JPH01137979A - Glucose isomerase gene, recombinant having said gene and microorganism containing said recombinant - Google Patents

Glucose isomerase gene, recombinant having said gene and microorganism containing said recombinant

Info

Publication number
JPH01137979A
JPH01137979A JP29573987A JP29573987A JPH01137979A JP H01137979 A JPH01137979 A JP H01137979A JP 29573987 A JP29573987 A JP 29573987A JP 29573987 A JP29573987 A JP 29573987A JP H01137979 A JPH01137979 A JP H01137979A
Authority
JP
Japan
Prior art keywords
gene
glucose isomerase
dna
recombinant
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29573987A
Other languages
Japanese (ja)
Other versions
JPH0544278B2 (en
Inventor
Chikafusa Fukazawa
深澤 親房
Keiji Kainuma
圭二 貝沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Food Research Institute
Original Assignee
National Food Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Food Research Institute filed Critical National Food Research Institute
Priority to JP29573987A priority Critical patent/JPH01137979A/en
Priority to SE8800331A priority patent/SE500307C2/en
Publication of JPH01137979A publication Critical patent/JPH01137979A/en
Publication of JPH0544278B2 publication Critical patent/JPH0544278B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • C12N9/92Glucose isomerase (5.3.1.5; 5.3.1.9; 5.3.1.18)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To enable mass-production of glucose isomerase, by separating a gene coding a glucose isomerase originated from actinomycetes and clarifying the structure of the gene. CONSTITUTION:A polymeric DNA of an actinomycete cell is completely digested with a restriction enzyme Bam H1 and a DNA fragment fraction having a chain length of about 5.7kb is separated by neutral sucrose density-gradient centrifugal separation process. The fragment is linked to Bam H1 site of a pUC vector using a ligase and transformed to E.coli to obtain a DNA library. The glucose isomerase gene is selected from the library by using a probe consisting of an oligonucleotide labeled with <32>P.

Description

【発明の詳細な説明】 [産業上の利用分野] グルコースイソメラーゼ(キシロースイソメラーゼとも
称する。)は、アルドースであるブドウ糖なケトースで
ある果糖に異性化する酵素である。異性化すると甘味度
は1.5倍程増加する。現在当該酵素を固定化して、連
続的に異性化する方法により異性化糖の総生産量は90
万トン(年間)以上に達している。
[Detailed Description of the Invention] [Industrial Application Field] Glucose isomerase (also referred to as xylose isomerase) is an enzyme that isomerizes glucose, which is an aldose, and fructose, which is a ketose. Isomerization increases sweetness by about 1.5 times. Currently, the total production of isomerized sugar is 90% by immobilizing the enzyme and continuously isomerizing it.
It has reached more than 10,000 tons (yearly).

本発明は、この酵素をコードする、いわゆる構造遺伝子
とその発現を制御する、いわゆる制御遺伝子領域を含む
DNAを持つ新規な組換え体及びその遺伝子を発現する
新規な微生物に関するものである。
The present invention relates to a novel recombinant that has DNA containing a so-called structural gene encoding this enzyme and a so-called regulatory gene region that controls its expression, and a new microorganism that expresses the gene.

[従来の技術とその問題点] 放線菌由来のグルコースイソメラーゼは、現在異性化糖
生産に利用されている。しかしながら、本発明に至るま
では、その構造は解明されておらず、酵素活性と機能の
関係は全く解明されていない。
[Prior art and its problems] Glucose isomerase derived from actinomycetes is currently used for the production of high-fructose sugar. However, until the present invention, its structure had not been elucidated, and the relationship between enzyme activity and function had not been elucidated at all.

[問題点を解決するための手段] 本発明者は、放線菌 (Stre tomyces s
p、、たとえばS、 griseofuscus S−
41)由来のグルコースイソメラーゼをコードする遺伝
子(制御遺伝子および構造遺伝子を含む)の単離並びに
構造の解明に成功した。この事により、本来当該酵素遺
伝子を持たない放線菌にグルコースイソメラーゼを生産
させる事が出来るようになった。また、制御遺伝子領域
を対応する宿主で発現可能な制御遺伝子と置き換えるこ
とにより、他の微生物で当該酵素を発現出来る。これら
の事は、酵素機能と構造の関係を解明するための系を提
供することを意味するものであり、タンパク質工学的手
法を用いて酵素機能の変換をもたらす可能性を提供する
ものである。
[Means for Solving the Problems] The present inventor has discovered that Streptomyces s
p, for example S, griseofuscus S-
41), and succeeded in elucidating the structure and isolation of the gene encoding glucose isomerase (including regulatory genes and structural genes). This has made it possible to produce glucose isomerase in actinomycetes that originally do not have the enzyme gene. Furthermore, by replacing the regulatory gene region with a regulatory gene that can be expressed in the corresponding host, the enzyme can be expressed in other microorganisms. These are meant to provide a system for elucidating the relationship between enzyme function and structure, and offer the possibility of transforming enzyme function using protein engineering techniques.

本発明はグルコースイソメラーゼに対応し、放線菌(銭
匹U叩ム二sp、)の染色体上に存在し、制限酵素Ba
m )IIで切り出される5、7kb断片画分に含まれ
る遺伝子、グルコースイソメラーゼに対応し、放線菌の
染色体の5.7kb−Bam l(1断片画分にプロモ
ーター領域と完全な当該酵素の翻訳領域並びに当該酵素
遺伝子とポリシストロニックに発現するキシルロキナー
ゼ遺伝子の一部を含むDNAを持つ組換え体及びグルコ
ースイソメラーゼに対応し、放線菌から得られ、ショ糖
密度勾配遠心法によりBaIIH1完全消化5.7kb
−DNA断片画分に得られ、制限酵素1Ith1により
切り出されるDNA断片上に、プロモーター領域を含む
当該酵素構造遺伝子の大部分を含むDNAが組み込まれ
ているベクターを有する微生物に関する。
The present invention corresponds to glucose isomerase, which is present on the chromosome of actinomycetes (Zenda Uta Muni sp.), and which is a restriction enzyme based on the restriction enzyme Ba
m) Corresponding to glucose isomerase, a gene contained in the 5.7 kb fragment fraction cut out by II, the 5.7 kb-Baml of the chromosome of Streptomyces (one fragment fraction contains the promoter region and the complete translation region of the enzyme) and a recombinant with DNA containing a part of the xylulokinase gene polycistronically expressed with the enzyme gene and glucose isomerase, obtained from Streptomyces and completely digested with BaIIH1 by sucrose density gradient centrifugation. .7kb
- The present invention relates to a microorganism having a vector in which a DNA containing most of the enzyme structural gene including a promoter region is integrated into a DNA fragment obtained from a DNA fragment fraction and excised by restriction enzyme 1Ith1.

本発明の遺伝子は第1図に示した塩基配列を有し、39
3個のアミノ酸とイニシエーター“メチオニンをコード
し、リーダー配列をコードしない構造遺伝子とその5′
−上流域の制御遺伝子からなる。
The gene of the present invention has the base sequence shown in FIG.
A structural gene that encodes three amino acids and the initiator “methionine” but does not encode a leader sequence and its 5′
- Consists of upstream regulatory genes.

さらに詳しくは、本発明はグルコースイソメラーゼに対
応し、放線菌細胞より得られ、核および核断片由来のD
NAで、グルコースイソメラーゼの一次構造またはその
部分構造に対応するオリゴヌクレオチドなどとサザンプ
ロットハイプリダイゼーション法により特定される領域
を含み、同時にプロモーター領域およびイニシエーター
、ターミネータ−をも含む核由来遺伝断片片、該遺伝子
を有する組換え体および該遺伝子を発現する微生物に関
するものである。
More specifically, the present invention deals with glucose isomerase, obtained from actinomycete cells, and derived from nuclei and nuclear fragments.
A nuclear-derived genetic fragment that is NA and contains oligonucleotides corresponding to the primary structure or partial structure of glucose isomerase and a region identified by Southern blot hybridization, and also contains a promoter region, initiator, and terminator. , relates to a recombinant having the gene and a microorganism expressing the gene.

本発明に係る核由来遺伝子断片は、グルコースイソメラ
ーゼ活性を有する放線菌細胞から抽出・分離し、遺伝子
工学的手法により増幅させることにより製造できる。
The nuclear gene fragment according to the present invention can be produced by extracting and separating it from actinomycete cells having glucose isomerase activity and amplifying it by genetic engineering techniques.

放線菌細胞からグルコースイソメラーゼに対応する核遺
伝子断片を分離するには、高分子DNAを抽出すること
が望ましい。当該放線菌のステージは問わないが、対数
増殖後期が望ましい。
In order to isolate the nuclear gene fragment corresponding to glucose isomerase from actinomycete cells, it is desirable to extract high molecular DNA. The stage of the actinomycete is not critical, but late logarithmic growth is preferable.

放線菌細胞から高分子の核DNAの抽出法としては、例
えばMurrayとThompsonにより報告された
方法[Nucleic Ac1ds Res、、 8.
4321 (1980)]などがある。調製した放線菌
高分子DNAからのグルコースイソメラーゼ遺伝子を含
むDNA断片の同定のためには、適切な制限酵素などで
切断したDNA断片をリガーゼを用いて適当なベクター
に結合させ、これらを用いて形質転換した細胞中から、
グルコースイソメラーゼの部分アミノ酸配列決定に基い
て合成したオリゴヌクレオチドをプローブとするコロニ
ーハイブリダイゼーション法により選別すればよい。用
いるベクターは大腸菌を宿主とした場合では、ptlc
系やλフアージ系が利用し易い。しかし、最も効率的に
当該遺伝子を調製する方法は実施例に示す如く、放線菌
高分子DNAをBam )11で完全消化後、中性蔗糖
密度勾配遠心法により鎖長5.7kb程度のDNA断片
画分を分取し、リガーゼによりpUcベクターのBam
 H1部位に結合せしめた後、大腸菌にトランスフオー
ムしDNAライブラリーを作製するものである。このラ
イブラリーからのグルコースイソメラーゼ遺伝子の検索
は、上記オリゴヌクレオチドを32pで標識してプロー
ブbすることにより行なうことができる。
Examples of methods for extracting high-molecular nuclear DNA from actinomycete cells include the method reported by Murray and Thompson [Nucleic Acids Res, 8.
4321 (1980)]. In order to identify the DNA fragment containing the glucose isomerase gene from the prepared Streptomyces macromolecular DNA, the DNA fragment cut with an appropriate restriction enzyme is ligated to an appropriate vector using a ligase, and these are used to transform the DNA fragment. From the converted cells,
Selection may be performed by colony hybridization using an oligonucleotide synthesized based on the determination of the partial amino acid sequence of glucose isomerase as a probe. The vector used is ptlc when E. coli is used as the host.
The λ-phage system and the λ-phage system are easy to use. However, the most efficient method for preparing the gene is as shown in the example, after complete digestion of actinomycete polymeric DNA with Bam) 11, a DNA fragment with a chain length of approximately 5.7 kb is obtained by neutral sucrose density gradient centrifugation. The fractions were collected and the Bam of pUc vector was added using ligase.
After binding to the H1 site, it is transformed into E. coli to create a DNA library. Search for glucose isomerase genes from this library can be performed by labeling the above oligonucleotide with 32p and using probe b.

かくして得られたトランスフォーマントを大量培養して
得られた菌体より常法、例えばアルカリ−SDS法によ
りプラスミドを抽出、分離し、さらにセシウムクロライ
ド密度勾配超遠心法、ゲル濾過法、アガロースゲル電気
泳動法等によりグルコースイソメラーゼに対応する核由
来遺伝子断片を得ることができる。
Plasmids are extracted and separated from the bacterial cells obtained by mass culturing the thus obtained transformants by a conventional method, such as the alkaline-SDS method, and then subjected to cesium chloride density gradient ultracentrifugation, gel filtration, and agarose gel electrophoresis. A nuclear-derived gene fragment corresponding to glucose isomerase can be obtained by methods such as methods.

上記の如くして得られた核由来遺伝子が目的とするもの
であることを確認するためには、得られた核由来遺伝子
断片をグルコースイソメラーゼのアミノ酸配列を部分的
に決定し、それに基いて合成したオリゴヌクレオチドを
プローブとしたサザンプロットハイプリダイゼイション
させればよい。
In order to confirm that the nuclear gene obtained as described above is the desired one, it is necessary to partially determine the amino acid sequence of glucose isomerase of the obtained nuclear gene fragment, and synthesize it based on the partial determination of the amino acid sequence of glucose isomerase. Southern blot hybridization may be performed using the obtained oligonucleotide as a probe.

かくして得られたグルコースイソメラーゼ核遺伝子の最
も大きな利用法は、これらの核遺伝子を微生物、植物お
よび動物のベクター等に組込んで微生物、植物および動
物でグルコースイソメラーゼまたはこの改良酵素を生産
することを可能ならしめることにある。ここで微生物と
してはエシェリヒア・コリなどの原核生物やサッカロミ
セス・セレビシエなどの真核生物がある。
The greatest use of the glucose isomerase nuclear genes obtained in this way is to incorporate these nuclear genes into vectors of microorganisms, plants, and animals to produce glucose isomerase or this improved enzyme in microorganisms, plants, and animals. It's about getting used to it. Here, microorganisms include prokaryotes such as Escherichia coli and eukaryotes such as Saccharomyces cerevisiae.

さらに、別の利用法はグルコースイソメラーゼのプロモ
ーター領域を改良することにより放線菌における高発現
ベクターを作成出来ることにある。
Furthermore, another use is that by improving the promoter region of glucose isomerase, a vector for high expression in actinomycetes can be created.

グルコースイソメラーゼ核遺伝子のベクターへの組み込
みは通常、試験管内で次のように行なうことができる。
Integration of the glucose isomerase nuclear gene into a vector can usually be carried out in vitro as follows.

グルコースイソメラーゼ核遺伝子のDNA両端を必要に
よりエキソヌクレアーゼで処理し、それぞれに必要なり
NAを接続し、あるいはアニーリング可能な組合せの塩
基を複数個重合せしめる。しかる後、これを目的とする
ベクターに組込む。組込む方法は、ベクターを適当な制
限酵素で切断し、必要により適当なリンカ−またはアニ
ーリング可能な組合せの塩基を複数個重合せしめる。こ
のように加工した二重鎖DNAとベクターDNAを混合
し、リガーゼを用いて接続せしめる。
Both ends of the DNA of the glucose isomerase nuclear gene are treated with exonuclease, if necessary, and NAs are connected to each end as necessary, or a plurality of bases in combinations that can be annealed are polymerized. Thereafter, this is incorporated into the target vector. The method of integration involves cleaving the vector with an appropriate restriction enzyme and, if necessary, polymerizing an appropriate linker or a plurality of annealing-enabled combinations of bases. The double-stranded DNA thus processed and vector DNA are mixed and ligated using ligase.

得られた組換えDNAは、ベクターの宿主である微生物
、植物細胞および動物細胞に導入する。
The obtained recombinant DNA is introduced into vector hosts such as microorganisms, plant cells, and animal cells.

ここで用い得る宿主としては各種のものがあり、例えば
エシェリヒア・コリ等のエシェリヒア属、バチルス・ズ
ブチリス等のバチルス属等の細菌、サッカロミセス・セ
レビシエ等のサツカロミセス属等の酵母、タバコ、ペチ
ュニア等のナス科植物[細胞等、Ba1bIC373等
の動物培養細胞が好適である。これら宿主に使用される
ベクターを以下に例示する。
There are various hosts that can be used here, including bacteria of the genus Escherichia such as Escherichia coli, bacteria of the genus Bacillus such as Bacillus subtilis, yeasts of the genus Saccharomyces such as Saccharomyces cerevisiae, tobacco, and eggplants such as petunia. Animal cultured cells such as Ba1bIC373 are suitable. Vectors used for these hosts are illustrated below.

EK系プラスミドベクター(ストリンジェント型)のp
sclol、 pRK353. pRK646. pR
に248. pDF41等、EK系プラスミドベクター
(リラックスド型)のCa1El、 pVH51,pA
c105. R5F2124. pcRl。
EK-based plasmid vector (stringent type) p
scroll, pRK353. pRK646. pR
248. pDF41, etc., EK-based plasmid vectors (relaxed type) Ca1El, pVH51, pA
c105. R5F2124. pcRl.

pMB9.BR313,pBR322,pBR324,
pBR325,pBR327゜pBR3211,pKY
228J  pKY27Qo、  pKNB(1,pK
C7゜pKB158.  pMK2004.  pAc
Ycl、  pAcYc184.   λdu1等、λ
gt系ファージベクターのλgt・λC1λgt・ λ
B、  λWES ・λB′、 λZJvir・λB′
、 λへLO−λB。
pMB9. BR313, pBR322, pBR324,
pBR325, pBR327゜pBR3211, pKY
228J pKY27Qo, pKNB(1, pK
C7゜pKB158. pMK2004. pAc
Ycl, pAcYc184. λdu1 etc., λ
gt-based phage vector λgt/λC1λgt/λ
B, λWES・λB′, λZJvir・λB′
, LO-λB to λ.

λWES−Ts622.  λDam等、シャロンベク
ターのシャロン4A、シャロン3A、シャロン16A。
λWES-Ts622. λDam et al., Sharon 4A, Sharon 3A, Sharon 16A of Sharon vector.

シャロン13A、シャロン14A、シャロン15A。Sharon 13A, Sharon 14A, Sharon 15A.

シャロン8.シャロン10.シャロン17.シャロン2
0等、チオライス(Tiollais)グループベクタ
ー(DL512.  λZEQS、  λZYV5φ、
λZUV  φ2゜λZUVφ3. λYEQSφ1 
、  λYEQSφ、λYEQSφ3゜λBam、  
λSst等、枯草菌のプラスミドベクターpTA101
5. pLs15. pTA1020. pL528.
 pLs13. pTA1050、 pTA1060.
 pTA1030. pTA1031等、スタフィロコ
ッカス由来のプラスミドベクターpT127 。
Sharon 8. Sharon 10. Sharon 17. Sharon 2
0 etc., Tiollais group vector (DL512. λZEQS, λZYV5φ,
λZUV φ2゜λZUVφ3. λYEQSφ1
, λYEQSφ, λYEQSφ3゜λBam,
λSst, etc., Bacillus subtilis plasmid vector pTA101
5. pLs15. pTA1020. pL528.
pLs13. pTA1050, pTA1060.
pTA1030. Staphylococcus-derived plasmid vector pT127, such as pTA1031.

pc194. pc221. pC223,pUB11
2. pLIBllo。
pc194. pc221. pC223, pUB11
2. pLIBlo.

psAO501,ps八へ100. pE1!14. 
pTP4. pTI’5等、酵母ベクターとしてpJD
B219. YEp13. YRp7. Ylpl。
psAO501, ps8 100. pE1!14.
pTP4. pJD as a yeast vector such as pTI'5
B219. YEp13. YRp7. Ylpl.

pyc、 pTC2、植物ベクターとしてTiプラスミ
ド由来の各種ベクターやカリフラワーモザイクウィルス
由来の各種ベクター類(バイナリ−型ベクターをも含む
)、動物ベクターとしてsv4゜由来のpSVK”、 
pI−11β−1pSV)I、n−1−H+、  pβ
2X、 psXβ+などがある。ただし、Tiプラスミ
ド由来の植物ベクターの場合は、得られた組換えDNA
を−Hアグロバクテリウム・ツメファシェンスT37等
に導入し、木組換え微生物を植物細胞にco−cult
ureすることなどにより感染させることによって宿主
植物に組換えDNAを導入することができる。
pyc, pTC2, various vectors derived from Ti plasmids and various vectors derived from cauliflower mosaic virus (including binary vectors) as plant vectors, pSVK derived from sv4° as animal vectors,
pI-11β-1pSV)I, n-1-H+, pβ
2X, psXβ+, etc. However, in the case of a Ti plasmid-derived plant vector, the obtained recombinant DNA
-H Agrobacterium tumefaciens T37 etc. and co-cult the wood-modified microorganism into plant cells.
Recombinant DNA can be introduced into a host plant by infection, such as by ure.

木組換えDNA産物として得られたグルコースイソメラ
ーゼが天然型のそれと構造的に同じであることは、産物
の免疫沈降またはイミュノプロットなどの手法によって
確認することができる。
That the glucose isomerase obtained as a wood recombinant DNA product is structurally the same as that of the natural type can be confirmed by techniques such as immunoprecipitation or immunoplot of the product.

[実施例] 次に、本発明を実施例により詳しく説明する。[Example] Next, the present invention will be explained in detail with reference to examples.

実施例1 放線菌(Stre tomyces griseofu
scus S−41)を常法に従って対数増殖後期まで
培養後、冷却遠心し、その湿重量(5z、8gr)を直
ちに液体窒素で凍結した。これに15%蔗糖、 20m
M EDTA、 30mM Tris−HCj (+)
H8,0) 、 0.7%sosを加えて磨砕し、次い
で50℃で30分間保温した後、MurrayとTho
mpsonの方法[Nucleic Ac1ds Re
s、 8.4321 (1980)] に従って核DN
Aを抽出した。このDNAは分子量が25kb以上でア
ガロースゲル電気泳動上では単一バンドとなり分解は認
められなかった。この高分子DNAの500μgをBa
m旧で完全消化し、常法に従ってフェノール処理後エタ
ノール沈澱させた。次いで、10%〜40%の中性蔗糖
密度勾配上に重層し、26.00Orpmで26時間遠
心した。800μβづつ分画し、その一部をアガロース
ゲル(0,4%)電気泳動することにより、各画分に含
まれるDNAMi長を調べた。その結果、フラクション
31の平均DNA鎖長が5.8kbであり、8.25μ
gのDNA量であった。このDNA画分を約1ugとり
、Bam t11完全消化pUc13の1μgとりガー
ゼ処理を行なった。反応はT4DNA リガーゼ(20
U)を用いt4℃で14時間行なった。
Example 1 Stretomyces griseofu
scus S-41) was cultured to the late stage of logarithmic growth according to a conventional method, centrifuged under cooling, and its wet weight (5z, 8gr) was immediately frozen in liquid nitrogen. Add 15% sucrose to this, 20m
MEDTA, 30mM Tris-HCj (+)
H8,0), 0.7% SOS was added and ground, and then kept at 50°C for 30 minutes, after which Murray and Tho
mpson method [Nucleic Ac1ds Re
s, 8.4321 (1980)].
A was extracted. This DNA had a molecular weight of 25 kb or more and showed a single band on agarose gel electrophoresis, with no degradation observed. 500 μg of this high molecular DNA was
The mixture was completely digested with 100 ml of water, treated with phenol, and then precipitated with ethanol according to a conventional method. Then, it was layered on a 10% to 40% neutral sucrose density gradient and centrifuged at 26.00 rpm for 26 hours. The length of DNAMi contained in each fraction was examined by fractionating 800 μβ and subjecting a portion of the fraction to agarose gel (0.4%) electrophoresis. As a result, the average DNA chain length of fraction 31 was 5.8 kb and 8.25μ
The amount of DNA was 1.5 g. Approximately 1 ug of this DNA fraction was taken, and 1 ug of Bam t11 completely digested pUc13 was taken and treated with gauze. The reaction was performed using T4 DNA ligase (20
The test was carried out using U) at t4°C for 14 hours.

次いで、大腸菌NM522に常法に従ってトランスフオ
ームし、得られた形質転換様を培養して約2000個の
コロニーを得た。
Next, the mixture was transformed into Escherichia coli NM522 according to a conventional method, and the resulting transformed product was cultured to obtain about 2000 colonies.

一方、グルコースイソメラーゼを放線菌から精製し、そ
のN−末端領域のアミノ酸配列を解析したところ、5−
F−Q−P−T−P−E−D−に−F−T−F−G−L
−W−T−V−Q−4という結果を得たので、縮重の少
ない領域についてオリゴヌクレオチドを合成した。すな
わち、 上記23marをプローブとしてコロニーパイプリダイ
ゼーションを行なったところ、9個の陽性コロニーを得
た。いずれのクローンの挿入DNAも同じ5.7kbで
あったので、その内の1つpGI−32を用いて以下の
研究を行なった。制限酵素によるマツピングとサザーン
プロットハイプリダイゼーションの結果からグルコース
イソメラーゼ遺伝子の大部分はSphlで切り出される
2、7kb上にあることが判明した。従って、構造解析
と放線菌以外でのグルコースイソメラーゼ遺伝子の発現
を容易にする1 ま ため、ベクターとして!1UC119(及びpUc11
8)を用い、5teven Hen1koffの方法[
Gene、 28.351(1984)]及びYani
sch−Perronらの方法[Gene、 33゜1
03 (1985)] に基いてpGI−32由来のp
LI−GI−32およびpals−GI−65(抛1 
ニよる2、7kbをpUc119に挿入し□たクローン
)の挿入部位を種々の程度に欠損するプラスミドを作製
し、大腸菌でクローニングした。これらの一連の欠損プ
ラスミドを用いてSanger法によりグルコースイソ
メラーゼ遺伝子の完全構造を明らかにした(第1図参照
)。その結果、放線菌(Streptomyces)の
グルコースイソメラーゼは、393個のアミノ酸からな
る分子量43843のタンパク質であることが明らかと
なった。イニシエーターメチオニンの後にリーダー配列
がないため、この酵素は分泌性でないことが前駆体タン
パク質の構造からも明らかとなった。
On the other hand, when glucose isomerase was purified from actinomycetes and the amino acid sequence of its N-terminal region was analyzed, it was found that 5-
F-Q-P-T-P-ED-ni-F-T-F-G-L
-W-T-V-Q-4 was obtained, so oligonucleotides were synthesized for the less degenerate region. That is, when colony piperidization was performed using the above 23mar as a probe, nine positive colonies were obtained. Since the inserted DNA of all clones was the same, 5.7 kb, one of them, pGI-32, was used for the following research. From the results of restriction enzyme mapping and Southern plot hybridization, it was found that most of the glucose isomerase gene was located within the 2.7 kb region excised by Sphl. Therefore, it can be used as a vector to facilitate structural analysis and expression of the glucose isomerase gene in organisms other than actinomycetes! 1UC119 (and pUc11
8) using the method of 5teven Hen1koff [
Gene, 28.351 (1984)] and Yani
The method of sch-Perron et al. [Gene, 33°1
03 (1985)] derived from pGI-32.
LI-GI-32 and pals-GI-65 (抛1
Plasmids were created in which the insertion site of 2.7 kb was inserted into pUc119 (clone) to various extents, and cloned in E. coli. Using a series of these defective plasmids, the complete structure of the glucose isomerase gene was revealed by the Sanger method (see Figure 1). As a result, it was revealed that Streptomyces glucose isomerase is a protein consisting of 393 amino acids and having a molecular weight of 43,843. The structure of the precursor protein also revealed that the enzyme is not secreted because it lacks a leader sequence after the initiator methionine.

実施例2 異種微生物に放線菌グルコースイソメラーゼを発現させ
るために、前記実施例1で作製したptl−GI−32
の一連のデレージョンプラスミドな5teven He
n1koffの方法[Gene、 28.351 (1
984)]及びYanisch−Perronらの方法
[Gene、 33.103(1985)] に基いて
作製した。勿論、デレージョンプラスミドの作製方法は
BaR31を用いる方法など他の方法もあり、適切であ
ればよい。ここでは遺伝子の5′−フランキング領域を
約2kb程欠損させることを目的とした。その結果、デ
レージョン変異株の1つでプラスミドpU−GI−32
−68をもつクローンを獲得した。このプラスミドは第
1図に示したグルコースイソメラーゼ遺伝子のイニシエ
ーターメチオニンに続くグルタミンコドンの第1文字ま
でを欠損していた(I参照)。そこで、このプラスミド
の5′末端に合成二重鎖オリゴヌクレオチド、 5’−
d[CAGCCATGGGCTTCC] をリガーゼに
より結合した。これをNcolにより切断後、大腸菌発
現ベクターpKK233−2のNco1部位に結合し、
3′−末端なfHl−in シた後、リガーゼで環状に
した。この発現ベクターをIacIQ株である大腸菌N
M522にトランスフオームした。この発現プラスミド
はIPTG添加により菌体内にグルコースイソメラーゼ
を生産することを菌体破砕上清のイミュノプロットおよ
び活性測定により確認した。本菌は微生物工業技術研究
所に寄託されており、その寄託番号はFERM P−り
τITである。
Example 2 In order to express actinomycete glucose isomerase in a heterologous microorganism, ptl-GI-32 produced in Example 1 above was used.
A series of deletion plasmids, 5teven He
The method of n1koff [Gene, 28.351 (1
984)] and the method of Yanisch-Perron et al. [Gene, 33.103 (1985)]. Of course, there are other methods for producing deletion plasmids, such as a method using BaR31, as long as they are appropriate. The purpose here was to delete approximately 2 kb of the 5'-flanking region of the gene. As a result, one of the deletion mutants showed that plasmid pU-GI-32
A clone with -68 was obtained. This plasmid was deleted up to the first letter of the glutamine codon following the initiator methionine of the glucose isomerase gene shown in FIG. 1 (see I). Therefore, a synthetic double-stranded oligonucleotide, 5'-
d[CAGCCATGGGCTTCC] was ligated with ligase. After cutting this with Ncol, it was ligated to the Nco1 site of the E. coli expression vector pKK233-2,
After cutting the 3'-terminal fHl-in, it was circularized using ligase. This expression vector was used in Escherichia coli N, an IacIQ strain.
Transformed into M522. It was confirmed by immunoplotting and activity measurement of the disrupted bacterial cell supernatant that this expression plasmid produced glucose isomerase within the bacterial cells upon addition of IPTG. This bacterium has been deposited with the National Institute of Microbial Technology, and its deposit number is FERM P-RI τIT.

[発明の効果コ 本発明により放線菌グルコースイソメラーゼをコードす
る遺伝子と該遺伝子を有する組換え体並びにその遺伝子
を発現する新規な微生物が提供される。このグルコース
イソメラーゼの活性と構造の関係をタンパク質工学的手
法を駆使することにより明らかにすることが出来るよう
になり、より優れた該酵素の創造につながると共に、グ
ルコースイソメラーゼの生産効率を上げることにも大き
く寄与することが出来る。
[Effects of the Invention] The present invention provides a gene encoding actinomycete glucose isomerase, a recombinant having the gene, and a novel microorganism expressing the gene. It has become possible to clarify the relationship between the activity and structure of glucose isomerase by making full use of protein engineering techniques, which will lead to the creation of a better enzyme and will also help increase the production efficiency of glucose isomerase. It can make a big contribution.

【図面の簡単な説明】 第1図はグルコースイソメラーゼ遺伝子の塩基配列を示
す。 特許出願人  農林水産省食品総合研究所長代 理 人
 弁理士 久保1)藤 部 ≧3犀に乙  ≧ス 田E  Q’m
[Brief Description of the Drawings] Figure 1 shows the base sequence of the glucose isomerase gene. Patent Applicant Acting Director, Food Research Institute, Ministry of Agriculture, Forestry and Fisheries Attorney Patent Attorney Kubo

Claims (1)

【特許請求の範囲】 1)グルコースイソメラーゼに対応し、放線菌(Str
eptomces sp.)の染色体上に存在し、制限
酵素Bam Hlで切り出される5.7kb断片画分に
含まれる遺伝子。 2)遺伝子が、第1図に示した塩基配列を有するもので
ある特許請求の範囲第1項記載の遺伝子。 3)グルコースイソメラーゼに対応し、放線菌の染色体
の5.7kb−Bam Hl断片画分にプロモーター領
域と完全な当該酵素の翻訳領域並びに当該酵素遺伝子と
ポリシストロニックに発現するキシルロキナーゼ遺伝子
の一部を含むDNAを持つ組換え体。 4)DNAが、原核生物もしくは真核生物のベクターで
ある特許請求の範囲第3項記載の組換え体。 5)遺伝子が、第1図に示した塩基配列を有するもので
ある特許請求の範囲第3項記載の組換え体。 6)グルコースイソメラーゼに対応し、放線菌から得ら
れ、ショ糖密度勾配遠心法によりBam Hl完全消化
5.7kb−DNA断片画分に得られ、制限酵素Sph
lにより切り出されるDNA断片上に、プロモーター領
域を含む当該酵素構造遺伝子の大部分を含むDNAが組
み込まれているベクターを有する微生物。 7)微生物が、エシェリヒア・コリ、バチルス・ズブチ
リスまたはサッカロミセス・セレビシエである特許請求
の範囲第6項記載の微生物。
[Claims] 1) Corresponding to glucose isomerase,
eptomces sp. ) and is included in the 5.7 kb fragment fraction cut out with the restriction enzyme Bam Hl. 2) The gene according to claim 1, wherein the gene has the base sequence shown in FIG. 3) Corresponding to glucose isomerase, the 5.7 kb-Bam Hl fragment fraction of the Streptomyces chromosome contains the promoter region and the complete translated region of the enzyme, as well as part of the xylulokinase gene that is polycistronically expressed with the enzyme gene. A recombinant that has DNA containing parts. 4) The recombinant according to claim 3, wherein the DNA is a prokaryotic or eukaryotic vector. 5) The recombinant according to claim 3, wherein the gene has the base sequence shown in FIG. 6) Corresponding to glucose isomerase, obtained from actinomycetes, obtained by sucrose density gradient centrifugation into a 5.7 kb DNA fragment fraction completely digested with Bam Hl, and containing the restriction enzyme Sph
A microorganism having a vector in which DNA containing most of the enzyme structural gene including the promoter region is integrated onto the DNA fragment excised by l. 7) The microorganism according to claim 6, wherein the microorganism is Escherichia coli, Bacillus subtilis, or Saccharomyces cerevisiae.
JP29573987A 1987-11-24 1987-11-24 Glucose isomerase gene, recombinant having said gene and microorganism containing said recombinant Granted JPH01137979A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP29573987A JPH01137979A (en) 1987-11-24 1987-11-24 Glucose isomerase gene, recombinant having said gene and microorganism containing said recombinant
SE8800331A SE500307C2 (en) 1987-11-24 1988-02-02 Glucose isomerase gene from Streptomyces griseofuscus S-41 and microorganism transformed with recombinant DNA containing the gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29573987A JPH01137979A (en) 1987-11-24 1987-11-24 Glucose isomerase gene, recombinant having said gene and microorganism containing said recombinant

Publications (2)

Publication Number Publication Date
JPH01137979A true JPH01137979A (en) 1989-05-30
JPH0544278B2 JPH0544278B2 (en) 1993-07-05

Family

ID=17824543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29573987A Granted JPH01137979A (en) 1987-11-24 1987-11-24 Glucose isomerase gene, recombinant having said gene and microorganism containing said recombinant

Country Status (2)

Country Link
JP (1) JPH01137979A (en)
SE (1) SE500307C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016355A2 (en) * 2007-07-27 2009-02-05 The Secretary Of State For Trade And Industry Cavitation detection

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016355A2 (en) * 2007-07-27 2009-02-05 The Secretary Of State For Trade And Industry Cavitation detection
WO2009016355A3 (en) * 2007-07-27 2009-04-16 Secretary Trade Ind Brit Cavitation detection
US8696321B2 (en) 2007-07-27 2014-04-15 The Secretary Of State For Trade And Industry Cavitation detection
EA019866B1 (en) * 2007-07-27 2014-06-30 Ве Секретари Оф Стэйт Фор Трэйд Энд Индастри Cavitation detection

Also Published As

Publication number Publication date
SE8800331L (en) 1989-05-25
SE500307C2 (en) 1994-05-30
JPH0544278B2 (en) 1993-07-05
SE8800331D0 (en) 1988-02-02

Similar Documents

Publication Publication Date Title
BRPI1002997A2 (en) transgenic saccharin sorghum with altered lignin composition and process of preparation thereof
JPH09511647A (en) DNA sequences encoding cinnamoyl CoA reductases and their use in the field of plant lignin level regulation
US4983729A (en) DNA fragment encoding a rubber polymerase and its use
CA2136828A1 (en) Dna sequences and plasmids for the preparation of plants with changed sucrose concentration
AU4644793A (en) Molecular cloning of the genes reponsible for collagenase production from clostridium histolyticum
KR20010033469A (en) Promoter from Ashbya Gossypii
JP2000515755A (en) Invertase inhibitor
EP0178314A1 (en) An improved method of cloning double-stranded rna, and its use in the production of viral gene clones
JPH01137979A (en) Glucose isomerase gene, recombinant having said gene and microorganism containing said recombinant
JPH104981A (en) Method for stabilizing plasmid contained in bacterium
WO2001059136A1 (en) Production of non-cariogenic sugars in transgenic plants
WO2007099231A1 (en) System for the expression of a gene of interest in yeast
JP2833789B2 (en) Transformation of tuber-forming plants
CN114774421B (en) Mutant of endogenous promoter of zymomonas mobilis
CN114540379B (en) Gene participating in synthesis of peach fruit fragrance type aromatic substances and application thereof
JPH09506765A (en) Α-1,4-Glucan lyase from fungal infected algae, its purification, gene cloning and expression in microorganisms
CN115160419B (en) Pichia glabra Thioredoxin secretory protein and application thereof
KR102527047B1 (en) A novel promoter based on the characteristics of drought stress specific cis-regulatory element and its manufacturing method
CN114507657B (en) Chrysanthemum brain monoterpene synthase gene CnTPS2 and application thereof
JP3174355B2 (en) Base sequence of DTA gene and use thereof
KR102132276B1 (en) Mutated dehydrin from the Arctic mouse-ear chickweed Cerastium arcticum and use thereof
EP2292777B1 (en) Transgenic sweet sorghum with altered lignin composition and process of preparation thereof
JP2884486B2 (en) Mitochondrial ribosomal protein gene and use thereof
CN114395564A (en) Application of Lycium ruthenicum Murr EIN3 gene in delaying fruit ripening
JPS6368087A (en) Dna containing range participating in manifestation and secretion of protein

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term