JPH01139790A - Production of electrolytic bismuth having low silver content - Google Patents

Production of electrolytic bismuth having low silver content

Info

Publication number
JPH01139790A
JPH01139790A JP62297726A JP29772687A JPH01139790A JP H01139790 A JPH01139790 A JP H01139790A JP 62297726 A JP62297726 A JP 62297726A JP 29772687 A JP29772687 A JP 29772687A JP H01139790 A JPH01139790 A JP H01139790A
Authority
JP
Japan
Prior art keywords
bismuth
electrolyte
silver
electrolytic
dissolved oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62297726A
Other languages
Japanese (ja)
Inventor
Shuichi Oto
修一 大戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP62297726A priority Critical patent/JPH01139790A/en
Publication of JPH01139790A publication Critical patent/JPH01139790A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To reduce the silver content of electrolytic Bi when Bi is electrolyzed to produce electrolytic Bi by keeping dissolved oxygen in an electrolytic soln. at a specified concn. or below. CONSTITUTION:When Bi is electrolyzed in an electrolytic soln. contg. H2SiF6, dissolved oxygen in the electrolytic soln. is kept at <=5.0mg/l. The leaching of silver by the reaction of Ag with O2 and H2SiF6 can be inhibited and the silver content of electrolytic Bi can be reduced to <=5ppm, preferably <=1ppm. Since contamination with silver can be more effectively prevented by reducing the temp. of the electrolytic soln. in the electrolysis, the electrolytic soln. is kept at <=40 deg.C.

Description

【発明の詳細な説明】 本発明は、電解による低銀品位の電気ビスマスの製造法
に関するものであり、特には電解液中の溶存酸素及び或
は電解液の温度を管理することによる5、0ppm以下
、一般に3〜4 ppm以下、好ましくは1 ppm以
下の低銀品位の電気ビスマスの製造法に関する。本発明
は、近時普及の著しい半導体、電気接点、触媒、低温は
んだ、導電性接着剤等の構成材料として或は添加剤とし
て用いられることの多くなったビスマスの銀品位の低減
を計るものであり、併せて原料たる鉛殿物からの銀回収
の徹底化を計るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing electric bismuth with a low silver grade by electrolysis, and in particular, by controlling the dissolved oxygen in the electrolyte and/or the temperature of the electrolyte. The following describes a method for producing electrical bismuth having a low silver grade of generally 3 to 4 ppm or less, preferably 1 ppm or less. The present invention aims to reduce the silver quality of bismuth, which is increasingly used as a constituent material or additive in semiconductors, electrical contacts, catalysts, low-temperature solders, conductive adhesives, etc., which have become increasingly popular in recent years. At the same time, the aim is to thoroughly recover silver from lead precipitates, which are raw materials.

′  へとその。頭載 ビスマスは鉛殿物を原料として回収される。鉛殿物には
鉛が20〜40%含まれており、幾つかの乾式製錬工程
を経由した後粗ビスマスを電解精製することにより電気
ビスマスが製造されている。例えば、鉛殿物はそれを電
気炉で還元することにより還元鉛とされ、その後アンチ
モン揮発炉において揮発法によりsbを5b203とし
て回収する。ここで得られる鉛貴鉛は溶離炉において校
銀とビスマスを含む絞鉛に分離される。この校鉛は塩化
により鉛を除去して粗ビスマスとされる。この粗ビスマ
スはアノードに鋳造され、電解精製により電気ビスマス
とされる。最後に、電気ビスマスは、精製炉において脱
銅されて製品ビスマスとなる。
′ to that. Overhead bismuth is recovered from lead precipitates. The lead precipitate contains 20 to 40% lead, and electric bismuth is produced by electrolytically refining crude bismuth after passing through several pyrometallurgical processes. For example, lead precipitate is reduced to reduced lead by reducing it in an electric furnace, and then sb is recovered as 5b203 by a volatilization method in an antimony volatilization furnace. The noble lead obtained here is separated into proof silver and drawn lead containing bismuth in a melting furnace. This proof lead is converted into crude bismuth by removing lead through chlorination. This crude bismuth is cast into an anode and electrorefined to produce electric bismuth. Finally, the electric bismuth is decoppered in a refining furnace to produce bismuth product.

ビスマス電解は、Biz (SiFe) 3+ HzS
iFa溶液を電解液としてチタン板或はステンレス板種
板上に純ビスマスを析出させることにより行なわれる。
Bismuth electrolysis is Biz (SiFe) 3+ HzS
This is carried out by depositing pure bismuth on a titanium plate or stainless steel plate using an iFa solution as an electrolyte.

アノードのスライムだおれを防ぐためにアノード各−枚
に炉布製の袋が付けられる。電解液組成は一般には、 Bi”       30〜100  g/111□S
+Fe     200〜400  g/ICI濃度 
    50〜100 ml/1である。電解条件は例
えば、液温=35℃以上、Dk=約65A/m” :電
圧=0.4Vとされ、14日1代取りで操業が行なわれ
ている。電解液は環流される。
A furnace cloth bag is attached to each anode to prevent slime from dripping on the anode. The electrolyte composition is generally Bi” 30-100 g/111□S
+Fe 200-400 g/ICI concentration
It is 50-100 ml/1. The electrolytic conditions are, for example, liquid temperature = 35° C. or higher, Dk = approximately 65 A/m'', voltage = 0.4 V, and the operation is carried out with one generation every 14 days. The electrolytic solution is refluxed.

こうしたビスマス電解の通常操業においては、銀が0.
4mg/1以上、一般に0.5 mg/l程度含まれて
いる。
In normal operation of such bismuth electrolysis, silver is 0.
It is contained in an amount of 4 mg/l or more, generally around 0.5 mg/l.

最近、ビスマス材料に対する高純度化への要求からまた
銀を最大限に回収する目的から、電気ビスマス中のビス
マス含有量をもっと低減することへの要望が強くなって
いる。
Recently, there has been a strong desire to further reduce the bismuth content in electric bismuth due to the demand for higher purity of bismuth materials and for the purpose of maximizing silver recovery.

現在、電解液に)ICIを添加し、 Ag” + CI−= AgC1↓(CI濃度50〜1
00 ml/1 )の反応によりAg”の混入防止を計
っている。しかし、電気ビスマスの銀品位を5 ppm
以下に低減するには、これだけでは不十分であり、新た
な対策が必要である。
Currently, by adding ICI (to the electrolyte), Ag" + CI- = AgC1↓ (CI concentration 50 to 1
00 ml/1) to prevent the contamination of Ag.
This alone is not sufficient to reduce the amount below, and new measures are required.

l豆五且刀 本発明の目的は、電気ビスマスの銀品位を5ppm以下
、好ましくは1 ppm以下にまでも低減する技術を開
発することである。
An object of the present invention is to develop a technique for reducing the silver content of electric bismuth to 5 ppm or less, preferably 1 ppm or less.

l豆立且I 上記目的に向け、本発明者等は検討を重ねた結果、銀汚
染防止には上記塩化銀反応によるだけでは限界があり、 2Ag◆1/20□◆1lzsiFs= AgzSiF
e + H2Oの反応による銀溶出を極力抑制する必要
があるとの知見をここに初めて見出すに至った。更に、
HzSiFa系電解液において、電解液の温度を低くす
る程、銀汚染を一層防止しうることも初めて確認された
Toward the above objective, the present inventors have conducted repeated studies and found that there is a limit to preventing silver contamination only by the above silver chloride reaction, and 2Ag◆1/20□◆1lzsiFs=AgzSiF
This is the first time that we have discovered that it is necessary to suppress silver elution due to the e + H2O reaction as much as possible. Furthermore,
It was also confirmed for the first time that in a HzSiFa-based electrolyte, the lower the temperature of the electrolyte, the more silver contamination can be prevented.

この知見に基すいて、本発明は、 1)電気ビスマスを製造するビスマス電解において、電
解液中の溶存酸素を5.0mg/l以下に保持すること
を特徴とする低銀品位の電気ビスマスの製造法、及び 2)電気ビスマスを製造するビスマス電解において、電
解液中の溶存酸素を5.0mg/l以下に保持しそして
電解液の温度を40℃以下に保持することを特徴とする
低銀品位の電気ビスマスの製造法を提供するものであり
、好ましい態様としては電解液中の溶存酸素をl  m
g/l以下に保持しそして電解液の温度を30℃以下に
保持することにより銀品位は] ppm以下とされる。
Based on this knowledge, the present invention provides: 1) In bismuth electrolysis for producing electric bismuth, dissolved oxygen in the electrolyte is maintained at 5.0 mg/l or less. 2) A low-silver electrolysis method for producing electric bismuth, characterized in that dissolved oxygen in the electrolyte is maintained at 5.0 mg/l or less and the temperature of the electrolyte is maintained at 40°C or less. The present invention provides a method for producing high-quality electric bismuth, and in a preferred embodiment, dissolved oxygen in the electrolyte is reduced to l m
By maintaining the silver content below g/l and keeping the temperature of the electrolyte below 30° C., the silver grade is kept below ppm.

免肚旦且盗璽韮l 電気ビスマスへの銀混入については、物理的汚染と電気
化学的汚染の2大要囚があるが、本発明は電気化学的汚
染を防止するものである。
There are two major concerns regarding silver contamination in electric bismuth: physical contamination and electrochemical contamination, but the present invention prevents electrochemical contamination.

アノードからの銀の溶出については次の2つの反応が考
えられる二 ■Ag″″+e =Ag E”  (at 25℃) 
= + 0.7994V(Bi’″3+ 3e = B
i  +0.32V )■ 2Ag + l/20□+
HzSiFg= AgzSiFs ” )+20■の反
応についてはその平衡電位から判断して無視できるもの
と考えられる。■の反応によって溶出したAg’″は負
極に達するまでにアノードスライムとして固定すれば電
気ビスマスの汚染は抑制できるが、このための方法とし
て、現在、電解液にHCIを添加し、 ■Ag”+CI−= AgC1↓(CI濃度50〜10
0 ml/I )の反応によりAg”の混入防止を計っ
ている。しかし、電気ビスマスの銀品位を5 ppm以
下に低減するには、これだけでは不十分であり、■の反
応による銀溶出を極力抑制する必要がある。
Regarding the elution of silver from the anode, the following two reactions can be considered.2■Ag″″+e =Ag E″ (at 25°C)
= + 0.7994V (Bi'''3+ 3e = B
i +0.32V)■ 2Ag + l/20□+
HzSiFg=AgzSiFs")+20The reaction of ■ is considered to be negligible judging from its equilibrium potential.If the Ag'" eluted by the reaction of ■ is fixed as an anode slime before reaching the negative electrode, it will not contaminate the electric bismuth. However, the current method for this purpose is to add HCI to the electrolyte, and ■Ag"+CI-=AgC1↓ (CI concentration 50 to 10
0 ml/I) reaction to prevent the contamination of Ag''. However, this alone is not sufficient to reduce the silver content of electric bismuth to 5 ppm or less, and the silver elution caused by the reaction (2) is minimized. need to be suppressed.

アノードスライムを電解液(CI濃度50 ml/I 
)に浮遊させて、電解液中の溶存酸素を変化させた場合
の電解液中の溶存酸素と銀濃度との関係を第1図に示す
。両者間には、はぼ正比例関係が見られる。これが、本
発明の溶存酸素低減効果を裏付けるものと考えられる。
The anode slime was mixed with an electrolyte solution (CI concentration 50 ml/I
) and the relationship between dissolved oxygen in the electrolyte and silver concentration is shown in FIG. 1 when the dissolved oxygen in the electrolyte is varied. A directly proportional relationship can be seen between the two. This is considered to support the dissolved oxygen reducing effect of the present invention.

次に、HiSiFs系電解液において、電解液の温度を
低くする程、銀汚染を一層防止しうることも本発明にお
いて初めて確認された。
Next, it was also confirmed for the first time in the present invention that silver contamination can be further prevented as the temperature of the HiSiFs electrolyte is lowered.

第2図は、上記溶存酸素及び温度低減効果に基ずく電気
ビスマスの銀品位を示すグラフである。
FIG. 2 is a graph showing the silver quality of electric bismuth based on the dissolved oxygen and temperature reduction effects.

これから、電解液中の溶存酸素を5.0mg/l以下に
保持することにより5 ppm以下の低銀品位の電気ビ
スマスの製造が可能とされ、特には、電解液中の溶存酸
素を5.0mg/l以下に保持しそして電解液の温度を
40℃以下、好ましくは35℃以下に保持することによ
り安定して低銀品位の電気ビスマスを製造することが出
来る。驚くべきことに、電解液中の溶存酸素を1  m
g/l以下に保持しそして電解液の温度を30℃以下に
保持することにより銀品位はl ppm以下にまでも低
減されつる。
From now on, it is possible to produce electric bismuth with a low silver grade of 5 ppm or less by keeping the dissolved oxygen in the electrolyte at 5.0 mg/l or less. By maintaining the temperature of the electrolyte below 40°C, preferably below 35°C, electric bismuth with a low silver grade can be stably produced. Surprisingly, dissolved oxygen in the electrolyte was reduced to 1 m
By keeping the silver content below 1 ppm and keeping the temperature of the electrolyte below 30° C., the silver quality can be reduced to below 1 ppm.

電解液の温度を下げることは、電流密度を低下せしめ従
って電解効率を下げると同時に冷却コストを必要とする
ので、状況に応じて許容される程度まで電解液の温度を
下げたうえで、電解液中の溶存酸素の低減化を計ること
が好ましい。
Lowering the temperature of the electrolyte lowers the current density and therefore lowers the electrolytic efficiency and requires cooling costs. It is preferable to reduce the amount of dissolved oxygen in the container.

電解液中の溶存酸素の低減化を計るためには、周囲空気
との接触或はその巻き込みを最大限に防止する次のよう
な対策が必要である: 1)電解液循環用ポンプをゲランドレスポンプに変更す
る(例えばマグネットポンプの使用)。
In order to reduce dissolved oxygen in the electrolyte, it is necessary to take the following measures to prevent contact with the surrounding air or entrainment to the maximum extent possible: 1) Use a Guerandless pump for electrolyte circulation. Change to a pump (e.g. use a magnetic pump).

2)循環電解液の電解槽への返送に際しての或はその循
環経路において、液落下時の空気巻き込みを防止するた
め管先端を液中に浸漬状態とする。
2) When returning the circulating electrolyte to the electrolytic cell or in the circulation route, the tip of the tube is immersed in the liquid to prevent air from being entrained when the liquid falls.

3)循環電解液の濾過時の空気巻き込みを防止するため
開放型フィルターを密閉型フィルターに変更する。
3) Change the open type filter to a closed type filter to prevent air entrainment during filtration of the circulating electrolyte.

4)電解槽液表面の浮子、ポリプロピレンボール等によ
る被覆或は密閉蓋ないしカバーの採用により液表面と空
気との接触を防止する。
4) Prevent contact between the liquid surface and air by coating the surface of the electrolytic cell liquid with a float, polypropylene balls, etc., or by using an airtight lid or cover.

こうした対策の下で電解液中の溶存酸素は充分に低減さ
れ得るが、電解液循環経路において、電解液を真空に曝
したり、COガス等のバブリングといった脱酸対策を講
じることも有用である。
Although dissolved oxygen in the electrolyte can be sufficiently reduced under these measures, it is also useful to take deoxidizing measures such as exposing the electrolyte to a vacuum or bubbling CO gas or the like in the electrolyte circulation path.

温度管理は、電解槽自体のの温度コントロール或は液循
環経路での電解液温度調節によりもたらされる。
Temperature control is achieved by controlling the temperature of the electrolytic cell itself or adjusting the temperature of the electrolyte in the liquid circulation path.

電解操業条件は、温度及び溶存酸素の管理を除いて、次
のような従来態様に従う、塩素による銀除去効果をも活
用するため、塩素濃度を70〜100g/I と高めに
なし且つか過を強化することが推奨される。
The electrolytic operation conditions, except for temperature and dissolved oxygen management, are as follows: In order to take advantage of the silver removal effect of chlorine, the chlorine concentration is high (70 to 100 g/I) and there is no filtration. Reinforcement is recommended.

電解液組成 り14330〜100  g/1 )1iSjFa         200〜400  
 g/IC1濃度     50〜100 ml/1電
解条件 Dk      58〜?OA/m2 摺電圧   0.35〜0.45V アノード   炉布製袋装着 カソード   ステンレス鋼 環流量     1〜4 1/min槽こうして低銀品
位の電気ビスマスがカソード上に電着され、これを剥取
り、精製炉にて脱銅処理を施された後、製品ビスマスが
得られる。
Electrolyte composition 14330-100 g/1) 1iSjFa 200-400
g/IC1 concentration 50-100 ml/1 Electrolytic conditions Dk 58-? OA/m2 Sliding voltage 0.35~0.45V Anode Furnace cloth bag attached cathode Stainless steel circulation flow rate 1~4 1/min bath Thus, low silver grade electric bismuth is electrodeposited on the cathode, and this is peeled off. After being decoppered in a refining furnace, the bismuth product is obtained.

一方、電気ビスマス中に入らず、アノードスライムに残
留した銀は別途処理される。
On the other hand, silver that does not enter the electric bismuth and remains in the anode slime is treated separately.

及豆立刀1 比較的簡易な対策により、5 ppm以下特には1pp
m以下の低銀品位の電気ビスマスの製造が可能とされ、
銀資源の回収の徹底化を計ると共に従来より高純度のビ
スマス材料を電子デバイスと関連して使用可能とした。
Oimizu Tachito 1 Relatively simple measures can reduce the concentration to 5 ppm or less, especially 1 ppm.
It is said that it is possible to produce electric bismuth with a low silver grade of less than m.
In addition to thorough recovery of silver resources, we have made it possible to use bismuth materials with higher purity than before in connection with electronic devices.

K施l 以下の条件にて電気ビスマスを製造した:電解液組成 りi”      70〜80  g/l+(2SIF
11    300〜350 g/ICI濃度    
  80  mg/l電解条件 保有液量    22m3 Dk       65  A/m” 摺電圧     0.4V アノード   か布製袋装着 寸法 約1m2 カソード   ステンレス鋼 寸法 約1m” 環流量      3 1/min槽 極ライフ     14日 電解液溶存酸素量は0.5〜5.0 mg/Iの範囲で
そして電解液温度は15〜45℃の範囲で変更し、得ら
れた関係が、前出の第2図である。温度を15℃に減す
ると、溶存酸素1.0mg/lで電気ビスマス銀含有量
は充分に1.0ppm以下になる。温度を30℃に減す
ると、溶存酸素0.5mg/Iで電気ビスマス銀含有1
は1.0 ppm以下になる。現状の温度下での操業で
も、溶存酸素2.0mg/l以下に管理することにより
容易に5 ppm以下の低銀品位の電気ビスマスの製造
が可能であることがわかる。
Electric bismuth was produced under the following conditions: Electrolyte composition i'' 70-80 g/l+(2SIF
11 300-350 g/ICI concentration
80 mg/l Electrolytic condition Retained liquid volume 22 m3 Dk 65 A/m" Sliding voltage 0.4 V Anode or cloth bag mounting dimensions Approx. 1 m2 Cathode Stainless steel dimensions Approx. 1 m" Circulating flow rate 3 1/min Cell electrode life 14 days Electrolyte The amount of dissolved oxygen was varied in the range of 0.5 to 5.0 mg/I, and the electrolyte temperature was varied in the range of 15 to 45°C, and the relationships obtained are shown in FIG. 2 above. When the temperature is reduced to 15° C., the electrical bismuth silver content is well below 1.0 ppm with dissolved oxygen of 1.0 mg/l. When the temperature is reduced to 30°C, electrical bismuth silver containing 1 with dissolved oxygen 0.5 mg/I
becomes 1.0 ppm or less. It can be seen that even under the current operating temperature, it is possible to easily produce electric bismuth with a low silver grade of 5 ppm or less by controlling dissolved oxygen to 2.0 mg/l or less.

製品ビスマスの分析値の一例を示す(ppm)  :B
I  AL −助 士 −劇 −科 9999 %  0.92212 4×[の18日 第1図は電解液中の溶存酸素と銀濃度との関係を示すグ
ラフであり、第2図は、溶存酸素及び温度と電気ビスマ
スの銀品位との関係をを示すグラフである。
An example of the analysis value of bismuth product (ppm): B
Figure 1 is a graph showing the relationship between dissolved oxygen and silver concentration in the electrolyte, and Figure 2 is a graph showing the relationship between dissolved oxygen and silver concentration in the electrolyte. It is a graph showing the relationship between temperature and silver grade of electric bismuth.

jl“−1 :、□、I寺。jl“-1 :, □, I temple.

代理人の氏名 倉 内 基 (1 第1図 3I− 溶存底引”Q/l) 第2図 簿存級引mg/l )Name of agent: Motoi Kurauchi (1 Figure 1 3I- Dissolved bottom pull”Q/l) Figure 2 Book balance mg/l)

Claims (1)

【特許請求の範囲】 1)電気ビスマスを製造するビスマス電解において、電
解液中の溶存酸素を5.0mg/l以下に保持すること
を特徴とする低銀品位の電気ビスマスの製造法。 2)電気ビスマスを製造するビスマス電解において、電
解液中の溶存酸素を5.0mg/l以下に保持しそして
電解液の温度を40℃以下に保持することを特徴とする
低銀品位の電気ビスマスの製造法。 3)電解液中の溶存酸素を1mg/l以下に保持しそし
て電解液の温度を30℃以下に保持することにより銀品
位を1ppm以下とした特許請求の範囲第2項記載の低
銀品位の電気ビスマスの製造法。
[Scope of Claims] 1) A method for producing electric bismuth with a low silver grade, characterized in that dissolved oxygen in the electrolyte is maintained at 5.0 mg/l or less in bismuth electrolysis for producing electric bismuth. 2) Low silver grade electric bismuth characterized by maintaining dissolved oxygen in the electrolyte at 5.0 mg/l or less and maintaining the temperature of the electrolyte at 40°C or less in bismuth electrolysis for producing electric bismuth. manufacturing method. 3) The low silver grade according to claim 2, in which the dissolved oxygen in the electrolyte is kept at 1 mg/l or less and the temperature of the electrolyte is kept at 30° C. or less, thereby reducing the silver grade to 1 ppm or less. Method for producing electric bismuth.
JP62297726A 1987-11-27 1987-11-27 Production of electrolytic bismuth having low silver content Pending JPH01139790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62297726A JPH01139790A (en) 1987-11-27 1987-11-27 Production of electrolytic bismuth having low silver content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62297726A JPH01139790A (en) 1987-11-27 1987-11-27 Production of electrolytic bismuth having low silver content

Publications (1)

Publication Number Publication Date
JPH01139790A true JPH01139790A (en) 1989-06-01

Family

ID=17850381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62297726A Pending JPH01139790A (en) 1987-11-27 1987-11-27 Production of electrolytic bismuth having low silver content

Country Status (1)

Country Link
JP (1) JPH01139790A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019203199A (en) * 2019-07-23 2019-11-28 Jx金属株式会社 Electrolytic method of bismuth

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019203199A (en) * 2019-07-23 2019-11-28 Jx金属株式会社 Electrolytic method of bismuth

Similar Documents

Publication Publication Date Title
EP0068469B1 (en) Refining copper-bearing material contaminated with nickel, antimony and/or tin
JPS6327434B2 (en)
JP2642230B2 (en) Manufacturing method of high purity tin
US4287030A (en) Process for producing high-purity indium
GB2267716A (en) Process for the direct electrochemical refining of copper scrap
US4312724A (en) Method for the recovery of lead from materials containing lead sulfide
JP2623267B2 (en) Manufacturing method of low-purity high-purity electrolytic copper
JPH01139790A (en) Production of electrolytic bismuth having low silver content
JP2594799B2 (en) Manufacturing method of low-purity high-purity electrolytic copper
JP2019052329A (en) Electrorefining method of low-grade copper anode, and electrolytic solution used therefor
KR102237348B1 (en) Recovery method of copper and precious metal by electrolysis of crude copper containing precious metal using copper chloride solution
US3915818A (en) Electrowinning process for the improved recovery of metal
EP0219475A1 (en) Electrowinning cell
US3755111A (en) Elimination of floating slime during electrolytic refining of copper
US3382163A (en) Method of electrolytic extraction of metals
US4124460A (en) Electrowinning of copper in presence of high concentration of iron
US2839461A (en) Electrolytic recovery of nickel
JP2570076B2 (en) Manufacturing method of high purity nickel
US881527A (en) Process for treating complex cobalt ores and for refining cobalt from nickel, arsenical, and silver-bearing ores.
JPS63307291A (en) Manufacture of high-purity copper
KR100349445B1 (en) Cementation apparatus of high purity copper
JPH01219186A (en) Method for refining indium
CA1123778A (en) Process and apparatus for the purification of gallium
US1157830A (en) Electrolytic refining of tin.
JPS63297583A (en) Manufacture of high-purity electrolytic copper