JPH01139574A - Production of propylene oxide - Google Patents

Production of propylene oxide

Info

Publication number
JPH01139574A
JPH01139574A JP62295313A JP29531387A JPH01139574A JP H01139574 A JPH01139574 A JP H01139574A JP 62295313 A JP62295313 A JP 62295313A JP 29531387 A JP29531387 A JP 29531387A JP H01139574 A JPH01139574 A JP H01139574A
Authority
JP
Japan
Prior art keywords
reaction tower
acid
reaction
propylene oxide
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62295313A
Other languages
Japanese (ja)
Inventor
Kaoru Ueno
薫 上野
Keisuke Watanabe
渡邊 佳資
Takayoshi Masuda
増田 隆良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP62295313A priority Critical patent/JPH01139574A/en
Publication of JPH01139574A publication Critical patent/JPH01139574A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To make it possible to miniaturize a production device because of causing no concentration of percarboxylic acid and directly, economically and efficiently obtain the title compound having high safeness, by reacting propylene with H2O2 in the presence of an organic carboxylic acid using a specific reaction tower and solvent. CONSTITUTION:A multistage reaction tower is used as a reaction tower and a solvent such as 1,2-dichloroethane or 1,2-dichloropropane capable of forming a heterogeneous azeotropic mixture with water and simultaneously being inert to H2O2 and propylene oxide as a solvent and an organic monocarboxylic acid such as acetic acid, propionic acid or lactic acid and orthoborate, etc., as an acid catalyst are charged and bottom liquid of the reaction tower is circulated to upper part of a reactor and H2O2 is fed from a circulating feed part of the bottom liquid of reaction tower to the lower part and propylene is fed from the reaction tower bottom and water introduced into the reaction tower and water produced by reaction are continuously taken out from the upper part of the reaction tower together with the above-mentioned solvent and the resultant propylene oxide to provide the propylene oxide.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプロピレンオキサイドの製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing propylene oxide.

〔従来の技術〕[Conventional technology]

従来より提案されている、プロピレンと過酸化水素とか
らプロピレンオキサイドを製造する方法として、 (1)酸触媒、過酸化水素、プロピオン酸を10〜70
°Cで反応させ過プロピオン酸を製造し、得られた反応
混合物からベンゼン、二塩化プロパン等で過プロピオン
酸を抽出した後、40〜100°Cの温度及び2〜30
kg/cm”の圧力で過剰のプロピレンと反応させ、プ
ロピレンオキサイドを製造する方法(例えば特公昭59
−38231号、特公昭59−38232号、特公昭5
9−38951号、特開昭51−101906号、特開
昭53−59611号など)、 (2)水と不均質共沸混合物を形成しうる不活性有機溶
媒の存在下、過酸化水素とカルボン酸を反応させ、反応
混合物中に存在する水を共沸蒸留により除去して過カル
ボン酸を得た後、(1)と同様にしてプロピレンオキサ
イドを製造する方法(例えば、特開昭5・6−1897
3号)、 (3)エポキシ化触媒として酸化ホウ素、ホウ素のオキ
シ酸、又は、ホウ素のオキシ酸エステルを使用し、過酸
化水素とプロピレンを0〜120℃でエポキシ化する方
法であって、その際過酸化水素と共に導入した水、及び
反応により生成した水を反応媒体から連続的に除去する
方法(例えば、特公昭58−50990号)、 (4)砒素触媒の存在下においてプロピレンと過酸化水
素とを混和し、25〜200°Cの温度で反応させ、プ
ロピレンオキサイドを製造する方法、又は(3)と同様
に共沸脱水により連続的に水を除去する方法(例えば、
特公昭53−44442号、特開昭53−95901号
)などが知られている。
Conventionally proposed methods for producing propylene oxide from propylene and hydrogen peroxide include (1) acid catalyst, hydrogen peroxide, and propionic acid of 10 to 70%
After reacting at °C to produce perpropionic acid and extracting perpropionic acid from the resulting reaction mixture with benzene, propane dichloride, etc.,
A method of producing propylene oxide by reacting with excess propylene at a pressure of
-38231, Special Publication No. 59-38232, Special Publication No. 597
(2) Hydrogen peroxide and carvone in the presence of an inert organic solvent that can form a heterogeneous azeotrope with water. After reacting an acid and removing water present in the reaction mixture by azeotropic distillation to obtain a percarboxylic acid, propylene oxide is produced in the same manner as in (1) (for example, according to JP-A-5-6 -1897
No. 3), (3) A method of epoxidizing hydrogen peroxide and propylene at 0 to 120°C using boron oxide, a boron oxyacid, or a boron oxyacid ester as an epoxidation catalyst, A method in which water introduced together with hydrogen peroxide and water produced by the reaction are continuously removed from the reaction medium (for example, Japanese Patent Publication No. 58-50990); (4) propylene and hydrogen peroxide in the presence of an arsenic catalyst; A method of producing propylene oxide by mixing and reacting at a temperature of 25 to 200°C, or a method of continuously removing water by azeotropic dehydration as in (3) (e.g.
Japanese Patent Publication No. 53-44442, Japanese Unexamined Patent Application Publication No. 53-95901) are known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上記(1)の方法では反応液中から高収率
で過プロピオン酸を抽出するためには大量の溶剤と多く
の抽出段数を必要とする。またエポキシ化反応液よりプ
ロピレンオキサイドの分離精製、溶媒の回収、循環に多
大のエネルギーと装置を必要とする゛、また実用上過カ
ルボン酸は20〜30%以上の濃度で使用されるため、
非常に爆発の危険性の高い、ジアシルパーオキサイドの
副生濃縮の可能性があり、安全上問題である。
However, method (1) above requires a large amount of solvent and a large number of extraction stages in order to extract perpropionic acid from the reaction solution in high yield. In addition, a large amount of energy and equipment are required to separate and purify propylene oxide from the epoxidation reaction solution, recover and circulate the solvent, and in practice, percarboxylic acid is used at a concentration of 20 to 30% or more.
There is a possibility of condensation of diacyl peroxide as a by-product, which has a very high risk of explosion, which is a safety issue.

RCOOOH+RCOOH−4 RCOO−00CR+HzO 上記(2)の方法では反応混合物中の水を有機溶媒との
共沸により除去するため、過酸化水素に基づく過プロピ
オン酸の収率という点では優れているが、上記(1)と
同様プロピレンオキサイドの精製、溶媒の回収、ジアシ
ルパーオキサイドの副生等の問題が残る。
RCOOOH + RCOOH-4 RCOO-00CR + HzO In method (2) above, water in the reaction mixture is removed by azeotropy with an organic solvent, so it is superior in terms of the yield of perpropionic acid based on hydrogen peroxide, but the above method Similar to (1), problems such as purification of propylene oxide, recovery of solvent, and by-product of diacyl peroxide remain.

上記(3)、(4)の方法では触媒に強酸を使用しない
ため、生成したエポキシドの開環などの副反応は(1)
、(2)の方法に比べて低(抑えられるという利点を有
するが、過酸化水素自身のエポキシ化力が過カルボン酸
に比べて極めて弱いため上記(1)、(2)の方法と同
条件では過酸化水素の転化率は低く、−方反応温度、圧
力等を上げると過酸化水素の転化率は向上するが、プロ
ピレンオキサイドの開環によりブ「ピレンオキサイドの
選択率は逆に低下してしまう、また経済性、安全性の問
題から触媒の回収が必要であり、プロセスが煩雑になる
、等の問題がある。
In methods (3) and (4) above, strong acids are not used as catalysts, so side reactions such as ring-opening of the generated epoxide are prevented as described in (1).
, has the advantage of being lower than method (2), but since the epoxidation power of hydrogen peroxide itself is extremely weak compared to percarboxylic acid, the same conditions as methods (1) and (2) above are used. The conversion rate of hydrogen peroxide is low, and increasing the reaction temperature, pressure, etc. improves the conversion rate of hydrogen peroxide, but the selectivity of propylene oxide decreases due to ring opening of propylene oxide. There are also problems such as storage, and the need to recover the catalyst due to economical and safety issues, making the process complicated.

本発明の目的は、過カルボン酸の濃縮の起こらない、安
全性の高いプロピレンオキサイドの直接製造法を提供す
ることにある。
An object of the present invention is to provide a highly safe method for directly producing propylene oxide that does not cause concentration of percarboxylic acid.

〔問題点を解決するための手段及び作用〕本発明者らは
、上記問題を解決するため種々検討した結果、遂に本発
明を完成するに至った。
[Means and effects for solving the problems] The present inventors have made various studies to solve the above problems, and as a result, have finally completed the present invention.

すなわち本発明は、溶媒として水と不均質共沸混合物を
形成するとともに、過酸化水素及びプロピレンオキサイ
ドとは不活性な溶媒を使用し、かつ有機モノカルボン酸
の存在下に、プロピレンと過酸化水素とからプロピレン
オキサイドを製造するに際して、 ■反応塔として多段反応塔を使用し、 ■反応塔ボトム液を反応塔上部に循環させ、■過酸化水
素を反応塔ボトム液の循環供給部より下部に、プロピレ
ンを反応塔ボトムより供給し、■反応塔内に導入された
水及び反応により生成した水を、上記溶媒及び生成した
プロピレンオキサイドと共に反応塔上部より連続的に取
り出すことを特徴とするプロピレンオキサイドの製造方
法である。
That is, the present invention uses a solvent that forms a heterogeneous azeotrope with water as a solvent and is inert to hydrogen peroxide and propylene oxide, and in the presence of an organic monocarboxylic acid, propylene and hydrogen peroxide When producing propylene oxide from , 1) a multi-stage reaction tower is used as the reaction tower, 2) the reaction tower bottom liquid is circulated to the upper part of the reaction tower, 2) hydrogen peroxide is passed from the circulation supply part of the reaction tower bottom liquid to the lower part, A method for producing propylene oxide characterized in that propylene is supplied from the bottom of the reaction column, and (1) water introduced into the reaction column and water produced by the reaction are continuously taken out from the top of the reaction column together with the solvent and the propylene oxide produced. This is the manufacturing method.

本発明に使用する多段反応塔は、棚段塔、充填塔など通
常の蒸留塔型式のものが使用し得る。
The multistage reaction column used in the present invention may be a conventional distillation column type such as a plate column or a packed column.

反応塔ボトム液の反応塔上部への循環量は、反応温度、
循環液中の有機モノカルボン酸濃度、プロピレン供給量
、等により異なるが、通常過酸化水素供給量の10〜1
00倍が望ましい、一方過酸化水素供給量は、過酸化水
素と共に反応塔内に導入された水とプロピレンとの反応
により生成した水の和が、水と不均質共沸混合物を形成
すると共に、過酸化水素及びプロピレンオキサイドとは
不活性な溶媒の反応塔上部よりの留出量に対して、共沸
組成以下とすることが必要である。過酸化水素供給量が
これを越えると、反応塔内への過酸化水素、水の蓄積が
起こり、プロピレンオキサイド生成効率が低下し、プロ
ピレンオキサイドの開環等による副生物が増加すると共
に、高濃度過酸化水素が蓄積し、操作上危険となる。
The amount of circulation of the reaction tower bottom liquid to the top of the reaction tower depends on the reaction temperature,
Although it varies depending on the concentration of organic monocarboxylic acid in the circulating fluid, the amount of propylene supplied, etc., it is usually 10 to 1% of the amount of hydrogen peroxide supplied.
On the other hand, the amount of hydrogen peroxide supplied is such that the sum of the water introduced into the reaction tower together with hydrogen peroxide and the water produced by the reaction with propylene forms a heterogeneous azeotrope with water, and Hydrogen peroxide and propylene oxide need to have an azeotropic composition or less with respect to the amount of inert solvent distilled from the upper part of the reaction column. If the amount of hydrogen peroxide supplied exceeds this, hydrogen peroxide and water will accumulate in the reaction tower, reducing propylene oxide production efficiency, increasing by-products due to propylene oxide ring opening, etc., and increasing the concentration. Hydrogen peroxide will accumulate and become operationally hazardous.

過酸化水素の供給部は反応塔ボトム液の循環供給部より
下部にする必要がある。該供給部が反応塔ボトム液の循
環供給部と同じか、又は上部の場合は過酸化水素の反応
塔上部よりの同伴による損失が大きくなる。
The hydrogen peroxide supply section must be located below the reaction tower bottom liquid circulation supply section. If the supply section is the same as or above the circulation supply section for the bottom liquid of the reaction tower, the loss due to entrainment of hydrogen peroxide from the upper part of the reaction tower becomes large.

本発明に使用する有機モノカルボン酸としては、酢酸、
プロピオン酸、酪酸、イソ酪酸等の炭素数2〜8個の有
機モノカルボン酸が適当である。
The organic monocarboxylic acids used in the present invention include acetic acid,
Organic monocarboxylic acids having 2 to 8 carbon atoms such as propionic acid, butyric acid, and isobutyric acid are suitable.

反応温度は、使用する有機モノカルボン酸によって異な
るが、40〜120°C1好ましくは、50〜90°C
である。40°C未満ではプロピレンのエポキシ化速度
が遅く、プロピレンオキサイドの生成が不充分であり、
120°Cを越えると過酸化水素が反応に関与せずに分
解したり、生成したプロピレンオキサイドが開環してプ
ロピレングリコール等になる副反応が促進され、プロピ
レンオキサイド選択率が低下するので好ましくない。反
応圧力は特に制約されないが、常圧ないし若干加圧が好
震しい。
The reaction temperature varies depending on the organic monocarboxylic acid used, but is preferably 40 to 120°C, preferably 50 to 90°C.
It is. Below 40°C, the propylene epoxidation rate is slow and propylene oxide is insufficiently produced.
If the temperature exceeds 120°C, hydrogen peroxide may decompose without participating in the reaction, or the generated propylene oxide may ring open to promote side reactions to form propylene glycol, etc., which is undesirable because propylene oxide selectivity decreases. . The reaction pressure is not particularly limited, but normal pressure or slightly increased pressure is preferable.

溶媒としては水と不均質共沸混合物を形成し、水と容易
に二層分離し得る溶剤が使用される。
As the solvent, a solvent that forms a heterogeneous azeotrope with water and can be easily separated into two layers from water is used.

かかる溶剤としては例えば、1,2−ジクロルエタン、
1,2−ジクロルプロパン等の塩素系溶剤、シクロヘキ
サン、ベンゼン、トルエン等の炭化水素系溶剤を挙げる
ことが出来る。
Examples of such solvents include 1,2-dichloroethane,
Examples include chlorine solvents such as 1,2-dichloropropane, and hydrocarbon solvents such as cyclohexane, benzene and toluene.

過酸化水素と共に導入した水及び反応により生成した水
の除去は、上記した水と不均質共沸混合物を形成する溶
媒との共沸藤留による方法、プロピレン及び必要に応じ
て窒素ガス等の不活性ガスによる随伴脱水法が用いられ
る。
The water introduced together with hydrogen peroxide and the water produced by the reaction can be removed by the above-mentioned azeotropic Fujidome method with a solvent that forms a heterogeneous azeotrope with water, propylene, and optionally nitrogen gas or other non-containing gas. A concomitant dehydration method using active gas is used.

反応を効率的に進めるためには、通常知られている酸触
媒を使用することが好ましい。酸触媒としては、例えば
硫酸、燐酸、陽イオン交換樹脂、オルト又はメタ硼酸等
である。これら触媒は単独、または混合で使用すること
が出来る。
In order to proceed with the reaction efficiently, it is preferable to use a commonly known acid catalyst. Examples of acid catalysts include sulfuric acid, phosphoric acid, cation exchange resins, ortho- or meta-boric acid, and the like. These catalysts can be used alone or in combination.

また生成したプロピレンオキサイドの開環を抑制するた
めには、オルト又はメタ硼酸のような弱酸が好ましい。
Further, in order to suppress ring opening of the produced propylene oxide, a weak acid such as ortho or metaboric acid is preferable.

本発明で用いる過酸化水素及び有機モノカルボン酸は市
販のものが支障なく使用できる。特に過酸化水素は30
〜60重景%水重量が市販品として入手でき好ましい、
を機モノカルボン酸の使用量は特に限定されないが、過
酸化水素を効率良く反応させるためには、有機モノカル
ボン酸を過酸化水素の2〜10モル倍使用することが望
ましい。
As the hydrogen peroxide and organic monocarboxylic acid used in the present invention, commercially available products can be used without any problem. Especially hydrogen peroxide is 30
~60% water weight is available as a commercial product and is preferred.
The amount of the organic monocarboxylic acid to be used is not particularly limited, but in order to react efficiently with hydrogen peroxide, it is desirable to use the organic monocarboxylic acid in an amount of 2 to 10 times the mole of hydrogen peroxide.

また、過酸化水素を有効に反応させるためには、同様に
プロピレンを過酸化水素の1.5〜10モル倍使用する
ことが望ましい。また経済上からプロピレンは循環使用
することが好ましい。
Further, in order to react effectively with hydrogen peroxide, it is desirable to use propylene in an amount of 1.5 to 10 moles as much as hydrogen peroxide. Furthermore, from an economical point of view, it is preferable to recycle propylene.

生成したプロピレンオキサイドは水、溶媒、未反応プロ
ピレン、又は必要に応じて窒素ガス等の不活性ガスと共
に反応器上部より反応系外に取り出され、通常の方法で
分離、精製される。
The produced propylene oxide is taken out of the reaction system from the upper part of the reactor together with water, solvent, unreacted propylene, or if necessary an inert gas such as nitrogen gas, and is separated and purified by a conventional method.

〔実施例〕〔Example〕

以下実施例により本発明をさらに詳細に説明する。但し
、本発明は以下の実施例に限定されるものではない。
The present invention will be explained in more detail with reference to Examples below. However, the present invention is not limited to the following examples.

実施例−1 常圧下、塔頂部に40°Cの温水を循環した分縮コンデ
ンサ及びlO段オルダーショウ蒸留塔(内径30mm 
)を設け、その下に多段反応塔としてパイレックスガラ
ス製、内径50mm、段間隔120開、多孔板の開孔率
1.5%、内径5m+wの溢流骨付10段棚段塔、及び
ボトムとして500mff1パイレツクスガラス製フラ
スコより成る反応器を用いた。
Example-1 A partial condensation condenser and a 10-stage Oldershaw distillation column (inner diameter 30 mm) with 40°C hot water circulating at the top of the column under normal pressure.
), and below it was a multi-stage reaction tower made of Pyrex glass, inner diameter 50 mm, stage interval 120, perforated plate porosity 1.5%, inner diameter 5 m + w, 10-stage tray tower with overflow ribs, and as a bottom. A reactor consisting of a 500 mff1 Pyrex glass flask was used.

多段反応塔内の反応液ホールドアツプ量が450成とな
る様、各段の溢流管高さ(堰高)を調節した。さらに反
応塔ボトムの反応液ホールドアツプ量が220dとなる
様、ボトム液面を調節した。
The overflow pipe height (weir height) of each stage was adjusted so that the reaction liquid hold-up amount in the multistage reaction tower was 450 cm. Furthermore, the bottom liquid level was adjusted so that the reaction liquid hold-up amount at the bottom of the reaction tower was 220 d.

反応器内にプロピオン酸168.7g(2,280mo
り、1.2−ジクロルエタン370.0g(3,739
mol) 、触媒としてオルト硼酸4.Ogrを仕込み
、70°Cに加熱した。次に反応塔ボトムからこの反応
液をポンプにより540 Id、/hrで抜き出し、多
段反応塔最上段に循環供給した。一方反応塔ボトムより
プロピレンをガス状で63.8 g/hr(1,520
mol/hr) 、窒素ガスを120ffi/hr挿入
した。
168.7 g of propionic acid (2,280 mo
1,2-dichloroethane 370.0g (3,739
mol), orthoboric acid as catalyst4. Ogr was charged and heated to 70°C. Next, this reaction solution was extracted from the bottom of the reaction tower by a pump at a rate of 540 Id/hr, and was circulated and supplied to the top stage of the multistage reaction tower. On the other hand, 63.8 g/hr (1,520
mol/hr) and nitrogen gas was inserted at 120ffi/hr.

ボトム液の循環運転及びプロピレン装入1時間後に、多
段反応塔内に反応液による段が形成されたことを確認し
て、ボトム液の循環供給部より三段下に60重重量過酸
化水素26.0g/hr(0,459mol/hr)を
供給した。
After 1 hour of circulating the bottom liquid and charging propylene, it was confirmed that stages of the reaction liquid had been formed in the multistage reaction tower, and 60% hydrogen peroxide 26% was added to three stages below the bottom liquid circulation supply section. .0 g/hr (0,459 mol/hr) was supplied.

プロピレンオキサイド、未反応プロピレン、窒素、1,
2−ジクロルエタンを含むガス相は分縮コンデンサを経
て反応系外へ取り出した0分縮コンデンサを経て反応系
外へ取り出したガス相をさらに深冷し、主に未反応プロ
ピレン、窒素より成るガス相と、主にプロピレンオキサ
イド、水、1.2−ジクロルエタンより成る液相に分離
した。
Propylene oxide, unreacted propylene, nitrogen, 1,
The gas phase containing 2-dichloroethane is taken out of the reaction system through a partial condensation condenser.The gas phase taken out of the reaction system through a partial condensation condenser is further deeply cooled to form a gas phase mainly consisting of unreacted propylene and nitrogen. The mixture was separated into a liquid phase mainly consisting of propylene oxide, water, and 1,2-dichloroethane.

該液相からプロピレンオキサイドと水を分離した1、2
−ジクロルエタンを、オルダーショウ蒸留塔最上段及び
ボトムに分割して連続供給した。
1 and 2 in which propylene oxide and water were separated from the liquid phase.
- Dichloroethane was divided and continuously fed to the top and bottom of the Aldershaw distillation column.

反応を開始してから10時間後に分縮コンデンサ出のガ
ス組成をガスクロマトグラフィーにより測定したところ
未反応プロピレン44.67 g/hr(1,065m
ol/hr)、生成プロピレンオキサイド25.15 
g/hr(0,433mol/hr)であり、プロピレ
ンオキサイド収率(生成プロピレンオキサイド/装入過
酸化水素xlOO) 94.3%であった。
Ten hours after the start of the reaction, the gas composition coming out of the partial condensation condenser was measured by gas chromatography.
ol/hr), produced propylene oxide 25.15
g/hr (0,433 mol/hr), and the propylene oxide yield (produced propylene oxide/charged hydrogen peroxide xlOO) was 94.3%.

また、反応塔上部より反応系外に取り出した1゜2−ジ
クロルエタンは525.0 g/hr 、水は18.8
 g/h「であり、留出組成は水3.46重世%であっ
た。
In addition, 1゜2-dichloroethane taken out of the reaction system from the upper part of the reaction tower was 525.0 g/hr, and water was 18.8 g/hr.
g/h, and the distillate composition was 3.46% water.

この中に含まれる留出過酸化水素は0.007 mol
/hrであり、過酸化水素留出率(留出1.2−ジクロ
ルエタン及び留出水中の過酸化水素/装入過酸化水素x
1oo)は、1.53%であった0反応条件及び結果を
表−1に示す。
Distilled hydrogen peroxide contained in this is 0.007 mol
/hr, and the hydrogen peroxide distillation rate (distilled 1.2-dichloroethane and hydrogen peroxide in distilled water/injected hydrogen peroxide x
1oo) was 1.53%.Table 1 shows the reaction conditions and results.

実施例−2 プロピオン酸のかわりに酢酸150.5 g(2,50
6mol)を使用する以外は実施例−1と同様の方法で
実施した1反応条件及び結果を表−1に示す。
Example-2 150.5 g (2,50 g) of acetic acid instead of propionic acid
Table 1 shows the reaction conditions and results of one reaction carried out in the same manner as in Example-1 except that 6 mol) was used.

実施例−3 プロピオン酸のかわりに酪酸220.Og(2,497
mol)を使用する以外は実施例−1と同様の方法で実
施した。反応条件及び結果を表−1に示す。
Example-3 Butyric acid 220. instead of propionic acid. Og(2,497
It was carried out in the same manner as in Example-1 except that mol) was used. The reaction conditions and results are shown in Table-1.

実施例−4 1,2−ジクロルエタンのかわりに1,2−ジクロルプ
ロパン310.0 g(2,743mol)を使用する
以外は実施例−1・と同様の方法で実施した。反応条件
及び結果を表−1に示す。
Example-4 The same method as Example-1 was carried out except that 310.0 g (2,743 mol) of 1,2-dichloropropane was used instead of 1,2-dichloroethane. The reaction conditions and results are shown in Table-1.

比較例−1 611%過酸化水素をボトム液の循環供給部と同一の位
置より供給する以外は、実施例−1と同様の方法で実施
した0反応条件及び結果を表−1に示す。
Comparative Example 1 Table 1 shows the reaction conditions and results of a reaction carried out in the same manner as in Example 1, except that 611% hydrogen peroxide was supplied from the same position as the bottom liquid circulation supply section.

〔発明の効果〕〔Effect of the invention〕

本発明は実施例において明らかなように、過酸化水素と
プロピレンとから効率よ(直接プロピレンオキサイドを
製造でき、過カルボン酸の濃縮が回避され安全性が大幅
に向上するとともに、装置の小型化が可能になるため経
済性に優れ、その産業上の利用価値は大きい。
As is clear from the examples, the present invention can efficiently (directly produce propylene oxide) from hydrogen peroxide and propylene, avoids concentration of percarboxylic acid, greatly improves safety, and downsizes the equipment. It is highly economical and has great industrial value.

Claims (1)

【特許請求の範囲】 1 溶媒として水と不均質共沸混合物を形成するととも
に、過酸化水素及びプロピレンオキサイドとは不活性な
溶媒を使用し、かつ有機モノカルボン酸の存在下に、プ
ロピレンと過酸化水素とからプロピレンオキサイドを製
造するに際して、(1)反応塔として多段反応塔を使用
し、 (2)反応塔ボトム液を反応塔上部に循環させ、(3)
過酸化水素を反応塔ボトム液の循環供給部より下部に、
プロピレンを反応塔ボトムより供給し、(4)反応塔内
に導入された水及び反応により生成した水を、上記溶媒
及び生成したプロピレンオキサイドと共に反応塔上部よ
り連続的に取り出すことを特徴とするプロピレンオキサ
イドの製造方法。 2 有機モノカルボン酸が、酢酸、プロピオン酸、酪酸
またはイソ酪酸である特許請求の範囲第1項記載の方法
[Claims] 1. Hydrogen peroxide and propylene oxide form a heterogeneous azeotrope with water as a solvent, using an inert solvent, and in the presence of an organic monocarboxylic acid. When producing propylene oxide from hydrogen oxide, (1) a multistage reaction tower is used as the reaction tower, (2) the bottom liquid of the reaction tower is circulated to the upper part of the reaction tower, and (3)
Hydrogen peroxide is supplied to the lower part of the reaction tower bottom liquid circulation supply section.
Propylene is supplied from the bottom of the reaction tower, and (4) the water introduced into the reaction tower and the water produced by the reaction are continuously taken out from the top of the reaction tower together with the solvent and the propylene oxide produced. Method for producing oxide. 2. The method according to claim 1, wherein the organic monocarboxylic acid is acetic acid, propionic acid, butyric acid or isobutyric acid.
JP62295313A 1987-11-25 1987-11-25 Production of propylene oxide Pending JPH01139574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62295313A JPH01139574A (en) 1987-11-25 1987-11-25 Production of propylene oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62295313A JPH01139574A (en) 1987-11-25 1987-11-25 Production of propylene oxide

Publications (1)

Publication Number Publication Date
JPH01139574A true JPH01139574A (en) 1989-06-01

Family

ID=17818990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62295313A Pending JPH01139574A (en) 1987-11-25 1987-11-25 Production of propylene oxide

Country Status (1)

Country Link
JP (1) JPH01139574A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103880783A (en) * 2012-12-20 2014-06-25 中国科学院大连化学物理研究所 Method for preparing epoxypropane by catalyzing propylene epoxidation with phase-transfer catalyst under reaction control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103880783A (en) * 2012-12-20 2014-06-25 中国科学院大连化学物理研究所 Method for preparing epoxypropane by catalyzing propylene epoxidation with phase-transfer catalyst under reaction control

Similar Documents

Publication Publication Date Title
EP0523728B1 (en) Continuous process for preparing dimethyl carbonate
JPH11228555A (en) Product consisting mainly of epichlorohydrin and production of the product
UA81971C2 (en) Method of preparing dichloropropanols from glycerine
US2877266A (en) Preparation of peracids
CS203917B2 (en) Process for continuous preparing propylenoxide
KR100529204B1 (en) Method of processing reaction mixture obtained from the oxidation of cyclohexane
JPH024223B2 (en)
KR20020084899A (en) Process for producing methyl methacrylate
JPH0333718B2 (en)
JPH01139574A (en) Production of propylene oxide
JPH0244296B2 (en)
JP2537955B2 (en) Method for producing dimethyl maleate
JPS6312458B2 (en)
JPS6310691B2 (en)
JPH01132573A (en) Production of propylene oxide
JP4204097B2 (en) Method for producing methyl methacrylate
US3522279A (en) Oxidation process
TW200404756A (en) Oxidation process
JPS5833207B2 (en) Nikafuenoru no seizouhouhou
JPH0179A (en) Propylene oxide manufacturing method
JP2834436B2 (en) Method for producing sec-butyl acrylate by reaction of acrylic acid and butene isomer
JPH0180A (en) Propylene oxide manufacturing method
JPH10120618A (en) Separation of acetic acid from acrylic acid
JPH1087552A (en) Production of high-purity acrylic acid
JPH11335319A (en) Production of alfa-hydroxycarboxylic acid