JPH01138595A - Word voice recognition equipment - Google Patents

Word voice recognition equipment

Info

Publication number
JPH01138595A
JPH01138595A JP62298334A JP29833487A JPH01138595A JP H01138595 A JPH01138595 A JP H01138595A JP 62298334 A JP62298334 A JP 62298334A JP 29833487 A JP29833487 A JP 29833487A JP H01138595 A JPH01138595 A JP H01138595A
Authority
JP
Japan
Prior art keywords
word
noise
feature parameters
stored
dictionary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62298334A
Other languages
Japanese (ja)
Inventor
Makoto Okazaki
真 岡崎
Koji Eto
公二 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62298334A priority Critical patent/JPH01138595A/en
Publication of JPH01138595A publication Critical patent/JPH01138595A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To reduce the memory capacity and to prevent erroneous recognition by storing feature parameters of word voices to be recognized and those of noise effective for noise rejection in first and second dictionaries respectively and recognizing a word voice by matching of these feature parameters. CONSTITUTION: Feature parameters of the word voice to be recognized are stored in a first dictionary 1, and a prescribed number of feature parameters of noise effective for noise rejection in circumstances of word voice recognition are stored in a second dictionary 2 including new feature parameters of noise which are extracted by a feature extraction part 3 just before word voice recognition. Feature parameters of a word voice are extracted by the feature extraction part 3 and are matched with feature parameters stored in first and second dictionaries 1 and 2 by a matching means 4 to recognize the word voice. Thus, the memory capacity is reduced, and erroneous recognition of the word voice is prevented.

Description

【発明の詳細な説明】 〔概 要〕 単語音声認識装置に関し、 雑音をリジェクトする為に記憶しておく雑音の特徴パラ
メータの種類を少なく出来る単語音声認識装置の提供を
目的とし、 第1の辞書には被認識単語音声の特徴パラメータを記憶
しておき、第1のモードにて、単語音声認識を行う環境
にて、単語音声認識を行う直前の、特徴抽出部にて抽出
した新しい雑音の特徴パラメータを含め、この環境で雑
音リジェクトに有効な雑音の特徴パラメータを、所定数
第2の辞書に記憶し、 第2のモードにて、単語音声の特徴パラメータを該特徴
抽出部にて抽出し、該第1の辞書及び該第2の辞書に記
憶されている特徴パラメータとのマツチングをマツチン
グ手段にて行い、単語音声認識を行うように構成する。
[Detailed Description of the Invention] [Summary] Regarding a word speech recognition device, the first dictionary aims to provide a word speech recognition device that can reduce the number of types of noise characteristic parameters to be stored in order to reject noise. The feature parameters of the word speech to be recognized are stored in the first mode, and in the environment where word speech recognition is performed, new noise features extracted by the feature extraction unit immediately before word speech recognition are performed. A predetermined number of noise feature parameters, including parameters, that are effective for noise rejection in this environment are stored in a second dictionary, and in a second mode, feature parameters of word sounds are extracted by the feature extraction unit; The matching means performs matching with feature parameters stored in the first dictionary and the second dictionary to perform word speech recognition.

〔産業上の利用分野〕[Industrial application field]

本発明は、単語音声認識装置の改良に関する。 The present invention relates to improvements in word speech recognition devices.

単語音声認識装置とは、入力された単語音声の特徴を示
す特徴パラメータと、辞書に記憶されている複数の特徴
パラメータとのマツチング(比較)を行い、夫々の特徴
パラメータとの距離を計算し、距離の最小のもの(lも
似ているもの)を選出することにより単語音声認識を行
うものである。
A word speech recognition device performs matching (comparison) between a feature parameter indicating the characteristics of an input word speech and a plurality of feature parameters stored in a dictionary, calculates the distance from each feature parameter, Word speech recognition is performed by selecting the word with the smallest distance (those with similar l).

単語音声認識をさせる為に、話者が単語音声認識装置に
単語音声を発する直前に、例えば、物を落とした音、電
話のベル音2拍手、車のクラクシラン等さまざまな雑音
が入力することがある。
In order to perform word speech recognition, just before the speaker utters the word speech to the word speech recognition device, various noises such as the sound of dropping an object, the sound of a telephone ringing twice, the sound of a car crashing, etc., may be input. be.

この時は、単語音声認識装置は入力音の特徴パラメータ
を抽出し、辞書に記憶しである複数の特徴パラメータと
のマツチングを行い、距離が所定の値を越えている場合
はリジェクトする。
At this time, the word speech recognition device extracts the feature parameters of the input sound, matches them with a plurality of feature parameters stored in the dictionary, and rejects the extracted sound if the distance exceeds a predetermined value.

しかし、単語音声認識装置は通常音声のゆらぎ(言葉の
あいまいさ)等を考慮して認識するようにしている為、
距離制限に幅を持たせている。
However, since word speech recognition devices usually take into account speech fluctuations (word ambiguity),
The distance limit has a wide range.

その為、辞書に被認識単語音声の特徴パラメータのみを
記憶していると、場合によっては、雑音にもかかわらず
、辞書の中から1つを選出する誤動作を起こすことがあ
る。
Therefore, if only the characteristic parameters of the voice of the word to be recognized are stored in the dictionary, a malfunction may occur in which one word is selected from the dictionary despite the noise.

この問題を解決する必要があるが、解決するのに、メモ
リ容量が小さくて且つ単語音声が雑音に誤認識される可
能性の少ないものであることが望ましい。
It is necessary to solve this problem, but in order to solve this problem, it is desirable that the memory capacity is small and the possibility of word speech being mistakenly recognized as noise is small.

〔従来の技術〕[Conventional technology]

以下従来例を図を用いて説明する。 A conventional example will be explained below using figures.

第3図は従来例の単語音声認識装置のブロック図である
FIG. 3 is a block diagram of a conventional word speech recognition device.

図中3は、特徴パラメータを抽出する特徴抽出部、5は
プロセッサ、6°は処理プログラムを格納しているRO
M、7は特徴抽出部3にて抽出した特徴パラメータを一
旦記憶するパラメータメモリ、10は被認識単語音声の
特徴パラメータ及び雑音の特徴パラメータを記憶してい
る辞書用メモリ、8は認識結果の単語番号等を出力する
I10ユニットである。
In the figure, 3 is a feature extraction unit that extracts feature parameters, 5 is a processor, and 6° is an RO that stores a processing program.
M, 7 is a parameter memory that temporarily stores the feature parameters extracted by the feature extractor 3; 10 is a dictionary memory that stores the feature parameters of speech of the word to be recognized and the feature parameters of noise; 8 is a word as a recognition result. This is an I10 unit that outputs numbers etc.

従来は、何れの環境で単語音声認識を行っても、雑音が
入力した時、これを明確に雑音と判定しりジェクト出来
るようにする為に、例えば、物を落とした音、電話のベ
ル音2拍手、車のクラクシラン等の約20〜30種類程
度の雑音の特徴パラメ・−夕を、被認識単語音声の特徴
パラメータと共に辞書用メモリ10に記憶しである。
Conventionally, no matter what environment word speech recognition is performed in, when noise is input, in order to be able to clearly identify it as noise and reject it, for example, the sound of dropping an object, the sound of a telephone ringing, etc. Characteristic parameters of about 20 to 30 types of noise, such as applause and car noises, are stored in the dictionary memory 10 together with characteristic parameters of speech of the word to be recognized.

マイクロホンを介して入力する音は、第3図の特徴抽出
部3に入力し、10m5間隔で特徴パラメータが抽出さ
れる。
The sound input through the microphone is input to the feature extraction unit 3 shown in FIG. 3, and feature parameters are extracted at intervals of 10 m5.

そこで、プロセッサ5がROM6’に記憶しているプロ
グラムを読み出し、以下に示す如き動作を行う。
Therefore, the processor 5 reads the program stored in the ROM 6' and performs the following operations.

特徴抽出部3より特徴パラメータをIoms間隔で読み
込み、パラメータメモリ7に記憶し、単語と認められる
区間を切出し、この区間の特徴パラメータを、辞書用メ
モリ10に記憶している全ての特徴パラメータとマツチ
ングを行い、距離を求め、距離の最小のものが、雑音の
特徴パラメータであればリジェクトし、被認識単語音声
の特徴パラメータであれば単語音声を認識したとして■
10ユニット8よりこの単語音声の単語番号等を出力す
る。
The feature parameters are read in from the feature extraction unit 3 at Ioms intervals, stored in the parameter memory 7, a section recognized as a word is cut out, and the feature parameters of this section are matched with all the feature parameters stored in the dictionary memory 10. , calculate the distance, and if the smallest distance is the feature parameter of noise, it is rejected, and if the feature parameter of the word sound to be recognized, it is assumed that the word sound has been recognized.
10 unit 8 outputs the word number etc. of this word sound.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来の単語音声認識装置では、何れの環
境で単語音声認識を行っても、雑音が入力した時、これ
を明確に雑音と判定しりジェクト出来るようにする為に
、記憶している雑音用特徴パラメータの種類が多く、メ
モリ容量が大きくなる点と、雑音用特徴パラメータの種
類が多い為に、単語音声を入力した時雑音と誤認識され
る可能性が高い問題点がある。
However, in conventional word speech recognition devices, no matter what environment the word speech recognition is performed in, when noise is input, in order to be able to clearly identify it as noise and reject it, the memorized noise There are many types of feature parameters, which increases the memory capacity, and because there are many types of noise feature parameters, there is a high possibility that word speech will be mistakenly recognized as noise when input.

本発明は、雑音をリジェクトする為に記憶しておく雑音
の特徴パラメータの種類を少なく出来る単語音声認識装
置の提供を目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to provide a word speech recognition device that can reduce the number of noise characteristic parameters to be stored in order to reject noise.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明の原理ブロック図である。 FIG. 1 is a block diagram of the principle of the present invention.

第1図に示す如く、第1の辞書1には被認識単語音声の
特徴パラメータを記憶しておき、第1のモードにて、単
語音声認識を行う環境にて、単語音声認識を行う直前の
、特徴抽出部3にて抽出した新しい雑音の特徴パラメー
タを含め、この環境で雑音リジェクトに有効な雑音の特
徴パラメータを所定数第2の辞書2に記憶する。
As shown in FIG. 1, the first dictionary 1 stores characteristic parameters of word speech to be recognized, and in the first mode, in an environment where word speech recognition is performed, , a predetermined number of noise feature parameters effective for noise rejection in this environment, including the new noise feature parameters extracted by the feature extraction unit 3, are stored in the second dictionary 2.

そうしておいて、第2のモードにて、単語音声の特徴パ
ラメータを該特徴抽出部3にて抽出し、該第1の辞書1
及び該第2の辞書2に記憶されている特徴パラメータと
のマツチングをマツチング手段4にて行い、単語音声認
識を行う構成とする。
Then, in the second mode, the feature parameters of the word sounds are extracted by the feature extractor 3, and
The matching means 4 performs matching with the feature parameters stored in the second dictionary 2 to perform word speech recognition.

〔作 用〕[For production]

単語音声認識を行う時の雑音の種類は、行う場所により
限定される。
The type of noise when performing word speech recognition is limited depending on the location.

又限定された雑音の内、連発性雑音は、単語音声認識を
行う場所及び単語音声認識を行う直前(2〜3分間)の
時間帯で定まる。
Among the limited noises, continuous noise is determined by the location where word speech recognition is performed and the time period (2 to 3 minutes) immediately before word speech recognition is performed.

、連発性でない雑音、例えば電話機のベル音、椅子の礼
み音、物を落とした音等は、環境により少ない種類に特
定出来る。
, Non-recurring noises such as the ringing of a telephone, the sound of a chair bowing, the sound of dropping something, etc. can be identified into a small number of types depending on the environment.

そこで、本発明は、雑音の特徴パラメータとして、特定
した数少ない連発性でない雑音のものを第2の辞書2に
まず記憶しておく。
Therefore, in the present invention, a few identified non-recurring noises are first stored in the second dictionary 2 as noise characteristic parameters.

次に、モード1にて、単語音声認識を行う場所にて、単
語音声認識を行う直前の時間帯に発生する雑音の特徴パ
ラメータの種類の数が、連発性でない雑音のものを含め
、所定数以下になるよう、連発性雑音は新しいものに更
新して、第2の辞書2に記憶する。
Next, in mode 1, at the location where word speech recognition is performed, the number of types of characteristic parameters of noise occurring in the time period immediately before word speech recognition is set to a predetermined number, including non-recurring noise. The continuous noise is updated to a new one and stored in the second dictionary 2 as follows.

又被認識単語音声の特徴パラメータは勿論第1の辞書1
に記憶しておく。
Also, the characteristic parameters of the speech of the word to be recognized are of course stored in the first dictionary 1.
Remember it.

そうしておいて、第2のモードにて、単語音声認識を行
うが、この時入力する雑音は、上記第2の辞書2に記憶
している、従来に比し種類は少ないが、この環境に適し
た有効な雑音の特徴パラメータにてリジェクトされる。
Then, word speech recognition is performed in the second mode, but the noise input at this time is stored in the second dictionary 2, although there are fewer types than in the past, but in this environment It is rejected with effective noise characteristic parameters suitable for.

即ち、記憶する雑音の特徴パラメータの種類は従来に比
し少ないので、メモリ容量は小さく出来又単語音声を誤
認識する可能性は非常に少な(なる。
That is, since the number of types of noise characteristic parameters to be stored is smaller than in the past, the memory capacity can be reduced, and the possibility of erroneously recognizing word speech is extremely small.

〔実施例〕〔Example〕

以下本発明の1実施例に付き図に従って説明する。 An embodiment of the present invention will be described below with reference to the accompanying drawings.

第2図は本発明の実施例の単語音声認識装置のブロック
図である。
FIG. 2 is a block diagram of a word speech recognition device according to an embodiment of the present invention.

第2図で第3図の場合と異なる点は、ROM6に格納し
ているプログラムの内容が変わっている点と、被認識単
語音声の特徴パラメータを辞書用メモリ1に記憶し、有
効な雑音の特徴パラメータを辞書用メモリ2に記憶する
ようにした点と、モード1と2の切り替えを行う為にキ
ーボード9を設けた点である。
The difference between FIG. 2 and FIG. 3 is that the contents of the program stored in the ROM 6 have been changed, and the characteristic parameters of the speech of the word to be recognized are stored in the dictionary memory 1. The feature parameters are stored in the dictionary memory 2, and the keyboard 9 is provided to switch between modes 1 and 2.

本発明の場合も、まず、従来と同じく、被認識単語音声
の特徴パラメータを辞書用メモリ1に記憶しておく。
In the case of the present invention, first, the characteristic parameters of the speech of the word to be recognized are stored in the dictionary memory 1, as in the conventional case.

次に、例えば電話機のベル音、椅子の礼み音。Next, for example, the sound of a telephone ringing or the sound of a chair bowing.

物を落とした音等の連発性のない雑音の内、単語音声認
識場所において発生が考えられるものに絞り、これの特
徴パラメータを辞書用メモリ2に記憶しておく。
Among non-recurring noises such as the sound of dropping an object, noises that are likely to occur at the word speech recognition location are selected and their characteristic parameters are stored in the dictionary memory 2.

そこで、プロセッサ5はROM6に格納しているプログ
ラムを読み出し、以下に示す如き動作を行うようにする
Therefore, the processor 5 reads the program stored in the ROM 6 and performs the following operations.

単語音声認識を行う場所における単語音声認識直前(2
〜3分間)の雑音(主として連発性雑音)の特徴パラメ
ータを辞書用メモリ2に記憶する為に、キーボード9に
てモード1を指定する。
Immediately before word speech recognition at the place where word speech recognition is performed (2
Mode 1 is designated on the keyboard 9 in order to store the characteristic parameters of the noise (mainly continuous noise) for 3 minutes) into the dictionary memory 2.

すると、■特徴抽出部3より特徴パラメータをlQms
間隔で読み込み、パラメータメモリ7に記憶し、単語と
見られる区間を切出し、この区間の特徴パラメータを、
辞書用メモリ2に記憶している全ての特徴パラメータと
マツチングを行い、距離を求め、距離の最小のものが、
所定の値より大きい時は、所定数N(約5〜6)個にな
る迄辞書用メモリ2に記憶し、N個を越える時は、最も
古い特徴パラメータを削除しN個以内とする。
Then, the feature extraction unit 3 extracts the feature parameters lQms.
It is read at intervals, stored in the parameter memory 7, segments that appear to be words are cut out, and the characteristic parameters of these segments are
Matching is performed with all the feature parameters stored in the dictionary memory 2 to find the distance, and the one with the minimum distance is
When it is larger than a predetermined value, it is stored in the dictionary memory 2 until the predetermined number N (approximately 5 to 6) is reached, and when it exceeds N, the oldest feature parameter is deleted to keep it within N.

尚距離の最小のものの値が所定の値より小さい時は何も
せず■に帰る。
If the value of the minimum distance is smaller than the predetermined value, do nothing and return to step (3).

次に、キーボード9にてモード2を指定し、単語音声を
入力する。
Next, mode 2 is designated using the keyboard 9, and word audio is input.

すると、■特徴抽出部3より特徴パラメータを10ms
間隔で読み込み、パラメータメモリ7に記憶し、単語と
見られる区間を切出し、この区間の特徴パラメータを、
辞書用メモリ1.2に記憶している全ての特徴パラメー
タとマツチングを行い距離を求める。
Then, ■The feature extraction unit 3 extracts the feature parameters for 10ms.
It is read at intervals, stored in the parameter memory 7, segments that appear to be words are cut out, and the characteristic parameters of these segments are
The distance is determined by matching with all the feature parameters stored in the dictionary memory 1.2.

全ての特徴パラメータとの距離が、所定の値よりも大き
い時は、入力された音は被認識単語音声でなく新しい雑
音であるので辞書用メモリ2に記憶し、N個以上になれ
ば最も古い雑音の特徴パラメータを削除する。
When the distance to all feature parameters is greater than a predetermined value, the input sound is not a recognized word sound but a new noise, so it is stored in the dictionary memory 2, and if the number is N or more, it is stored as the oldest noise. Delete noise feature parameters.

距離の最小のものが、辞書用メモリ2に記憶しているも
のであれば、その侭■に帰る。
If the one with the smallest distance is the one stored in the dictionary memory 2, the process returns to that step.

単語番号等を出力する。Output word numbers, etc.

この場合、連発性でない雑音がなければ、これの特徴パ
ラメータは勿論辞書用メモリ2には記憶しない。
In this case, if there is no non-recurring noise, its characteristic parameters are of course not stored in the dictionary memory 2.

このようにすれば、雑音をリジェクトするのに、その環
境に適しを効な、少ない種類(約5〜6種類)の雑音の
特徴パラメータを辞書用メモリ2に記憶するので、メモ
リ容量は小さくなり、又単語音声を雑音と誤P!識する
可能性が殆どなくなる。
In this way, when rejecting noise, a small number of noise characteristic parameters (approximately 5 to 6 types) that are suitable for the environment are stored in the dictionary memory 2, so the memory capacity is reduced. , again, the word sound is mistaken for noise! There is almost no possibility of knowing.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明せる如く本発明によれば、雑音をリジェ
クトするのに、その環境に適し有効な、少ない種類(約
5〜6種類)の雑音の特徴パラメータをメモリに記憶す
るので、メモリ容量は小さくなり、又単語音声を雑音と
誤認識する可能性が殆どなくなる効果がある。
As explained in detail above, according to the present invention, a small number of noise characteristic parameters (approximately 5 to 6 types) that are suitable and effective for the environment are stored in the memory to reject noise, so the memory capacity is reduced. This has the effect of almost eliminating the possibility of erroneously recognizing word speech as noise.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理ブロック図、 第2図゛は本発明の実施例の単語音声認識装置のブロッ
ク図、 第3図は従来例の単語音声認識装置のブロック図である
。 図において、 1は第1の辞書、辞書用メモリ、 2は第2の辞書、辞書用メモリ、 3は特徴抽出部、 4はマツチング手段、 5はプロセッサ、 6.6”はROM? 7はパラメータメモリ、 8はI10ユニット、 9はキーボード、 10は辞書用メモリを示す。 ボ全斧月の源理プロ770 ¥ 1 口 ホ柑甲月Cた兇イク1」0羊省1毅斧叔流栽゛軽ローブ
092C第 2 (転) 交央イ列6)業1ニビ島〕奔ン客eちあ4棟に1号どつ
フ゛D、72保つ昼 3 口
FIG. 1 is a block diagram of the principle of the present invention, FIG. 2 is a block diagram of a word speech recognition device according to an embodiment of the present invention, and FIG. 3 is a block diagram of a conventional word speech recognition device. In the figure, 1 is the first dictionary, dictionary memory, 2 is the second dictionary, dictionary memory, 3 is the feature extraction section, 4 is the matching means, 5 is the processor, 6.6" is the ROM? 7 is the parameter Memory, 8 indicates I10 unit, 9 indicates keyboard, and 10 indicates memory for dictionary.゛Light Robe 092C 2nd (Rotary) Central A Row 6) Industry 1 Nibi Island] Passenger e Chia 4 buildings have No. 1 F D, 72 daytime 3 mouths

Claims (1)

【特許請求の範囲】 第1の辞書(1)には被認識単語音声の特徴パラメータ
を記憶しておき、 第1のモードにて、単語音声認識を行う環境にて、単語
音声認識を行う直前の、特徴抽出部(3)にて抽出した
新しい雑音の特徴パラメータを含め、この環境で雑音リ
ジェクトに有効な雑音の特徴パラメータを、所定数第2
の辞書(2)に記憶し、第2のモードにて、単語音声の
特徴パラメータを該特徴抽出部(3)にて抽出し、該第
1の辞書(1)及び該第2の辞書(2)に記憶されてい
る特徴パラメータとのマッチングをマッチング手段(4
)にて行い、単語音声認識を行うようにしたことを特徴
とする単語音声認識装置。
[Claims] The first dictionary (1) stores feature parameters of word speech to be recognized, and in the first mode, immediately before word speech recognition is performed in an environment where word speech recognition is performed. The noise feature parameters effective for noise rejection in this environment, including the new noise feature parameters extracted by the feature extraction unit (3), are extracted by a predetermined number of second
In the second mode, the feature parameters of the word sounds are extracted by the feature extraction unit (3), and the feature parameters of the word sounds are stored in the first dictionary (1) and the second dictionary (2). ) is matched with the feature parameters stored in the matching means (4).
), and performs word speech recognition.
JP62298334A 1987-11-26 1987-11-26 Word voice recognition equipment Pending JPH01138595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62298334A JPH01138595A (en) 1987-11-26 1987-11-26 Word voice recognition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62298334A JPH01138595A (en) 1987-11-26 1987-11-26 Word voice recognition equipment

Publications (1)

Publication Number Publication Date
JPH01138595A true JPH01138595A (en) 1989-05-31

Family

ID=17858320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62298334A Pending JPH01138595A (en) 1987-11-26 1987-11-26 Word voice recognition equipment

Country Status (1)

Country Link
JP (1) JPH01138595A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03110599A (en) * 1989-09-26 1991-05-10 Matsushita Electric Ind Co Ltd Speech recognizing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03110599A (en) * 1989-09-26 1991-05-10 Matsushita Electric Ind Co Ltd Speech recognizing method

Similar Documents

Publication Publication Date Title
US20070043561A1 (en) Avoiding repeated misunderstandings in spoken dialog system
WO1989002146A1 (en) Improvements in or relating to apparatus and methods for voice recognition
CA2191392C (en) Method and apparatus for reducing false rejection in a speech recognition system
JPH01138595A (en) Word voice recognition equipment
EP0526347B1 (en) A number-of-recognition candidates determining system in a speech recognizing device
JPS6123560B2 (en)
JPS5823097A (en) Voice recognition apparatus
CN109887495B (en) Sound processing device, sound processing method and recording medium
JPS63186298A (en) Word voice recognition equipment
JPH0432900A (en) Sound recognizing device
JP2834880B2 (en) Voice recognition device
JPS62211699A (en) Voice section detecting circuit
JP2019184631A (en) Voice recognition system and computer program
KR100236961B1 (en) Method for word grouping by its vowel-consonant structure
JPS6361300A (en) Voice recognition system
JPH02300800A (en) Speech recognition device
JPH03200298A (en) Voice controller
JPH02275497A (en) Voice recognition device
JP2995856B2 (en) Response voice discrimination device
JPH06100920B2 (en) Voice recognizer
JPS63798B2 (en)
JPS5876892A (en) Voice recognition equipment
JPH07302098A (en) Word voice recognition device
JPH04155399A (en) Voice recognition device
JPS59211098A (en) Voice recognition equipment