged.

更にエンジン回転数が増加し、弁体12の移動量が増加
して、その移動位置が環状溝11bの形成位置に達した
後においては、該環状溝11bが弁体I2の移動に応じ
て開口し、流量制御弁l内に導入される圧油は、その一
部が環状溝11bを介して油タンクTに還流され、残部
が吐出油路4に送給されることになる。さて、このとき
の油タンクTへの還流油量は、環状溝11bの開口面積
に対応し、この開口面積は弁体12の移動量に対応する
一方、前述した如く、圧縮ばね15のばね定数は、前記
す点の前後において変化し、圧縮ばね15により弁体1
2に加えられる押圧力は、第4図に示す如き変化状態を
示すから、エンジン回転数の増加に対する環状溝11b
の開口面積の増加割合、即ち油タンクTへの還流量の増
加割合は、圧縮ばね15の圧縮量が前記す点に達する以
前と以後とにおいて異なり、以後における弁体12の移
動量に対する還流量の増加割合は、以前におけるそれよ
りも小となる。圧縮ばね15においては、前記還流量が
流量制御弁1内への導入圧油の増加量に対応するように
、前記小ピツチ部15aと大ピツチ部15bとの合成ば
ね定数が設定してあり、これよりも大なるばね定数を有
する前記す点以降の圧縮範囲においては、油タンクTへ
の還流量と、導入圧油の増加量が対応せず、後者が前者
よりも大となる結果、吐出油路4への圧油送給量は、第
5図に示す如く、エンジン回転数の増加に応じて漸増す
ることになる。なお第5図中のb点は、第4図における
b点に対応する。
Furthermore, as the engine speed increases and the amount of movement of the valve body 12 increases, and after the movement position reaches the position where the annular groove 11b is formed, the annular groove 11b opens in accordance with the movement of the valve body I2. However, a part of the pressure oil introduced into the flow control valve 1 is returned to the oil tank T via the annular groove 11b, and the remaining part is sent to the discharge oil passage 4. Now, the amount of oil returned to the oil tank T at this time corresponds to the opening area of the annular groove 11b, and while this opening area corresponds to the amount of movement of the valve body 12, as described above, the spring constant of the compression spring 15 changes before and after the above-mentioned point, and the compression spring 15 causes the valve body 1 to
Since the pressing force applied to the annular groove 11b changes as shown in FIG.
The rate of increase in the opening area of , that is, the rate of increase in the amount of return to the oil tank T is different before and after the amount of compression of the compression spring 15 reaches the above-mentioned point, and the amount of return to the amount of movement of the valve body 12 after that is different. The rate of increase will be smaller than that before. In the compression spring 15, a composite spring constant of the small pitch portion 15a and the large pitch portion 15b is set so that the return amount corresponds to an increase in the amount of pressure oil introduced into the flow control valve 1, In the compression range after the above point where the spring constant is larger than this, the amount returned to the oil tank T does not correspond to the amount of increase in the introduced pressure oil, and the latter becomes larger than the former, resulting in discharge As shown in FIG. 5, the amount of pressure oil fed to the oil passage 4 gradually increases as the engine speed increases. Note that point b in FIG. 5 corresponds to point b in FIG. 4.

このような流量制御弁1の動作により、吐出油路4への
圧油送給量が、第5図に示す如き変化状態を示すから、
エンジン回転数が大きい場合、換言すれば車速か高速で
ある場合、前述した如く、第1の油路41と第2の油路
42との分岐点において十分に高い油圧が得られ、拘束
装置3において十分に大きい拘束力が発生できる。第6
図は、実線により本発明に係る動力舵取装置における拘
束力を、また破線により流量制御弁1を備えていない従
来の動力舵取装置における拘束力を、夫々横軸に車速を
とって示すグラフであり、本図に示す如く、本発明に係
る動力舵取装置においては、従来の動力舵取装置に比較
して、高速走行域において大きい拘束力を得ることがで
き、舵輪に十分な剛性を付与せしめることが可能である
Due to such an operation of the flow rate control valve 1, the amount of pressure oil fed to the discharge oil passage 4 exhibits a changing state as shown in FIG.
When the engine speed is high, in other words when the vehicle speed is high, a sufficiently high oil pressure is obtained at the branch point between the first oil passage 41 and the second oil passage 42, as described above, and the restraint device 3 A sufficiently large restraining force can be generated at 6th
The figure is a graph showing the restraining force in the power steering device according to the present invention as a solid line, and the restraining force in a conventional power steering device not equipped with the flow control valve 1 as a broken line, with vehicle speed taken on the horizontal axis. As shown in this figure, the power steering device according to the present invention can obtain a larger restraining force in a high-speed driving range than the conventional power steering device, and can provide sufficient rigidity to the steering wheel. It is possible to have it granted.

なお本実施例においては、荷重に対して非線形な変位を
生ぜしめるべく、圧縮ばね15として、第3図に示す如
き不等とッチばねを用いたが、例えば、巻回径が異なる
と共に、自然長の異なる2[r類以上のばねを組合せる
ことによっても、非線形なばね特性を実現することがで
き、また、第7図に示す如く、軸長方向に順次増大する
巻回径を有する円錐コイルばねにおいても同様の非線形
なばね特性の実現が可能であり、これらのばねを圧縮ば
ねI5として用いることもできる。
In this embodiment, an unequal spring as shown in FIG. 3 was used as the compression spring 15 in order to produce a non-linear displacement with respect to the load. Non-linear spring characteristics can also be achieved by combining springs of class 2[r] or higher with different natural lengths, and as shown in Fig. 7, the winding diameter gradually increases in the axial direction. Similar nonlinear spring characteristics can be achieved with conical coil springs, and these springs can also be used as the compression spring I5.

〔効果〕〔effect〕

以上詳述した如く、本発明に係る動力舵取装置において
は、油圧ポンプの吐出側に設けた流量制御弁が、該油圧
ポンプの吐出量に相当する圧力差と、非線形なばね特性
を有するばねからの付勢力とに応じて移動する弁体を備
えており、該弁体の移動に応じて余剰油を排出するから
、油圧ポンプからの前記流量制御弁への導入油量が所定
量に達し、弁体の移動量が所定量に達するまでは、略−
定の油量が拘束装置及び方向制御弁に送給され、拘束装
置は小さい拘束力を発生するのみであり、前記方向制御
弁を介して送給される圧油による油圧シリンダの動作に
より舵取りが行われ、低速走行時及び停止時における舵
輪操作力の低減が図れると共に、エンジン回転数の増大
に伴う油圧ポンプの吐出量の増大に応じて、弁体の移動
量が更に増加した場合、拘束装置及び方向制御弁への圧
油送給量が、エンジン回転数の増大、換言すれば車速の
増大に応じて増加し、拘束装置において高い油圧が利用
可能となるから、高速走行時に舵輪に十分な剛性を付与
せしめることができ、直進安定性の向上が図れる。また
前記油圧ポンプは、油圧シリンダを適度な一定の速度に
て駆動するための容量を有するものを一台備えればよく
、油圧ポンプにおける消費馬力の増大に起因する発熱量
及び発生騒音の増大、並びにエンジンの燃料消費量の増
大が回避される等、本発明は優れた効果を奏する。
As detailed above, in the power steering device according to the present invention, the flow rate control valve provided on the discharge side of the hydraulic pump has a pressure difference corresponding to the discharge amount of the hydraulic pump, and a spring having nonlinear spring characteristics. The valve body is equipped with a valve body that moves according to the urging force from the valve body, and discharges excess oil according to the movement of the valve body, so that the amount of oil introduced from the hydraulic pump to the flow control valve reaches a predetermined amount. , until the amount of movement of the valve body reaches a predetermined amount, approximately -
A fixed amount of oil is supplied to the restraint device and the directional control valve, the restraint device only generates a small restraint force, and the steering is controlled by the operation of the hydraulic cylinder by the pressure oil supplied through the directional control valve. This reduces the steering wheel operation force when running at low speeds and when stopping, and if the amount of movement of the valve body further increases in response to an increase in the discharge volume of the hydraulic pump due to an increase in engine speed, the restraint device The amount of pressure oil supplied to the directional control valves increases as the engine speed increases, or in other words, as the vehicle speed increases, and high hydraulic pressure becomes available in the restraint system, so that sufficient pressure is supplied to the steering wheels during high-speed driving. Rigidity can be imparted, and straight-line stability can be improved. Further, the hydraulic pump only needs to be equipped with one unit having a capacity to drive the hydraulic cylinder at a moderately constant speed. Furthermore, the present invention has excellent effects such as avoiding an increase in fuel consumption of the engine.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示すものであり、第1図は本
発明に係る動力舵取装置の構成を示す模式図、第2図は
第1図のn−n線による拘束装置の横断面図、第3図は
流量制御弁の部分拡大図、第4図は流量制御弁における
圧縮ばねの圧縮量と該圧縮ばねにより弁体に作用する押
圧力との関係を示すグラフ、第5図はエンジン回転数と
流量制御弁からの圧油送給量との関係を示すグラフ、第
6図は拘束装置において得られる拘束力を本発明に係る
動力舵取装置と従来の動力舵取装置とにおいて比較した
結果を示すグラフ、第7図は圧縮ばねとして用いること
が可能な他のばねの一例を示す断面図である。 l・・・流量制御弁  2・・・方向制御弁  3・・
・拘束装置  4・・・吐出油路  6・・・可変絞り
  −7・・・固定絞り  8・・・入力軸  9・・
・出力軸11a、 llb・・・環状溝  12・・・
弁体  14・・・吐出孔14a・・・縮径部  15
・・・圧縮ばね  15a・・・小ピツチ部  15b
・・・大ピツチ部  17・・・背圧室18・・・連通
油路゛31・・・プランジャ  33・・・環状油室 
 41・・・第1の油路  42・・・第2の油路60
・・・絞り制御部  P・・・油圧ポンプ  S・・・
油圧シリンダ 特 許 出願人  光洋精工株式会社 代理人 弁理士  河 野  登 夫 第2図 第7図 圧縮量 第4図 第 5 図 第6図
The drawings show one embodiment of the present invention, and FIG. 1 is a schematic diagram showing the configuration of a power steering device according to the present invention, and FIG. 2 is a cross-sectional view of the restraint device taken along line nn in FIG. 1. 3 is a partially enlarged view of the flow control valve, FIG. 4 is a graph showing the relationship between the amount of compression of the compression spring in the flow control valve and the pressing force exerted on the valve body by the compression spring, and FIG. 5 6 is a graph showing the relationship between the engine speed and the amount of pressure oil fed from the flow control valve, and FIG. 6 shows the restraint force obtained in the restraint device between the power steering device according to the present invention and the conventional power steering device. FIG. 7 is a sectional view showing an example of another spring that can be used as a compression spring. l...Flow control valve 2...Direction control valve 3...
・Restriction device 4...Discharge oil path 6...Variable throttle -7...Fixed throttle 8...Input shaft 9...
・Output shaft 11a, llb... annular groove 12...
Valve body 14...Discharge hole 14a...Reduced diameter part 15
...Compression spring 15a...Small pitch portion 15b
... Large pitch part 17 ... Back pressure chamber 18 ... Communication oil passage 31 ... Plunger 33 ... Annular oil chamber
41...First oil passage 42...Second oil passage 60
... Throttle control section P... Hydraulic pump S...
Hydraulic cylinder patent Applicant Koyo Seiko Co., Ltd. Agent Patent attorney Noboru Kono Figure 2 Figure 7 Compression amount Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1、エンジンにて駆動される油圧ポンプからの圧油の操
舵補助用油圧シリンダへの送給方向を、舵輪の操作方向
に応じて切換える方向制御弁を備えると共に、前記油圧
ポンプから操舵状況に応じて減圧されて送給される圧油
の圧力に応じた力にて、前記方向制御弁の切換え動作を
拘束する拘束装置を備えた動力舵取装置において、 前記油圧ポンプの吐出側に流量制御弁が設 けてあり、 該流量制御弁が、前記油圧ポンプの吐出量 に相当する圧力差と、該圧力差の作用方向と逆方向に加
えられ、荷重に対して非線形な変位を生じるばねの付勢
力とに応じて移動する弁体と、該弁体の移動に応じて開
口面積が変化する余剰油の排出孔とを具備することを特
徴とする動力舵取装置。
[Scope of Claims] 1. A direction control valve that switches the feeding direction of pressure oil from a hydraulic pump driven by an engine to a hydraulic cylinder for steering assistance in accordance with the direction in which the steering wheel is operated; In the power steering device, the power steering device includes a restraint device that restrains the switching operation of the directional control valve with a force corresponding to the pressure of the pressure oil that is supplied from the pump after being depressurized according to the steering situation. A flow control valve is provided on the discharge side, and the flow control valve applies a pressure difference corresponding to the discharge amount of the hydraulic pump in a direction opposite to the acting direction of the pressure difference, and causes a nonlinear displacement with respect to the load. 1. A power steering device comprising: a valve body that moves in response to the biasing force of a spring that generates an excess oil discharge hole whose opening area changes in accordance with the movement of the valve body.
JP62299592A 1987-11-26 1987-11-26 Power steering Pending JPH01141175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62299592A JPH01141175A (en) 1987-11-26 1987-11-26 Power steering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62299592A JPH01141175A (en) 1987-11-26 1987-11-26 Power steering

Publications (1)

Publication Number Publication Date
JPH01141175A true JPH01141175A (en) 1989-06-02

Family

ID=17874630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62299592A Pending JPH01141175A (en) 1987-11-26 1987-11-26 Power steering

Country Status (1)

Country Link
JP (1) JPH01141175A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623873U (en) * 1991-12-25 1994-03-29 株式会社ユニシアジェックス Flow control valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623873U (en) * 1991-12-25 1994-03-29 株式会社ユニシアジェックス Flow control valve

Similar Documents

Publication Publication Date Title
US4632204A (en) Power assisted steering system
JPH0679895B2 (en) Hydraulically operated steering device
EP0594137B1 (en) Hydraulic power steering apparatus
JPH02225179A (en) Power steering device
JPH0577744A (en) Power steering device
US4558720A (en) Closed-center controller for use with unequal area cylinder
US4418779A (en) Control apparatus for vehicle steering system
JPH0224373Y2 (en)
JPH01148663A (en) Electronic power auxiliary control steering gear
US4844118A (en) Rotary hydraulic distributor for a servo mechanism
US5593002A (en) Power steering system equipped with means for varying an assist torque thereof
JPH01141175A (en) Power steering
JPS6114990B2 (en)
US4955446A (en) Hydraulic power steering apparatus
US5538095A (en) Power steering apparatus
US5740879A (en) Power steering apparatus
JPH0692246A (en) Power steering gear
JP2671399B2 (en) Steering force control device for power steering device
JPH0255261B2 (en)
KR0133301Y1 (en) Power steering system
JPS60226368A (en) Steering-force controller for power steering apparatus
JPH02169371A (en) Power steering
US4803913A (en) Hydraulic power steering valve with three-orifice reactive chamber pressure control
JPS638073A (en) Steering force controlling unit of power steering device
JPH0619426Y2 (en) Steering force control device for power steering device