JPH01140784A - Laser device - Google Patents

Laser device

Info

Publication number
JPH01140784A
JPH01140784A JP62299369A JP29936987A JPH01140784A JP H01140784 A JPH01140784 A JP H01140784A JP 62299369 A JP62299369 A JP 62299369A JP 29936987 A JP29936987 A JP 29936987A JP H01140784 A JPH01140784 A JP H01140784A
Authority
JP
Japan
Prior art keywords
mirror
coating film
laser beam
laser
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62299369A
Other languages
Japanese (ja)
Other versions
JPH0834325B2 (en
Inventor
Kimiharu Yasui
公治 安井
Masaaki Tanaka
正明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP29936987A priority Critical patent/JPH0834325B2/en
Priority to KR1019880006600A priority patent/KR910008990B1/en
Priority to EP88108902A priority patent/EP0293907B1/en
Priority to DE8888108902T priority patent/DE3879547T2/en
Priority to US07/201,999 priority patent/US4903271A/en
Publication of JPH01140784A publication Critical patent/JPH01140784A/en
Publication of JPH0834325B2 publication Critical patent/JPH0834325B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08059Constructional details of the reflector, e.g. shape
    • H01S3/08063Graded reflectivity, e.g. variable reflectivity mirror
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/034Optical devices within, or forming part of, the tube, e.g. windows, mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08081Unstable resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/092Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp
    • H01S3/093Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp focusing or directing the excitation energy into the active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/20Lasers with a special output beam profile or cross-section, e.g. non-Gaussian
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0615Shape of end-face
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/092Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To output a laser beam of high quality without decreasing an oscillation efficiency by forming a nonreflection coating film on the periphery surrounding opposite faces and a center, so regulating the thickness of the film as to equalize in phase laser beams which pass the center and the periphery. CONSTITUTION:A convex mirror 4 which is also used as a window mirror is coated at the center of opposite face to a collimator mirror 1 with a partial reflection coating film 20, at the periphery surrounding the opposite faces and the center with a nonreflection coating film 5 and further with a thickness regulating nonreflection coating film 22. That is, the mirror 1 and the film 20 construct an unstable type resonator, a laser beam 7 reflected and enlarged by the film 20 of the mirror 4 is amplified by a laser medium 3, collimated by the mirror 1 to a parallel beam, and output as a laser beam 8 externally from the mirror 4. Thus, a laser beam having good condensing characteristic of solid state is obtained without sacrificing its emitting efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はレーザ装置曖1 とくに大出力レーザ装置に
おけるビーム品質の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improvements in beam quality in laser devices, particularly in high-output laser devices.

〔従来の技術〕[Conventional technology]

第8図は例えばレーザハンドブック(LBsetHan
dbook  19γ9.  Nnrth −Ho1l
and  Publishingc6mpany)に記
載された従来の不安定型共振器を有するレーザ装置ft
示す断面側面図である。図において11)は凹面鏡より
なるフリメートミラー、[2)はこのコリメートミラー
に対向配置された凸面鏡よシなる拡大ミラーであ91両
ミラー+llI21は全反射ミラーをなす。(3)はレ
ーザ媒質でco2レーザ等のガスレーザを例にとれば放
電などにより励起されたガス媒質、YAGレーザなどの
固体レーザを例にとればフラッシュランプ等により励起
されたガラス媒質であり、(4)はウィンドミラー、(
5)はウィンドミラー面上に施された無反射コーティン
グ膜、(6)は周囲を覆う箱体、(7)はミラー+11
 (21により構成される光共振器内に発生するレーザ
ビーム。
Figure 8 shows, for example, the Laser Handbook (LBsetHan).
dbook 19γ9. Nnrth-Ho1l
A laser device with a conventional unstable resonator described in
FIG. In the figure, 11) is a frimating mirror made of a concave mirror, [2] is a magnifying mirror made of a convex mirror placed opposite to this collimating mirror, and 91 and 1121 are total reflection mirrors. (3) is a laser medium, and in the case of a gas laser such as a CO2 laser, it is a gas medium excited by an electric discharge, and in the case of a solid laser such as a YAG laser, it is a glass medium excited by a flash lamp, etc. 4) is a wind mirror, (
5) is the anti-reflection coating film applied on the wind mirror surface, (6) is the box that covers the surrounding area, and (7) is the mirror +11.
(A laser beam generated within an optical resonator constituted by 21.

(8)は拡大ミラー周辺部より外部に取出されたレーザ
ビームである。
(8) is a laser beam taken out from the periphery of the magnifying mirror.

次に動作について説明する。ミラー+ll、 t2)は
いわゆる不安定型共振器を構成しており、拡大ミラー(
2)により反射拡大されたレーザビームはレーザ媒質(
3)により増幅されると共に、コリメートミラ−11)
により平行ビームにコリメートされ、拡大ミラー12)
及びミラー周辺部上に反射させ、リング状のビームとし
てウィンドミラー(4)より外部にとり出される。取出
されるリング状のレーザビーム(8)はほとんど等位相
で得られるため、レンズ等により集光することにより中
高のビームとなり、鉄板などの切断、溶接等を効率よく
おこなうことができる。
Next, the operation will be explained. The mirror +ll, t2) constitutes a so-called unstable resonator, and the magnifying mirror (
2) The laser beam reflected and expanded by the laser medium (
3) and is amplified by collimating mirror 11)
collimated into a parallel beam by a magnifying mirror 12)
The beam is then reflected onto the periphery of the mirror and taken out as a ring-shaped beam to the outside through the wind mirror (4). Since the extracted ring-shaped laser beam (8) is obtained with almost the same phase, it becomes a medium-height beam by condensing it with a lens or the like, and can efficiently cut, weld, etc. iron plates.

また、その集光の度合いは取出されるリング状ビームの
内径と外径との比(M値(Magnification
factor ) )でき−$J、M値が大きいほど、
すなわち、より中づまりで取出されたビームはどよく集
光される。しかしM 11i ?太き(すると発振効率
が著しく悪化するため、工業的に現実にもちいられるM
値の上限は2程度である。
The degree of condensation is determined by the ratio of the inner diameter and outer diameter of the ring-shaped beam (M value).
factor) ) can-$J, the larger the M value,
In other words, the beam extracted from the center is well focused. But M 11i? thick (as this will significantly deteriorate oscillation efficiency,
The upper limit of the value is about 2.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のレーザ装置は以上のように構成されているので、
集光特性全向上させるためにM値を太き(すると発振効
率が悪化するので、実用的にはM値を最高集光性能の得
られる無限大近(まであげられないといい問題点があっ
た。また、ウィンドミラー(4)がリング状のレーザビ
ームにより不均一に加熱されるため、不均一な内部応力
が発生し。
Conventional laser equipment is configured as described above, so
In order to improve the light-gathering characteristics, increase the M value (this will deteriorate the oscillation efficiency, so in practice, it is recommended to increase the M value to near infinity (where the best light-gathering performance can be obtained), otherwise there will be problems. Furthermore, since the wind mirror (4) is unevenly heated by the ring-shaped laser beam, uneven internal stress is generated.

通過するレーザビームの位相分布をくずし、集光性能を
悪化させる等の問題点があった。
There were problems such as disrupting the phase distribution of the passing laser beam and deteriorating the focusing performance.

この発明は上記のような問題点を解消するためになされ
たもので3発振効率の低下を招かずVcM値が無限大に
近い高品質のレーザビームを取出すことができるレーザ
装置を容易に得ることを目的とする。
This invention was made to solve the above-mentioned problems, and it is an object to easily obtain a laser device that can extract a high-quality laser beam with a VcM value close to infinity without causing a decrease in oscillation efficiency. With the goal.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るレーザ装置は、拡大ミラーを凹または凸
面鏡のコリメートミラーとの対向面中央部に部分反射コ
ーテイング膜を施して構成し、かつ上記対向面中央部を
とり囲む周辺部に無反射コーテイング膜を施し、この無
反射コーテイング膜の厚みを上記中央部と上記周辺部を
通過する各レーザビームを等位相化するように調整した
ものである。
The laser device according to the present invention is configured such that the magnifying mirror is a concave or convex mirror with a partially reflective coating film applied to the central part of the surface facing the collimating mirror, and a non-reflective coating film is applied to the peripheral part surrounding the central part of the facing surface. The thickness of this anti-reflection coating film is adjusted so that the laser beams passing through the central portion and the peripheral portion have the same phase.

〔作用〕[Effect]

この発明における拡大ミラーは、レーザビームの一部を
透過させることにより、そのビーム形状を従来のリング
状から中づまシ状のレーザビームとして取出す。さらに
厚みの調整された無反射コーテイング膜によりその中づ
まり状のレーザビームは等位相化される。
The magnifying mirror of the present invention allows a portion of the laser beam to pass through, thereby extracting the beam shape from the conventional ring shape to a peg-shaped laser beam. Furthermore, the laser beam in the hollow shape is made to have the same phase by a non-reflection coating film whose thickness is adjusted.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例によるレーザ装置を示す断
面側面図であり1図において、(4)はウィンドミラー
を兼ねる凸面鏡であり、コリメートミラー+1)との対
向面中央部に部分反射コーテイング膜が、上記対向面中
央部をとり囲む周辺部に無反射コーテイング膜(5)さ
らに厚み調整用の無反射コーテイング膜のが施されてい
る。
FIG. 1 is a cross-sectional side view showing a laser device according to an embodiment of the present invention. In FIG. 1, (4) is a convex mirror that also serves as a wind mirror, and the central part of the surface facing the collimating mirror +1) is partially reflective coated. A non-reflective coating film (5) and a non-reflective coating film for thickness adjustment are applied to the peripheral portion surrounding the central portion of the facing surface.

次に動作について説明する。Next, the operation will be explained.

コリメートミラー(1)及び凸面鏡(4)の部分反射膜
翰部はいわゆる不安定型共振器を構成しており。
The partially reflective film ridges of the collimating mirror (1) and the convex mirror (4) constitute a so-called unstable resonator.

凸面鏡(4)の部分反射鏡(イ)で反射拡大されたレー
ザビーム(7)は、レーザ媒質(3)により増幅される
と共に、コリメートミラー11)Kより平行ビームにコ
リメートされ、凸面鏡(4)より外部へレーザビーム(
8)として取出される。このレーザビーム(8)は部分
反射膜(至)を通過する部分と、無反射コーテイング膜
(5)およびΩを通過する部分とでできており9部分反
射膜c!1r通過する部分は部分透過性をもつので。
The laser beam (7) reflected and expanded by the partial reflecting mirror (a) of the convex mirror (4) is amplified by the laser medium (3), and is collimated into a parallel beam by the collimating mirror 11)K. The laser beam (
8). This laser beam (8) is made up of a part that passes through the partially reflective film (to), a part that passes through the non-reflective coating film (5) and Ω, and the part that passes through the partially reflective film (c!). The part that passes through 1r is partially transparent.

レーザビーム(8)は中づまシであり、従来の不安定型
共振器で定義されfcM値は無限大に相当する。
The laser beam (8) is hollow, defined by a conventional unstable resonator, and has an fcM value of infinity.

第2図(a)、 (kl)は各々従来及びこの発明の一
実施例による不安定型共振器で発生したレーザビームを
レンズで集光させた場合のパターン形状を模式的に示す
特性図であり、横軸は光軸からの距離。
FIGS. 2(a) and 2(kl) are characteristic diagrams schematically showing pattern shapes when a laser beam generated in an unstable resonator according to a conventional method and an embodiment of the present invention are focused by a lens, respectively. , the horizontal axis is the distance from the optical axis.

縦軸はビーム強度である。The vertical axis is the beam intensity.

この実験では両者の発振特性をほぼ同一にするため1反
射膜■の反射率は50%、また反射膜■の径とビーム外
径との比は1.5とした。(即ち。
In this experiment, in order to make the oscillation characteristics of the two almost the same, the reflectance of one reflective film (2) was set to 50%, and the ratio between the diameter of the reflective film (2) and the beam outer diameter was set to 1.5. (i.e.

M=1.5の従来の不安定型共振器の拡大ミラー(2)
に50%の部分透過性をもたせて、この発明の不安定型
共振器とした。) また、凸面鏡(4)の両面の曲率は同一としく厚みを一
定とし)、レーザビーム(8)が凸面鏡(4)を通過後
も平行ビームであるようにした。第2図(a)、 (1
)1で示される各集光性能を比較すると、この発明によ
るもの(第2図(b))は中央強度が高(、かつ光軸上
に集中したレーザビームが得られることがわかる。
Magnifying mirror of conventional unstable resonator with M=1.5 (2)
The unstable resonator of the present invention was obtained by giving 50% partial transparency to the resonator. ) Also, the curvatures on both sides of the convex mirror (4) were the same and the thickness was constant), so that the laser beam (8) remained a parallel beam even after passing through the convex mirror (4). Figure 2 (a), (1
) Comparing the respective light focusing performances indicated by 1, it can be seen that the laser beam according to the present invention (FIG. 2(b)) has a high central intensity (and a laser beam concentrated on the optical axis).

次にこの発明による拡大ミラーの設計について説明する
Next, the design of the magnifying mirror according to the present invention will be explained.

上記無反射コーテイング膜■の厚みは上記部分反射膜■
と上記無反射コーテイング膜+51 U ’に通過する
レーザビーム間の位相差が小さく、なおかつ上記無反射
コーテイング膜(5)122をレーザビームが全透過す
るように決定される。
The thickness of the above non-reflective coating film■ is the above partial reflective coating■
It is determined such that the phase difference between the laser beam passing through the anti-reflection coating film (5) 122 is small, and the laser beam completely passes through the non-reflection coating film (5) 122.

第3図は集光点での軸上強度の1/e2 倍になる点の
直径(スポット径)及びその径内に含まれるレーザパワ
ーの全体に対する割合(パワー集中度)と位相差との関
係を各々曲線A及びBにより示す特性図であり、この曲
線は波動計算により共振器内に発生するレーザビーム、
及びそれを用いて集光点での強度分布を計算した結果に
もとづくものである。
Figure 3 shows the relationship between the diameter of the point at which the axial intensity is 1/e2 times the focal point (spot diameter), the ratio of the laser power contained within that diameter to the total (power concentration), and the phase difference. This is a characteristic diagram showing the laser beam generated in the resonator by wave calculation,
This is based on the results of calculating the intensity distribution at the focal point using this information.

スポット径が小さく、パワー集中度が大きい程集光性能
がよいと判断できる。
It can be determined that the smaller the spot diameter and the higher the power concentration, the better the light collection performance.

例えば位相差が01から45°程度内に打消されていれ
ば、パワー集中度、スポット径ともほぼ同一であるが、
100°以上の位相差が生じた場合にはと(にスポット
径が著しく悪化し、集光性能が悪化することがわかる。
For example, if the phase difference is canceled within about 45 degrees from 01, the power concentration and spot diameter are almost the same, but
It can be seen that when a phase difference of 100° or more occurs, the spot diameter deteriorates significantly and the light collection performance deteriorates.

この位相差とコーテイング膜のの膜厚との関係を第4図
に示す。この例はZn8e  の基板周辺部にPbF2
  (屈折率1.55 )を1.7 a m施して無反
射コーテイング膜+5+ 1Fr:形成し、中央部にP
l)F2  を2.1μm施して反射率50%の部分反
射コーテイング膜■を形成したものにおいて、コーテイ
ング膜@ (Zn8e)  を無反射コーテイング膜(
5)上に何μm施したら、コーテイング膜(5)ノを通
過するレーザビームの透過率(曲HC)及び中央部と外
周部を通る2つのレーザビーム内の位相差(曲iD)が
いかになるかを示すものである。
The relationship between this phase difference and the thickness of the coating film is shown in FIG. In this example, PbF2 is placed around the Zn8e substrate.
(refractive index 1.55) for 1.7 am to form an anti-reflection coating film +5+ 1Fr: and P in the center.
l) In the case where a partially reflective coating film (■) with a reflectance of 50% is formed by applying F2 to a thickness of 2.1 μm, the coating film @ (Zn8e) is replaced with a non-reflective coating film (
5) What is the transmittance of the laser beam passing through the coating film (5) (curve HC) and the phase difference (curve iD) between the two laser beams passing through the center and outer periphery, depending on how many μm is coated on the coating film (5)? It shows that.

第4図から第2図(blに示すような特性を得るために
透過率50%1位相差45°以内かつ100%透過率と
なるにはコーテイング膜のの厚さは約6.5μmである
ことがわかる。
To obtain the characteristics shown in Figures 4 to 2 (bl), the thickness of the coating film must be approximately 6.5 μm to achieve transmittance of 50%, phase difference within 45°, and 100% transmittance. Recognize.

工業的製法を考えるとたとえばznSe  を6.5μ
m積層させると表面が多少粗れるが、コーテイング膜の
を通過するレーザビームは共振に寄与しないため、上記
粗れのレーザ発振に与える影響は小さく無視できる。
Considering an industrial manufacturing method, for example, znSe is 6.5μ
Although the surface is somewhat rough when m layers are stacked, the influence of the roughness on laser oscillation is small and can be ignored because the laser beam passing through the coating film does not contribute to resonance.

なお上記実施例では無反射コーテイング膜(5)は単一
膜のものを示したが、第5図に示すように2膜またはそ
れ以上の複膜よりなる無反射コーテイング膜(51)(
52)  であってもよい。
In the above embodiments, the non-reflective coating film (5) is a single film, but as shown in FIG.
52) may be.

また1無反射コーティング膜のも第6図に示すように複
数の膜(220)(221)  により構成されていて
もよい。
Furthermore, one anti-reflection coating film may be composed of a plurality of films (220) (221) as shown in FIG.

またコリメートミラ一対向面上の無反射コーテイング膜
(5)を設けず無反射コーテイング膜の(例えばPI)
F2)のみを設けて等位相化するようにしてもよい。
In addition, the anti-reflection coating film (5) on the opposing surface of the collimating mirror is not provided (for example, PI).
F2) alone may be provided to equalize the phase.

さらに拡大ミラーは第1図に示すように凹面鏡IAuf
用いて構成してもよい。
Furthermore, the magnifying mirror is a concave mirror IAuf as shown in Figure 1.
It may also be configured using

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば拡大ミラーを凹または
凸面鏡の上記コリメートミラーとの対向面中央部に部分
反射コーテイング膜を施して構成し、かつ上記対向面中
央部をとり囲む周辺部に無反射コーテイング膜を施し、
この無反射コーテイング膜の厚みを、上記中央部と上記
周辺部を通過する各レーザビームを等位相化するように
調整したので1発た効率を犠牲にすることなく中づまり
の集光特性のよいレーザビームが得られ、したがってこ
のレーザビームを利用することにより高速で効率よく高
精度のレーザ加工をおこなうことができるという効果が
ある。また、レーザビームはウィンドミラーを全体に加
熱する念め、熱応力が発生しK<<安定して長期間ビー
ムを取出すことができるという効果もある。
As described above, according to the present invention, the magnifying mirror is constructed by applying a partially reflective coating film to the central part of the surface facing the collimating mirror of a concave or convex mirror, and the peripheral part surrounding the central part of the facing surface is blank. With reflective coating film,
The thickness of this anti-reflection coating film is adjusted so that each laser beam passing through the central part and the peripheral part has the same phase, so the laser beam has good focusing characteristics without sacrificing the efficiency of a single shot. Therefore, by using this laser beam, it is possible to perform high-speed, efficient, and highly accurate laser processing. In addition, since the laser beam heats the entire wind mirror, thermal stress is generated and the beam can be extracted stably for a long period of time.

さらに、共振に寄与しない無反射コーテイング膜部でそ
の厚さを調整してレーザビームの等位相化を行っている
ので、安定にレーザ発振が持続できるという効果がある
Furthermore, since the thickness of the non-reflection coating film that does not contribute to resonance is adjusted to equalize the phase of the laser beam, there is the effect that laser oscillation can be maintained stably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるレーザ装置を示す断
面側面図、第2図(al、 (1))は各々従来及びこ
の発明の一実施例によるレーザ装置の集光特性を示す特
性図、第3図は集光点でのスポット径及びパワー集中度
と位相差との関係を示す特性図。 第4図は無反射コーテイング膜の膜厚と位相差及び透過
率との関係を示す特性図、第5図、第6図はこの発明の
他の実施例に係る拡大ミラーを示す断面側面図、第7図
はこの発明の他の実施例によるレーザ装置を示す断面側
面図、並びに、第8図は従来のレーザ装置を示す断面側
面図でおる。 11)はコリメートミラー、(3)はレーザ媒質、(4
)は凸面鏡、 +51 (s1X52)  ■(220
)(221) は無反射コーティング膜、 +71T8
+はレーザビーム、CXJは部分反射鏡、(4υは凹面
鏡。 なお3図中、同一符号は同一または相当部分を示す。 第  1  図 1   コ1)メートミラー 3、し−寸→tス 午・凸他牟L 5   −Ij!#、仄身亀フーティンフ゛)(Zg 
: ヒザドーな zo  :  li’/l−7t、lt’1lJL2z
、祢(1コ一プイン2゛羽し 第  2  図 (α) (b) 01?0 位相((献Cαree) 第4図 第 5 図 J 第6図 η 220.221  :  4.ri、H−1−tイ> 
”’)1%、第  7  図 fi g  図 手続補正書(自発ン 昭和  年  月  日 1、事件の表示   特願昭62−299369号2、
発明の名称 レーザ装置 3、補正をする者 S 補正の対象 明細書の発明の詳細な説明の欄。 a 補正の内容 (1)明細書第5頁第14行の「膜が、上記」を「農■
が、上記」に訂正する。 (2)同第3頁第2行の「透過率50%2位相差45”
J ’e r位相差45′″」に訂正する。 (3)同第10頁第11行の「発た効率」全「発振効率
」に訂正する。 以上
FIG. 1 is a cross-sectional side view showing a laser device according to an embodiment of the present invention, and FIG. 2 (al, (1)) is a characteristic diagram showing the focusing characteristics of a conventional laser device and a laser device according to an embodiment of the present invention, respectively. , FIG. 3 is a characteristic diagram showing the relationship between the spot diameter and power concentration at the focal point and the phase difference. FIG. 4 is a characteristic diagram showing the relationship between the film thickness of the anti-reflection coating film, phase difference, and transmittance, and FIGS. 5 and 6 are cross-sectional side views showing magnifying mirrors according to other embodiments of the present invention. FIG. 7 is a cross-sectional side view showing a laser device according to another embodiment of the present invention, and FIG. 8 is a cross-sectional side view showing a conventional laser device. 11) is a collimating mirror, (3) is a laser medium, (4
) is a convex mirror, +51 (s1X52) ■(220
)(221) is a non-reflective coating film, +71T8
+ is a laser beam, CXJ is a partial reflecting mirror, (4υ is a concave mirror. In the 3 figures, the same symbols indicate the same or equivalent parts. Convex other mu L 5 -Ij! #、Intangible Turtle Hutinff)(Zg
: Hizado na zo : li'/l-7t, lt'1lJL2z
, 祢 (1 piece in 2 pieces) Fig. 2 (α) (b) 01?0 Phase ((presentation Cαree) Fig. 4 Fig. 5 Fig. J Fig. 6 η 220.221: 4.ri, H- 1-t i>
``') 1%, Figure 7 fig Procedure amendment (self-initiated, Showa year, month, day 1, case description Patent application No. 1983-299369 2,
Name of the invention Laser device 3, person making the amendment S Column for detailed description of the invention in the specification to be amended. a Contents of the amendment (1) “The above membrane” on page 5, line 14 of the specification has been replaced with “agricultural
However, the above is corrected. (2) “Transmittance 50% 2 Phase difference 45” on page 3, line 2
J 'er phase difference 45'''. (3) "Emission efficiency" on page 10, line 11 is corrected to "oscillation efficiency."that's all

Claims (1)

【特許請求の範囲】[Claims] 互いに対向配置する拡大ミラーとコリメートミラーより
不安定型共振器を構成し、レーザビームを取出すものに
おいて、上記拡大ミラーは凹または凸面鏡の、上記コリ
メートミラーとの対向面中央部に部分反射コーテイング
膜を施して構成され、上記対向面中央部をとり囲む周辺
部に無反射コーテイング膜を施し、この無反射コーテイ
ング膜の厚みが、上記中央部と上記周辺部を通過する各
レーザビームを等位相化するように調整されていること
を特徴とするレーザ装置。
An unstable resonator is configured by a magnifying mirror and a collimating mirror arranged opposite to each other to extract a laser beam, and the magnifying mirror is a concave or convex mirror, and a partially reflective coating film is applied to the central part of the surface facing the collimating mirror. A non-reflection coating film is applied to a peripheral part surrounding the central part of the facing surface, and the thickness of the non-reflection coating film makes each laser beam passing through the central part and the peripheral part equal in phase. A laser device characterized by being adjusted to.
JP29936987A 1987-06-03 1987-11-27 Laser equipment Expired - Lifetime JPH0834325B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP29936987A JPH0834325B2 (en) 1987-11-27 1987-11-27 Laser equipment
KR1019880006600A KR910008990B1 (en) 1987-06-03 1988-06-02 Laser apparatus
EP88108902A EP0293907B1 (en) 1987-06-03 1988-06-03 Laser apparatus
DE8888108902T DE3879547T2 (en) 1987-06-03 1988-06-03 LASER APPARATUS.
US07/201,999 US4903271A (en) 1987-06-03 1988-06-03 Laser apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29936987A JPH0834325B2 (en) 1987-11-27 1987-11-27 Laser equipment

Publications (2)

Publication Number Publication Date
JPH01140784A true JPH01140784A (en) 1989-06-01
JPH0834325B2 JPH0834325B2 (en) 1996-03-29

Family

ID=17871670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29936987A Expired - Lifetime JPH0834325B2 (en) 1987-06-03 1987-11-27 Laser equipment

Country Status (1)

Country Link
JP (1) JPH0834325B2 (en)

Also Published As

Publication number Publication date
JPH0834325B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
US5058123A (en) Laser apparatus
US4903271A (en) Laser apparatus
JPS62217682A (en) Unstable laser resonator
US5349603A (en) Solid-state laser resonator
JPH01140784A (en) Laser device
US4981343A (en) Focusing mirror lens
JP4613272B2 (en) Laser resonator and adjustment method thereof
JPS63188115A (en) Beam shaping optical system
JP2526946B2 (en) Laser device
JP2660335B2 (en) Laser device
JPH01152778A (en) Laser device
JPH0463557B2 (en)
JPH0463556B2 (en)
JP2673304B2 (en) Laser device
JPH0511671B2 (en)
JPH0680852B2 (en) Laser device
KR910002229B1 (en) Laser device
JPH01270368A (en) Laser device
JPH0682873B2 (en) Laser equipment
JP2550693B2 (en) Solid-state laser device
JPH01270373A (en) Laser device
JPS61254923A (en) Collimator lens for optical recording and reproducing device
JPH06120597A (en) Ld excitation solid laser device
JPH04237177A (en) Laser diode exciting solid-state laser
Ferrante et al. Color correction of metal halide arc lamp sources

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080329

Year of fee payment: 12