JPH01138235A - Production of copper-clad laminate - Google Patents

Production of copper-clad laminate

Info

Publication number
JPH01138235A
JPH01138235A JP29712487A JP29712487A JPH01138235A JP H01138235 A JPH01138235 A JP H01138235A JP 29712487 A JP29712487 A JP 29712487A JP 29712487 A JP29712487 A JP 29712487A JP H01138235 A JPH01138235 A JP H01138235A
Authority
JP
Japan
Prior art keywords
copper
electron beam
adhesive layer
resin
clad laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29712487A
Other languages
Japanese (ja)
Inventor
Tomohisa Ota
共久 太田
Yutaka Yamaguchi
豊 山口
Akihiko Dobashi
明彦 土橋
Toshishige Uehara
寿茂 上原
Hiroyuki Hagiwara
裕之 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP29712487A priority Critical patent/JPH01138235A/en
Publication of JPH01138235A publication Critical patent/JPH01138235A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain a copper-clad laminate excellent in high-temperature bonding strength, by irradiating an electron beam-curable resin interposed between a substrate and a copper foil with electron beams at a specified temperature. CONSTITUTION:An electron beam-curable resin (B), as an adhesive layer, which is preferably a radical-polymerizable polyene compound and is a reactive prepolymer having at least two reactive C-C unsaturated bonds in the molecule and having an MW of 500-50000 and a viscosity (at 50 deg.C) <=10<3> P is interposed between a substrate (A) such as a prepreg such as a paper/phenol resin, a glass/ epoxy resin or a paper/polyester resin, a plastic film or a metal and a copper foil (C), and irradiated with electron beams having an energy of 50-1000keV at a dose of 1-50Mrad under such conditions that the temperature of component B is 100-200 deg.C to crosslink component B.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、銅張積層体の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a copper-clad laminate.

〔従来の技術〕[Conventional technology]

一般に、銅張積層体の製造方法は基板となる祇−フェノ
ール樹脂、ガラス−エポキシ樹脂、祇−ポリエステル樹
脂等のプリプレグを主とする未架橋、未硬化のシートあ
るいはアルミ板のような金属板あるいはポリエステル、
ポリイミドなどのプラスチックフィルムと、一般には電
解銅箔あるいは圧延ti4箔の18〜70μmの被着面
にプライマあるいはさらに接着剤を塗布し、多段プレス
または連続圧着方式により加熱加圧して一体とする方法
がとられている。
In general, the manufacturing method for copper-clad laminates is based on uncrosslinked or uncured sheets mainly made of prepregs such as phenolic resin, glass-epoxy resin, or polyester resin, or metal plates such as aluminum plates, or polyester,
A method is to apply a primer or an adhesive to the 18-70 μm adhesion surface of a plastic film such as polyimide and generally electrolytic copper foil or rolled Ti4 foil, and heat and press them together using a multi-stage press or continuous pressure bonding method. It is taken.

しかし、常態での接着力が2 kg / cm程度であ
っても、昇温すると1 kg / cta以下までに低
下する。
However, even if the adhesive strength under normal conditions is about 2 kg/cm, it decreases to 1 kg/cta or less when the temperature is increased.

また、従来の銅張積層体は銅箔に電解銅箔を用い、しか
も接着方法としてアンカー効果(投錨効果)を利用して
いるが、接着面粗化工程における酸化銅(花)の生成が
粉末となって製造工程上の隘路となっており、さらには
接着力の不安定さに結びついている。そして、基板の製
造工程そのものよりも、接着剤接着方法などに問題があ
り、製品の性能に余裕度がみられない状況にある。
In addition, conventional copper-clad laminates use electrolytic copper foil as the copper foil, and use the anchor effect as an adhesion method, but the formation of copper oxide (flower) in the bonding surface roughening process This has become a bottleneck in the manufacturing process, and has also led to instability in adhesive strength. Moreover, there are problems with the adhesive bonding method rather than the board manufacturing process itself, and the product performance is left with no room for margin.

これら以外の問題点としては、接着を完全に遂行するた
めには基板の硬化速度と接着剤自体の硬化速度のバラン
スの問題である。この速度のバランスがとれない場合は
、接着は遂行できず不充分であることは既に経験的に知
られている問題である。そして、必然的に基板と同系の
接着剤が考えられるが、被着体が銅である場合には銅に
よる劣化がみられ、さらには例えばJ I 5−C−6
481〜6485に規定される如き、各種要求性能を満
足させるためには、当然ベースポリマー十硬化剤以外に
、難燃剤の如き添加剤の使用が考えられるが、一般に、
接着性は添加剤の添加により低下するのが普通である。
Another problem in addition to these is the problem of balancing the curing speed of the substrate and the curing speed of the adhesive itself in order to achieve complete adhesion. It is a known problem from experience that if these speeds cannot be balanced, adhesion cannot be achieved and is insufficient. Naturally, adhesives of the same type as the substrate can be considered, but if the adherend is copper, deterioration due to copper is observed, and furthermore, for example, JI 5-C-6
In order to satisfy the various required performances as specified in 481-6485, it is natural to consider using additives such as flame retardants in addition to the base polymer and curing agent, but generally,
Adhesion is usually reduced by the addition of additives.

また、表面滲出性のある難燃剤、滑剤の如きものは避け
なければならない。
In addition, flame retardants and lubricants that can seep from the surface must be avoided.

以上の状況を鑑み、時開58−69044号公報に示さ
れているように、接着層の接着強度、耐熱性、耐溶媒性
、対ストレスクラツキング性の向上を目的に、基板に樹
脂材の接着層を介在して銅箔を積層し、上記接着層を電
子線照射により架橋することが提案されている。
In view of the above situation, as shown in Jikai No. 58-69044, a resin material was added to the substrate for the purpose of improving the adhesive strength, heat resistance, solvent resistance, and stress cracking resistance of the adhesive layer. It has been proposed to laminate copper foils with an adhesive layer interposed therebetween, and to crosslink the adhesive layer by electron beam irradiation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この方法は電子線照射により、樹脂の架橋構造を密にし
て、粘度、平均分子量および枝分かれを増加させるもの
であり、前記問題点を改良するには非常に有効であると
考えられる。一方、最近の配線板の動向を見ると、増々
高密度になり、2゜O℃以上の高温時において、基板と
銅箔は2kg/cm以上の高接着力が必要となってきて
いる。
This method uses electron beam irradiation to make the crosslinked structure of the resin denser, thereby increasing the viscosity, average molecular weight, and branching, and is considered to be very effective in solving the above-mentioned problems. On the other hand, if we look at recent trends in wiring boards, they are becoming more and more dense, and at high temperatures of 2°C or higher, it is now necessary for the board and copper foil to have a high adhesive strength of 2 kg/cm or higher.

しかしながら、前記電子線を利用した方法でも、接着層
の高温時の接着強度として、充分な値が得られず問題と
なっていた。
However, even with the method using the electron beam, a sufficient value of the adhesive strength of the adhesive layer at high temperatures cannot be obtained, which has been a problem.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は電子線照射によりさらに効率よく反応硬化させ
て架橋構造を増加させるように工夫したものである。
The present invention is devised to increase the crosslinked structure by more efficient reaction curing by electron beam irradiation.

すなわち、本発明は基板に樹脂材の接着層を介在して、
銅箔を積層する銅張積層板の製造方法において、上記接
着層として電子線硬化型樹脂を用いるとともに、接着層
の温度が100〜200℃になるように加温した状態で
電子線照射して、接着層を架橋することを特徴とする銅
張積層体の製造方法に関するものである。
That is, the present invention interposes an adhesive layer of resin material on the substrate,
In a method for manufacturing a copper-clad laminate in which copper foil is laminated, an electron beam curable resin is used as the adhesive layer, and the adhesive layer is heated to a temperature of 100 to 200°C and irradiated with an electron beam. , relates to a method for producing a copper-clad laminate, characterized in that the adhesive layer is crosslinked.

本発明のポイントである接着層の加熱は電子線の照射前
あるいは照射中におこなうのがよく、加熱方式としては
遠赤外線加熱、熱風灯、高周波加熱、抵抗加熱などが挙
げられる。接着層の温度が100℃未満だと、未反応物
が残存しやすく高いTgを有するものが得られない。ま
た200℃を超えるとボイド−やモノマーの飛散がおこ
りやすくなり好ましくない。
The adhesive layer, which is the key point of the present invention, is preferably heated before or during electron beam irradiation, and heating methods include far infrared heating, hot air lamp, high frequency heating, and resistance heating. If the temperature of the adhesive layer is less than 100° C., unreacted substances tend to remain and a product having a high Tg cannot be obtained. Moreover, if the temperature exceeds 200°C, voids and monomer scattering tend to occur, which is not preferable.

本発明で使用する電子線硬化型樹脂としては、ラジカル
重合性のポリエン化合物やカオチン重合性のエポキシ化
合物などが挙げられる。特に好ましいものはラジカル重
合性のポリエン化合物で、1分子中に2個以上の反応性
炭素−炭素不飽和結合、具体的にはアリル基、アクリロ
イル基、メタクリロイル基、などのビニル基を有する反
応性のプレポリマである。またこのプレポリマは分子予
約500〜50,000であって、基板上に溶剤を使用
せずに、または少量の使用で塗布できるような粘度(5
0℃で103ポアズ以下)のものが好ましい。上記プレ
ポリマの反応性炭素−炭素不飽和結合は分子の側鎖、末
端のいずれにも付与してもかまわない。
Examples of the electron beam curable resin used in the present invention include radical polymerizable polyene compounds and cationic polymerizable epoxy compounds. Particularly preferred are radically polymerizable polyene compounds having two or more reactive carbon-carbon unsaturated bonds in one molecule, specifically a vinyl group such as an allyl group, an acryloyl group, or a methacryloyl group. It is a prepolymer. The prepolymer also has a molecular weight of 500 to 50,000 and a viscosity (50,000 to 50,000) that allows it to be applied onto the substrate without the use of solvents or with the use of small amounts.
103 poise or less at 0°C) is preferred. The reactive carbon-carbon unsaturated bond in the prepolymer may be attached to either the side chain or the end of the molecule.

具体的な例としては主鎖がアクリル酸エステル、メタク
リル酸エステル、ポリオール、ポリエステル、ポリウレ
タン、エポキシ、ポリブタジェン、ポリクロロプレン、
ポリイソプレンなどの低重合樹脂をはじめ、これらのブ
ロック共重合体あるいは混合物である。
Specific examples include acrylic ester, methacrylic ester, polyol, polyester, polyurethane, epoxy, polybutadiene, polychloroprene,
These include low polymer resins such as polyisoprene, as well as block copolymers or mixtures thereof.

以上のポリエン化合物は、特に、ポリチオールと併用し
て用いられることが好ましい。即ち、ポリエン化合物の
二重結合とポリチオールのチオール基との反応、すなわ
ち、エン・チオール反応が利用される。
The above polyene compounds are particularly preferably used in combination with polythiol. That is, a reaction between a double bond of a polyene compound and a thiol group of a polythiol, that is, an ene-thiol reaction is utilized.

ポリチオールとしてはメルカプトカルボン酸類と多価ア
ルコールのエステルがあり、−船釣に用いられる具体的
な例としては、トリメチロールプロパントリスチオグリ
コレート、トリメチロールプロパン(β−メルカプトプ
ロピオネート)、ペンタエリスリ・ントテトラキス(チ
オグリコレート)、ペンタエリスリットテトラキス(β
−メルカプトプロピオネート)、トリス(ヒドロキシエ
チル)イソシアヌレートトリス(β−メルカプトプロピ
オネート)、エチレングリコールビス(β−メルカプト
プロピオネート)等である。
Polythiols include esters of mercaptocarboxylic acids and polyhydric alcohols; specific examples used for boat fishing include trimethylolpropane tristhioglycolate, trimethylolpropane (β-mercaptopropionate), and pentaerythriol. ntotetrakis (thioglycolate), pentaerythritetetrakis (β
-mercaptopropionate), tris(hydroxyethyl)isocyanurate tris(β-mercaptopropionate), ethylene glycol bis(β-mercaptopropionate), and the like.

その配合は、ポリエン化合物100重量部に対して、ポ
リチオール5から100重量部、好ましくは10から7
5重量部である。その他添加剤として、重合禁止剤、安
定剤、希釈用モノマ、界面活性剤、可塑剤や着色剤など
が使用できる。
The blending ratio is 5 to 100 parts by weight, preferably 10 to 7 parts by weight of polythiol per 100 parts by weight of the polyene compound.
It is 5 parts by weight. Other additives that can be used include polymerization inhibitors, stabilizers, diluent monomers, surfactants, plasticizers, and colorants.

使用する電子線としては、コックロフトワルトン型、バ
ンプグラフ型、共振変圧器型、直線型、ダイナミドロン
型、高周波型等の各種電子線加速器から放出され、50
〜1,000KeV、好ましくは100〜800KeV
の範囲のエネルギーを持つ電子線が用いられ、照射線量
としては1〜50Mr a dが好ましく、l M r
 a d以下では硬化が不充分で粘着性が残り、50M
r a d以上では硬化が進みすぎて成形時の樹脂の流
動性および反応を妨げる。
The electron beams used are emitted from various electron beam accelerators such as Cockroft-Walton type, bumpgraph type, resonant transformer type, linear type, dynamidron type, and high frequency type.
~1,000KeV, preferably 100-800KeV
An electron beam having an energy in the range of is used, and the irradiation dose is preferably 1 to 50 Mr.
If it is less than a d, curing is insufficient and stickiness remains, and 50M
If it exceeds r a d, curing progresses too much, impeding the fluidity and reaction of the resin during molding.

また、この電子線照射方法であるが、基板が祇−フェノ
ール樹脂、ガラス−エポキシ樹脂、紙−ポリエステル樹
脂などのプリプレグやプラスチックフィルムの場合は、
前述の基板側より照射する。
In addition, with this electron beam irradiation method, if the substrate is a prepreg or plastic film such as phenolic resin, glass-epoxy resin, or paper-polyester resin,
Irradiate from the aforementioned substrate side.

金属基板の場合は銅箔側より照射する。なお、高度の架
橋性が必要な樹脂基板の場合、両側より照射してもよい
、また電子線照射装置の加速電圧は、被照射側の基板や
銅箔の種類、厚さより、決定する。
For metal substrates, irradiate from the copper foil side. Note that in the case of a resin substrate that requires a high degree of crosslinking property, irradiation may be performed from both sides, and the acceleration voltage of the electron beam irradiation device is determined based on the type and thickness of the substrate and copper foil on the side to be irradiated.

〔作用〕[Effect]

本発明は電子線硬化型樹脂を加温しながら、電子線照射
することにより、重合、硬化する。
In the present invention, the electron beam curable resin is polymerized and cured by irradiating it with an electron beam while heating it.

一般に電子線による重合反応は、開始点の発生効率が良
(、かなり均一に反応が進行する。しかし、反応の進行
に伴って、系の粘度は上昇して、拡散律速により、未反
応物も残存し、照射時の系の温度以上に高Tg化できな
い。
In general, polymerization reactions using electron beams have a good efficiency in generating starting points (and the reaction proceeds fairly uniformly. However, as the reaction progresses, the viscosity of the system increases, and unreacted substances also increase due to diffusion rate control. As a result, the Tg cannot be raised higher than the temperature of the system at the time of irradiation.

ところが、加温することにより、粘度低下により、拡散
を抑制することなく、均一に高速反応し、硬化層は密で
均一な状態になる。従って、電子線硬化型樹脂がポリエ
ン化合物とポリチオールの場合、エン・チオールの反応
が逐次進行して、高分子量化して高Tg化する。
However, by heating, the viscosity decreases, causing a uniform, high-speed reaction without suppressing diffusion, and the cured layer becomes dense and uniform. Therefore, when the electron beam curable resin is a polyene compound and a polythiol, the reaction between ene and thiol proceeds sequentially, increasing the molecular weight and increasing the Tg.

その結果、高温で高い凝集力と高い接着力を示すと考え
られる。
As a result, it is thought to exhibit high cohesive strength and high adhesive strength at high temperatures.

〔実施例〕〔Example〕

以下、本発明の実施例を詳細に説明する。 Examples of the present invention will be described in detail below.

実施例1〜3、比較例1 35μ鶴厚の電解銅箔に両末端にアリル基を付与した水
添1.2−ポリブタジェン樹脂(日本曹達■製、商品名
CI −1,000の両末端OH基を変成)100重量
部およびトリメチロールプロパントリスチオグリコレー
ト40重量部を配合してなる電子線硬化型樹脂を40μ
鶴の厚さで接着層としてロールコータで塗布した。その
接着層付き銅箔を2−厚のアルミ板にロールラミネート
した。
Examples 1 to 3, Comparative Example 1 Hydrogenated 1,2-polybutadiene resin with allyl groups added to both ends (manufactured by Nippon Soda, trade name CI-1,000, OH at both ends) on electrolytic copper foil with a thickness of 35μ 40μ of an electron beam curable resin prepared by blending 100 parts by weight of (modified groups) and 40 parts by weight of trimethylolpropane tristhioglycolate.
It was coated with a roll coater as an adhesive layer to the thickness of a crane. The copper foil with the adhesive layer was roll laminated onto a 2-thick aluminum plate.

得られた銅箔付き金属基板をヒータで加熱しながらfI
箔側より、加速電圧800KVの共振変圧器型電子線照
射装置を用い、線量として20Mradの電子線を照射
した。1秒間で樹脂は充分硬化し、金属基板の銅張積層
体を得た。
fI while heating the obtained metal substrate with copper foil using a heater.
The foil side was irradiated with an electron beam at a dose of 20 Mrad using a resonant transformer type electron beam irradiation device with an accelerating voltage of 800 KV. The resin was sufficiently cured in 1 second, and a copper-clad laminate of metal substrates was obtained.

実施例として加熱温度が異なるもの3種、比較例として
加熱せずに電子線硬化したちの1種について、特性評価
結果を表1として示す。
Table 1 shows the characteristics evaluation results for three examples with different heating temperatures and one comparative example that was cured with electron beam without heating.

実施例4〜6、比較例2 35μmの圧延銅箔に両末端にアリルエーテル基を付与
した水添1,2−ポリブタジェン樹脂(日本曹達■製、
商品名G1−3,000の両末端OH基を変成)100
重量部およびトリメチロールプロパントリスチオグリコ
レート30重量部を配合してなる電子線硬化型樹脂を2
5μmの厚さで接着層としてロールコータで塗布した。
Examples 4 to 6, Comparative Example 2 Hydrogenated 1,2-polybutadiene resin (manufactured by Nippon Soda ■,
Modification of both terminal OH groups of product name G1-3,000) 100
2 parts by weight and 30 parts by weight of trimethylolpropane tristhioglycolate.
It was coated as an adhesive layer with a thickness of 5 μm using a roll coater.

その接着層付き銅箔を25μm厚のポリイミドフィルム
にロールラミネートした。得られた銅箔付きポリイミド
フィルムをヒータで加熱しながら、ポリイミドフィルム
側より加速電圧200KVリニアフイラメントの直線型
電子線照射装置を用い、線量として10Mr a dの
電子線を照射した。0.5秒間で樹脂は充分硬化し、ポ
リイミドフィルム基板の銅張積層体を得た。実施例とし
て加熱温度が異なる3種のもの、比較例として加熱せず
に電子線硬化した1種ものについて、その特性評価結果
を表2に示す。
The copper foil with the adhesive layer was roll laminated onto a 25 μm thick polyimide film. While heating the obtained polyimide film with copper foil using a heater, an electron beam at a dose of 10 Mrad was irradiated from the polyimide film side using a linear electron beam irradiation device with an accelerating voltage of 200 KV linear filament. The resin was sufficiently cured in 0.5 seconds, and a copper-clad laminate of polyimide film substrates was obtained. Table 2 shows the characteristics evaluation results for three types of samples with different heating temperatures as examples and one type of sample that was cured with electron beam without heating as a comparative example.

〔発明の効果〕〔Effect of the invention〕

本発明の方法で製造した銅張積層体は200℃以上の高
温時でも高接着力を示し、高密度の配線板として良好な
特性を示す。また、接着層の電子線硬化型樹脂も均一に
密に硬化するため、可とう性で強靭なフレキシブル配線
板としても十分満足するものである。
The copper-clad laminate produced by the method of the present invention exhibits high adhesive strength even at high temperatures of 200° C. or higher, and exhibits good properties as a high-density wiring board. Further, since the electron beam curable resin of the adhesive layer is cured uniformly and densely, it is fully satisfactory as a flexible and strong flexible wiring board.

−/−/

Claims (1)

【特許請求の範囲】 1、基板に樹脂材の接着層を介在して、銅箔を積層する
銅張積層体の製造方法において、上記接着層として電子
線硬化型樹脂を用いるとともに、接着層の温度が100
〜200℃になるように加温した状態で電子線照射して
、接着層を架橋することを特徴とする銅張積層体の製造
方法。 2、電子線硬化型樹脂が、1分子中に2個以上の反応性
炭素−炭素不飽和結合を有するポリエン化合物とポリチ
オールを主成分とする樹脂である特許請求範囲第1項記
載の銅張積層体の製造方法。 3、1分子中に2個以上の反応性炭素−炭素不飽和結合
を有するポリエン化合物がアリル化合物である特許請求
範囲第2項記載の銅張積層体の製造方法。
[Claims] 1. A method for manufacturing a copper-clad laminate in which copper foil is laminated on a substrate with an adhesive layer of a resin material interposed therebetween, in which an electron beam curable resin is used as the adhesive layer, and the adhesive layer is temperature is 100
A method for producing a copper-clad laminate, which comprises crosslinking an adhesive layer by irradiating the adhesive layer with an electron beam while heating the adhesive layer to ~200°C. 2. The copper-clad laminate according to claim 1, wherein the electron beam curable resin is a resin whose main components are a polyene compound and polythiol having two or more reactive carbon-carbon unsaturated bonds in one molecule. How the body is manufactured. 3. The method for producing a copper-clad laminate according to claim 2, wherein the polyene compound having two or more reactive carbon-carbon unsaturated bonds in one molecule is an allyl compound.
JP29712487A 1987-11-25 1987-11-25 Production of copper-clad laminate Pending JPH01138235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29712487A JPH01138235A (en) 1987-11-25 1987-11-25 Production of copper-clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29712487A JPH01138235A (en) 1987-11-25 1987-11-25 Production of copper-clad laminate

Publications (1)

Publication Number Publication Date
JPH01138235A true JPH01138235A (en) 1989-05-31

Family

ID=17842523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29712487A Pending JPH01138235A (en) 1987-11-25 1987-11-25 Production of copper-clad laminate

Country Status (1)

Country Link
JP (1) JPH01138235A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7648770B2 (en) 2003-05-21 2010-01-19 Hitachi Chemical Company, Ltd. Primer, conductor foil with resin, laminated sheet and method of manufacturing laminated sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7648770B2 (en) 2003-05-21 2010-01-19 Hitachi Chemical Company, Ltd. Primer, conductor foil with resin, laminated sheet and method of manufacturing laminated sheet
US8507100B2 (en) 2003-05-21 2013-08-13 Hitachi Chemical Company, Ltd. Primer, conductor foil with resin, laminated sheet and method of manufacturing laminated sheet

Similar Documents

Publication Publication Date Title
JP6759873B2 (en) Manufacturing method of flexible copper-clad laminate and flexible copper-clad laminate
US4220513A (en) Epoxide-containing compositions and their polymerization
JP4061606B2 (en) Thermosetting composition comprising polybutadiene or polyisoprene resin alone, and method for producing the same
US6569943B2 (en) Vinyl-terminated polybutadiene and butadiene-styrene copolymers containing urethane and/or ester residues, and the electrical laminates obtained therefrom
TWI410187B (en) Laminates for high speed and high frequency printed circuit boards
JPS61243844A (en) Thermosetting resin composition, laminated sheet and production thereof
CN114656893A (en) Low dielectric adhesive film material based on maleic anhydride functionalized styrene-butadiene rubber and application thereof
JP2005502192A (en) Method for improving the adhesion of circuit boards to metal and articles made therewith
JPH01138235A (en) Production of copper-clad laminate
CN118139905A (en) Thermosetting resin composition, resin sheet, metal foil with resin, metal-clad laminate, and printed wiring board
JP2000104033A (en) Inter layer insulation adhesive for multi-layer printed wiring board and preparation of multi-layer printed- wiring board
EP0170923B1 (en) Resin composition and laminate produced therefrom
JPS6356548A (en) Thermosetting resin composition, laminated sheet produced by using same and production thereof
JPS5831742A (en) Copper lined laminated board
WO2021085191A1 (en) Thermosetting resin composition, resin sheet, metal foil equipped with resin, laminated plate, and printed wiring board
JPH01215815A (en) Thermosetting resin composition and metal-clad laminate thereof
JP2747833B2 (en) Continuous method of manufacturing metal foil laminate
JPH06104566A (en) Metallic foil clad laminate for electrical use
JPS587345A (en) Manufacture of metallic foil lined laminate
CN116376230A (en) Resin glue solution, prepreg, metal foil-clad laminate and printed circuit board
JPH02218196A (en) Semi-cured resin copper-clad laminated sheet
JPS5869044A (en) Copper lined laminated board
JPH0590719A (en) Manufacture of glass fiber reinforced laminate plate for electrical use
JPH033577B2 (en)
JPH01287118A (en) Resin composition for electrical laminate