JPH01140052A - Gas sensor and manufacture thereof - Google Patents

Gas sensor and manufacture thereof

Info

Publication number
JPH01140052A
JPH01140052A JP29839887A JP29839887A JPH01140052A JP H01140052 A JPH01140052 A JP H01140052A JP 29839887 A JP29839887 A JP 29839887A JP 29839887 A JP29839887 A JP 29839887A JP H01140052 A JPH01140052 A JP H01140052A
Authority
JP
Japan
Prior art keywords
gas
unimolecular
gas sensor
formula
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29839887A
Other languages
Japanese (ja)
Inventor
Shinichi Wakabayashi
信一 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29839887A priority Critical patent/JPH01140052A/en
Publication of JPH01140052A publication Critical patent/JPH01140052A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To enable the easy manufacture of a gas sensor element detecting nitrogen dioxide, a toxic gas, with high sensitivity, by using a material of a specific structural formula and by adopting a unimolecular accumulation method suitable for making the material into a thin film. CONSTITUTION:A material of a structural formula shown in the formula is used. The molecule of this material is a polyamide acid containing copper phthalocyanine. Such a molecular structure as shown in the formula is adopted for making the material soluble in a unimolecular accumulation method. Consequently, a copper (II) phthalocyanine polyamic acid is used. When this molecule is dissolved in an organic solvent and developed on a water surface, the lower side of a prescribed molecular formula is positioned on the water surface side, since a carboxyl group is a hydrophilic group. Subsequently, a pressure is applied on a film developed on the water surface to put it in the solid state. Then, the film is transferred onto a glass substrate 204, about ten layers of unimolecular films 203 are accumulated by the unimolecular accumulation method, and metal electrodes 201 and 202 are attached thereon. Next, the concentration of gas is detected from a change in conductivity between the electrodes due to the adsorption of the gas to be inspected to the surface of this thin film.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はガス警報器等に用いるガスセンサおよびその製
造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a gas sensor used in a gas alarm, etc., and a method for manufacturing the same.

従来の技術 ガスセンサ素子に用いられる材料としては、ガス吸着に
よる電気室導度変化現象を利用するものとしてS n 
O2やZn○2等の金属酸化物、ある種の有機半導体が
実用に供されている。材料の作製方法としては、焼結法
を用いる方法、スパッタリング法や真空蒸着法等種々の
方法が用いられているが、薄膜を形成する場合でも数十
ナノメートルから数ミクロン程度のものしか得られない
Conventional materials used in gas sensor elements include Sn, which utilizes the phenomenon of change in electrical chamber conductivity due to gas adsorption.
Metal oxides such as O2 and Zn○2, and certain organic semiconductors are in practical use. Various methods are used to produce the material, including sintering, sputtering, and vacuum evaporation, but even when forming a thin film, only a few tens of nanometers to a few microns can be obtained. do not have.

発明が解決しようとする問題点 ガスセンサの材料に要求される機能としては、被検ガス
に対する感度9選択性、応答性、安定性。
Problems to be Solved by the Invention The functions required of gas sensor materials include sensitivity to the gas to be detected, selectivity, responsiveness, and stability.

作製再現性等がある。このうち被検ガスに対する感度は
最も重要な機能であるが、二酸化窒素に対する感度は大
きいものではなく、より高感度なセンサ材料が望まれて
いる。
It has good manufacturing reproducibility, etc. Among these, the sensitivity to the gas to be detected is the most important function, but the sensitivity to nitrogen dioxide is not large, and sensor materials with even higher sensitivity are desired.

本発明は、従来技術に濫み、ガスセンサ材料としては新
規な材料を用い、かつ薄膜化し易い材料および製法の組
み合わせを提供することを目的とする。
An object of the present invention is to use a new material as a gas sensor material, and to provide a combination of materials and manufacturing methods that can be easily formed into a thin film.

問題点を解決するだめの手段 本発明は第1図に示す構造式の材料の新規用途としてガ
スセンサを提供するとともに、その材料の薄膜化に適し
た方法として単分子累積法を採用するものである。
Means to Solve the Problems The present invention provides a gas sensor as a new use of the material having the structural formula shown in Fig. 1, and employs a single molecule accumulation method as a method suitable for making the material into a thin film. .

作   用 本発明のガスセンサおよびその製造法は有毒ガスである
二酸化窒素を高感度で検知するとともに、素子を容易に
薄膜化できる。
Function: The gas sensor of the present invention and its manufacturing method can detect nitrogen dioxide, which is a toxic gas, with high sensitivity, and can easily form a thin film element.

実施例 以下、本発明の一実施例を図面をもって説明する。第1
図は単分子累積法を用いて作製する単分子膜を形成する
分子を示したものである。この分子は銅フタロシアニン
を含むポリアミド酸であh耐熱性や化学的安定性に富む
ポリイミドへの中間物質として用いられることもある。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
The figure shows molecules that form a monolayer produced using the single-molecule accumulation method. This molecule is a polyamic acid containing copper phthalocyanine, and is sometimes used as an intermediate material for producing polyimide, which has high heat resistance and chemical stability.

単分子累積法では成膜分子を揮発性の有機溶媒に溶かす
必要があるが、フタロシアニン骨格は有機溶媒には難溶
なため、可溶性をもたせる物このような分子構造をとっ
ている。具体的には銅(It)フタロシアニンポリアミ
ック酸を用いた。
In the single-molecule accumulation method, it is necessary to dissolve the film-forming molecules in a volatile organic solvent, but since the phthalocyanine skeleton is poorly soluble in organic solvents, it has a molecular structure that makes it soluble. Specifically, copper (It) phthalocyanine polyamic acid was used.

以上の分子を有機溶媒に溶かし、水面上に展開させると
カルボキシル基が親水基であるので第1図の分子式の下
側が水面側となる。
When the above molecules are dissolved in an organic solvent and developed on the water surface, the lower side of the molecular formula in Figure 1 will be on the water surface side because the carboxyl group is a hydrophilic group.

水面上に展開された膜にある圧力をかけ、固体状態にし
ガラス基板上に移しとシ、単分子累積法により10層程
度単分子膜を累積させ、その上に金属電極を付けたもの
が第2図である。aは断面図、bは上面図である。この
薄膜表面への被検ガス吸着による前記電極間の電導度変
化によシガス濃度の検知を行なう。以上のような形状の
素子の二酸化窒素に対する感度を示したものが第3図で
あり、窒素雰囲気中の場合と、窒素希釈による二酸化窒
素雰囲気の場合とのコンダクタンスの比を濃度を変えて
示したものである。このように、高感度なガスセンサ素
子を作製することが可能となる。
A certain amount of pressure is applied to the film developed on the water surface to make it into a solid state, and the film is transferred onto a glass substrate. About 10 layers of monomolecular film are accumulated using the monomolecular accumulation method, and a metal electrode is attached on top of the monomolecular film. This is Figure 2. A is a cross-sectional view, and b is a top view. The gas concentration is detected by the change in conductivity between the electrodes due to adsorption of the gas to be detected on the surface of the thin film. Figure 3 shows the sensitivity of the element with the above shape to nitrogen dioxide, and shows the ratio of conductance in a nitrogen atmosphere and in a nitrogen dioxide atmosphere due to nitrogen dilution as the concentration is changed. It is something. In this way, it becomes possible to produce a highly sensitive gas sensor element.

発明の効果 以上のように、本発明によれば、有毒ガスである二酸化
窒素を高感度で検知できるガスセンサ素子を容易に作製
することが可能となシ、実用的効果は大きい。
Effects of the Invention As described above, according to the present invention, it is possible to easily produce a gas sensor element that can detect nitrogen dioxide, which is a toxic gas, with high sensitivity, and the practical effects are great.

す素子の構成図を示す断面図および上面図、第3図は同
ガスセンサ素子の二酸化窒素の感度を示した特性図であ
る。
FIG. 3 is a cross-sectional view and a top view showing the configuration of the gas sensor element, and FIG. 3 is a characteristic diagram showing the sensitivity of the gas sensor element to nitrogen dioxide.

201、・0.・・金属電極、202・・・・・・金属
電極、203・・・・・・ラングミュア−プロジェット
膜、204・・・・・・ガラス基板。
201,・0. ...metal electrode, 202...metal electrode, 203...Langmuir-Prodjet film, 204...glass substrate.

代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 f!01.202−−一 全風 電極 203−−− ラングミュア・プロジェット膜2Q4−
−−ガラス基板 第 2 図
Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure f! 01.202--1 Total wind electrode 203-- Langmuir-Projet membrane 2Q4-
--Glass substrate Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)下記の構造式の材料を用いたガスセンサ。 ▲数式、化学式、表等があります▼(1) A gas sensor using a material with the structural formula below. ▲Contains mathematical formulas, chemical formulas, tables, etc.▼ (2)下記の構造式の材料を単分子累積法を用い有機単
分子膜を累積させて製膜することを特徴とするガスセン
サの製造法。 ▲数式、化学式、表等があります▼
(2) A method for manufacturing a gas sensor, characterized in that an organic monolayer is formed by accumulating a material having the following structural formula using a single molecule accumulation method. ▲Contains mathematical formulas, chemical formulas, tables, etc.▼
(3)成膜分子に用いる有機分子としてフタロシアニン
誘導体の金属錯体である銅(II)フタロシアニンポリア
ミック酸を用いたことを特徴とする特許請求の範囲第2
項記載のガスセンサの製造法。
(3) Claim 2, characterized in that copper(II) phthalocyanine polyamic acid, which is a metal complex of a phthalocyanine derivative, is used as the organic molecule used in the film-forming molecule.
Method for manufacturing the gas sensor described in Section 1.
JP29839887A 1987-11-26 1987-11-26 Gas sensor and manufacture thereof Pending JPH01140052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29839887A JPH01140052A (en) 1987-11-26 1987-11-26 Gas sensor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29839887A JPH01140052A (en) 1987-11-26 1987-11-26 Gas sensor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01140052A true JPH01140052A (en) 1989-06-01

Family

ID=17859186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29839887A Pending JPH01140052A (en) 1987-11-26 1987-11-26 Gas sensor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01140052A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4040329C2 (en) * 1990-12-17 2000-06-29 Itvi Inttech Venture Investa Method and sensor for the detection of NOx in complex gas mixtures
WO2003106987A1 (en) * 2002-06-12 2003-12-24 学校法人日本大学 Gas sensor element and method for manufacture thereof
CN113777137A (en) * 2021-09-24 2021-12-10 昆明学院 Gas sensor based on chromium phthalocyanine monomolecular layer film and preparation method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4040329C2 (en) * 1990-12-17 2000-06-29 Itvi Inttech Venture Investa Method and sensor for the detection of NOx in complex gas mixtures
WO2003106987A1 (en) * 2002-06-12 2003-12-24 学校法人日本大学 Gas sensor element and method for manufacture thereof
CN113777137A (en) * 2021-09-24 2021-12-10 昆明学院 Gas sensor based on chromium phthalocyanine monomolecular layer film and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US4674320A (en) Chemoresistive gas sensor
US10247689B2 (en) Low concentration ammonia nanosensor
US5225374A (en) Method of fabricating a receptor-based sensor
US20070114138A1 (en) Nanoparticle/nanofiber based chemical sensor, arrays of such sensors, uses and method of fabrication thereof, and method of detecting an analyte
TW201816365A (en) Energetic pulse clearing of environmentally sensitive thin-film devices
Jiang et al. Interaction between copper tetra-4 (2, 4-ditert-amylphenoxy) phthalocyanine Langmuir-Blodgett films as a gas-sensitive sensor and NH3
JP2002082082A (en) Odor sensor and its manufacturing method
Wang et al. Effects of self-assembled monolayers on amperometric glucose biosensors based on an organic–inorganic hybrid system
Kaur et al. Shelf life study of NiO nanowire sensors for NO 2 detection
US20030099575A1 (en) Method for preparing tungsten trioxide precursor and hydrogen sulfide gas sensor fabricated using the same
EP1678488A1 (en) Novel sensor configuration
JPH01140052A (en) Gas sensor and manufacture thereof
JP3653293B2 (en) Method for determining the concentration of gas in a vapor
US11112394B2 (en) Ethylenic compound sensor including an organic semiconductor
WO2001055710A1 (en) Carbon monoxide detector
US20050093425A1 (en) Optical sensor, method of manufacturing and driving an optical sensor, method of detecting light intensity
US20170023508A1 (en) Method of making thin film humidity sensors
KR20230153136A (en) PVDF/LiCl composite thin film coated inter-digitated capacitor electrode-based high sensitivity humidity sensor and manufacturing method thereof
JP2918394B2 (en) Nitrogen oxide detection sensor
Rodrìuez-mendez Langmuir-Blodgett films of rare-earth lanthanide bisphthalocyanines. Applications as sensors of gases and volatile organic compounds
Gu et al. A gas-humidity sensor fabricated with phthalocyanine Langmuir-Blodgett film
Şen et al. Room-temperature sensing of volatile organic compounds using graphene
JP2918393B2 (en) Nitrogen oxide detection sensor
Mascaro et al. ChemiBlock transducers
JPH02190754A (en) Humidity sensor