JPH01137226A - Galvanomirror - Google Patents
GalvanomirrorInfo
- Publication number
- JPH01137226A JPH01137226A JP29646987A JP29646987A JPH01137226A JP H01137226 A JPH01137226 A JP H01137226A JP 29646987 A JP29646987 A JP 29646987A JP 29646987 A JP29646987 A JP 29646987A JP H01137226 A JPH01137226 A JP H01137226A
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- movable
- movable part
- back yoke
- holding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000007935 neutral effect Effects 0.000 claims abstract description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000011347 resin Substances 0.000 claims abstract description 5
- 229920005989 resin Polymers 0.000 claims abstract description 5
- 238000001125 extrusion Methods 0.000 claims abstract description 4
- 239000004677 Nylon Substances 0.000 claims abstract description 3
- 229910052742 iron Inorganic materials 0.000 claims abstract description 3
- 229920001778 nylon Polymers 0.000 claims abstract description 3
- 230000005415 magnetization Effects 0.000 claims abstract 2
- 230000003287 optical effect Effects 0.000 claims description 16
- 230000007246 mechanism Effects 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000006247 magnetic powder Substances 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 238000009434 installation Methods 0.000 claims description 2
- 239000000696 magnetic material Substances 0.000 claims description 2
- 229910052772 Samarium Inorganic materials 0.000 claims 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 abstract description 2
- 238000010298 pulverizing process Methods 0.000 abstract description 2
- 229910000531 Co alloy Inorganic materials 0.000 abstract 1
- 230000008878 coupling Effects 0.000 abstract 1
- 238000010168 coupling process Methods 0.000 abstract 1
- 238000005859 coupling reaction Methods 0.000 abstract 1
- 238000004898 kneading Methods 0.000 abstract 1
- 230000002093 peripheral effect Effects 0.000 abstract 1
- 239000000843 powder Substances 0.000 abstract 1
- 230000008859 change Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Landscapes
- Mechanical Optical Scanning Systems (AREA)
- Optical Recording Or Reproduction (AREA)
- Brushless Motors (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、光メモリ装置のレーザビームのトラッキング
制御に用いるガルバノミラ−に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a galvanometer mirror used for tracking control of a laser beam of an optical memory device.
従来、光メモリ装置の光学ヘッドに用いられるレンズア
クチュエータは、特開昭57−210456に見られる
ように可動部がコイルであるものが多かった。また、レ
ーザー等の光学系を固定し、アクセスを行なう移動光学
系部の質量を軽減した分離型光学ヘッドとしては特開昭
61−224149.62−14331等の例がある。Conventionally, many lens actuators used in optical heads of optical memory devices have a coil as a movable part, as shown in Japanese Patent Laid-Open No. 57-210456. Further, there are examples of a separate type optical head in which an optical system such as a laser is fixed and the mass of a moving optical system part that performs access is reduced, such as in Japanese Patent Application Laid-Open No. 61-224149.62-14331.
しかし従来技術では、可動コイルへの給電方式によって
は、給電線が高速での動作の妨げになる可能性が有り、
給電線の断線や、コイルの過熱による接着劣化が生じコ
イル変形等の問題点を有する。また、コイル仕様(巻数
、線径等)の変更が可動部の質量変化につながるためコ
イルのii仕様を捜すためにカットアンドトライを繰り
返すことが多く高速化が容易でなかった。However, with conventional technology, depending on the power feeding method to the moving coil, the power feeding line may interfere with high-speed operation.
There are problems such as breakage of the power supply line and deterioration of adhesion due to overheating of the coil, resulting in coil deformation. In addition, since changes in coil specifications (number of turns, wire diameter, etc.) lead to changes in the mass of the movable part, it was difficult to increase speed because cut-and-try operations were often repeated in order to find the II specification of the coil.
そこで本発明はこのような問題点を解決するためのもの
で、その目的とするところは、光メモリ装置の高速化を
図るために光学ヘッドを分離型構造とする場合のトラッ
キングアクチュエータとして、可動部に永久磁石を用い
て、剛性の高い構造で、可動部へ給電する必要のないガ
ルバノミラ−を構成し光メモリ装置の高速化を実現する
ところにある。The present invention is intended to solve these problems, and its purpose is to provide a tracking actuator for the movable part when the optical head has a separate structure in order to increase the speed of the optical memory device. The goal is to use permanent magnets to construct a galvanometer mirror that has a highly rigid structure and does not require power supply to moving parts, thereby realizing high-speed optical memory devices.
〔問題点を解決するための手段〕
(1)本発明のガルバノミラ−は、光メモリ装置のレー
ザビームのトラッキング制御手段として、永久磁石を可
動部の一部とする構造のガルバノミラ−において
(a)サマリウム(Sm)およびコバルト(Co)を基
本組成とする合金を、粉砕して得られた磁性粉末をナイ
ロン樹脂と混合・混練し、押出成形を行ない円盤状にし
、円盤の円周方向に少なくとも四分割以上の多極着磁を
厚さ方向に施した円盤状の可動永久磁石
(b)該可動永久磁石の一方の平面に設置された鉄等の
軟磁性材料から成るバックヨーク(c)該バックヨーク
、前記可動永久磁石等の可動部の回転軸に対して45°
の角度を持って固定された反射ミラー
(d)該反射ミラー、前記バックヨーク、前記可動永久
磁石から成る可動部を回転自由に支持する支持シャフト
により構成された支持機構(e)前記可動部の中立位置
保持用の手段として、前記可動永久磁石の外側に設けた
、中立保持用永久磁石と保持磁極
(f>前記永久磁石のバックヨーク設置面の反対面に、
前記可動部の回転運動を制御する磁場を発生させる手段
として設けた少なくとも1個以上の電磁石又はコイルか
ら構成されることを特徴とする。[Means for Solving the Problems] (1) The galvanomirror of the present invention is a galvanomirror having a structure in which a permanent magnet is a part of a movable part as a tracking control means for a laser beam of an optical memory device. Magnetic powder obtained by pulverizing an alloy whose basic composition is (Sm) and cobalt (Co) is mixed and kneaded with nylon resin, extruded into a disk shape, and divided into at least four parts in the circumferential direction of the disk. (b) A back yoke made of a soft magnetic material such as iron installed on one plane of the movable permanent magnet (c) The back yoke , 45° with respect to the rotation axis of the movable part such as the movable permanent magnet.
(d) A support mechanism constituted by a support shaft that freely rotatably supports a movable part consisting of the reflective mirror, the back yoke, and the movable permanent magnet. (e) A support mechanism of the movable part. As a means for holding the neutral position, a permanent magnet for neutral holding and a holding magnetic pole (f> on the opposite surface of the back yoke installation surface of the permanent magnet, provided on the outside of the movable permanent magnet,
It is characterized by comprising at least one electromagnet or coil provided as means for generating a magnetic field for controlling the rotational movement of the movable part.
以下本発明について図面に基づいて詳細に説明する。 The present invention will be explained in detail below based on the drawings.
第1図は、本発明のガルバノミラ−の平面断面図で、反
射ミラー101はSm−Co系樹脂結合型の可動永久磁
石102、バックヨーク107、ミラーホルダー103
と一体化され回転が可能な状態で、ボールベアリング1
05の外輪がミラーホルダーと接着されている。さらに
ミラーホルダーにバックヨークが接着されている。支持
シャフト106は、ボールベアリングの内輪と係合され
ている。ボールベアリングは、ベース108と支持シャ
フト先端のフランジによって挟まれて固定される。ベー
ス内には可動磁石を回転させるためのコイル104か設
置されている。ベースとミラーホルダーにより外周部で
可動部109を挾みアキシャル方向の回転ぶれを少なく
する構造となっている。FIG. 1 is a plan sectional view of a galvano mirror of the present invention, in which a reflecting mirror 101 includes a movable permanent magnet 102 bonded to an Sm-Co resin, a back yoke 107, and a mirror holder 103.
The ball bearing 1 is integrated with the ball bearing 1 and is rotatable.
The outer ring of 05 is glued to the mirror holder. Furthermore, the back yoke is glued to the mirror holder. The support shaft 106 is engaged with the inner ring of the ball bearing. The ball bearing is fixed between the base 108 and the flange at the tip of the support shaft. A coil 104 for rotating the movable magnet is installed within the base. The movable part 109 is sandwiched between the base and the mirror holder at the outer periphery to reduce rotational vibration in the axial direction.
第2図は、本発明のガルバノミラ−の可動機構の主要部
分分解断面図で、可動部の中立保持手段として中立保持
用永久磁石201、保持磁極202.203が設けられ
ている。この中立保持用永久磁石と保持磁極を左右(第
2図に於て)に動かすことにより組立時の調整が、ばね
等の手段によって中立保持をする場合に比べ容易に行え
る様に成り効果的である。コイル204.205 (2
05は図示せず)に流す電流を制御することによって可
動部の回転角を制御することが出来る。このコイルの代
わりに(b)に示す電磁石を磁極部206が、可動磁石
のニュートラルゾーンに位置するように設置し前述の方
法と同様にコイルに流す電流によって回転角を制御する
ことができる。可動永久磁石102は、同図に示したよ
うに8極に着磁されている6着磁の極数は、2.4.6
.8極が考えられるが、2極は実現が困難で、本実施例
の中立保持機構を用いる場合は6、または、8極がもっ
とも作り易く、本実施例では8極の例を示した。第3図
は、可動永久磁石102の製造工稈を示すa 5ffl
(Coo6t2Cu o、oJ e O,22Zr
o、ots ) 8.2の組成の合金を平均粒径が22
μmとなるように粉砕し、この磁性粉末92重量%とナ
イロン−12が8重量%からなる磁石組成物を200℃
にて混練した後外径が3〜6 +11+に造粒した原料
コンパウンドを、押し出し成形機を用いて磁場中で厚さ
方向に配向した板状の磁石を形成する。そのようにして
得られた板状の磁石をくり抜いて円盤状磁石を得た。円
盤状磁石に成形した。FIG. 2 is an exploded cross-sectional view of the main parts of the movable mechanism of the galvanomirror of the present invention, in which a permanent magnet 201 for neutrality holding and holding magnetic poles 202 and 203 are provided as neutrality holding means for the movable part. By moving the neutral holding permanent magnet and holding magnetic pole left and right (as shown in Figure 2), adjustments during assembly can be made more easily and effectively than when neutral holding is done by means such as springs. be. Coil 204.205 (2
05 (not shown), the rotation angle of the movable part can be controlled. Instead of this coil, an electromagnet shown in (b) is installed so that the magnetic pole part 206 is located in the neutral zone of the movable magnet, and the rotation angle can be controlled by the current flowing through the coil in the same manner as the method described above. As shown in the figure, the movable permanent magnet 102 is magnetized into 8 poles, and the number of 6 magnetized poles is 2.4.6.
.. Although 8 poles are possible, it is difficult to realize 2 poles, and when using the neutrality holding mechanism of this embodiment, 6 or 8 poles are easiest to make, and this embodiment shows an example of 8 poles. FIG. 3 shows the manufacturing process of the movable permanent magnet 102.
(Coo6t2Cu o, oJ e O, 22Zr
o, ots) An alloy with a composition of 8.2 and an average grain size of 22
A magnet composition consisting of 92% by weight of this magnetic powder and 8% by weight of nylon-12 was prepared at 200°C.
The raw material compound is kneaded and granulated to have an outer diameter of 3 to 6+11+, and then an extrusion molding machine is used to form a plate-shaped magnet oriented in the thickness direction in a magnetic field. The thus obtained plate-shaped magnet was hollowed out to obtain a disk-shaped magnet. It was formed into a disc-shaped magnet.
永久磁石の最大エネルギー積(BH’)max、保磁力
bHc、残留磁束密度Brは、
(BH)max=7.5 (MGOe)b Hc =
5 、1 (k Oe )Br=5.9 (kG>
が得られた。The maximum energy product (BH') max, coercive force bHc, and residual magnetic flux density Br of the permanent magnet are: (BH)max=7.5 (MGOe)b Hc =
5,1 (kOe)Br=5.9 (kG>) was obtained.
このようにして得られた永久磁石によりガルバノミラ−
を駆動することにより、可動部の小型軽量化が可能にな
り、高速応答性も向上する。さらに樹脂結合型押し出し
成形磁石であるため円盤形状を容易にかつ経済的に製造
することができる。The permanent magnet thus obtained can be used to create a galvano mirror.
By driving the motor, the moving parts can be made smaller and lighter, and high-speed response can also be improved. Furthermore, since the magnet is a resin-bonded extrusion molded magnet, a disc-shaped magnet can be manufactured easily and economically.
第4図(a)、(b)は、本発明のガルバノミラ−を用
いた場合の光メモリ装置の光学系の概略図で、光学ヘッ
ド401からのレーザビームAを反射ミラー101によ
って微少に振り、レーザビームBとし、リニアモータ4
02に固定された固定ミラー403で更にレーザビーム
方向を変更してディスク404に対してトラッキング動
作を行う、フォーカシングは、リニアモータに搭載され
たレンズフォーカシングアクチュエータ405によって
対物レンズ406を上下に動かして行われる。FIGS. 4(a) and 4(b) are schematic diagrams of the optical system of an optical memory device using the galvanomirror of the present invention. Beam B, linear motor 4
A fixed mirror 403 fixed to the lens 02 further changes the direction of the laser beam to perform a tracking operation on the disk 404.Focusing is performed by moving an objective lens 406 up and down by a lens focusing actuator 405 mounted on a linear motor. be exposed.
以上説明したように、本発明によれば、永久磁石を可動
部に用いたことにより、可動部への給電の必要のない構
造のガルバノミラ−を実現することが出来、高速動作時
に給電線の断線等の心配がなく、発熱によりコイルが変
形して磁気回路と接触することが避けられ、可動部磁石
として円盤状磁石を使用することにより可動部を薄くす
ることが可能になった。また、コイル仕様を変更しても
可動部の質量が変化しないので設計変更が容易に行える
。また、可動部の中立保持手段として永久磁石を用いた
ため、従来のばねによる方法に比べ組立後の調整が容易
で、正確に行うことが可能になっている。また円盤状の
可動永久磁石としてSm−Co系樹脂結合型磁石を用い
ることにより、他の永久磁石材料に比べ可動部の小型軽
量化が可能になる。さらに、第4図に示した構成の光学
系は、レーザビームA、Bの断面形状が変化しないので
本発明のガルバノミラ−を用いるとトラッキング範囲を
広くすることが出来る。As explained above, according to the present invention, by using permanent magnets in the movable part, it is possible to realize a galvanomirror with a structure that does not require power supply to the movable part, and the power supply line is disconnected during high-speed operation. There is no need to worry about such problems, the coil is prevented from deforming due to heat generation and coming into contact with the magnetic circuit, and by using a disc-shaped magnet as the movable part magnet, it has become possible to make the movable part thinner. Further, even if the coil specifications are changed, the mass of the movable part does not change, so design changes can be easily made. Furthermore, since a permanent magnet is used as the neutral holding means for the movable part, adjustment after assembly is easier and more accurate than with the conventional method using springs. Furthermore, by using an Sm--Co resin-bonded magnet as the disc-shaped movable permanent magnet, the movable part can be made smaller and lighter than other permanent magnet materials. Further, in the optical system having the configuration shown in FIG. 4, since the cross-sectional shapes of the laser beams A and B do not change, the tracking range can be widened by using the galvanometer mirror of the present invention.
第1図は、本発明のガルバノミラ−の平面断面図、
第2図(a)は、本発明のガルバノミラ−の主要部分分
解斜視図、(b)は電磁石の斜視図、第3図は永久磁石
の製造工程図、
第4図(a)、(b)は、本発明のガルバノミラ−を用
いた場合の光メモリ装置の光学系の概略図。
以上
CaLン
C1))
第4図FIG. 1 is a plan sectional view of the galvano mirror of the present invention, FIG. 2(a) is an exploded perspective view of main parts of the galvano mirror of the present invention, FIG. 3(b) is a perspective view of an electromagnet, and FIG. 3 is a permanent magnet. FIGS. 4(a) and 4(b) are schematic diagrams of the optical system of an optical memory device using the galvanometer mirror of the present invention. Above CaL C1)) Figure 4
Claims (1)
手段として、永久磁石を可動部の一部とする構造のガル
バノミラーにおいて (a)サマリウム(Sm)およびコバルト(Co)を基
本組成とする合金を、粉砕して得られた磁性粉末をナイ
ロン樹脂と混合・混練し、押出成形を行ない円盤状にし
、円盤の円周方向に少なくとも四分割以上の多極着磁を
施した厚さ方向に円盤状の可動永久磁石 (b)該可動永久磁石の一方の平面に設置された鉄等の
軟磁性材料から成るバックヨーク(c)該バックヨーク
、前記可動永久磁石等の可動部の回転軸に対して45゜
の角度を持って固定された反射ミラー (d)該反射ミラー、前記バックヨーク、前記可動永久
磁石から成る可動部を回転自由に支持する支持シャフト
とにより構成された支持機構 (e)前記可動部の中立位置保持用の手段として、前記
可動永久磁石の外側に設けた、中立保持用永久磁石と保
持磁極 (f)前記永久磁石の前記バックヨーク設置面の反対面
に、前記可動部の回転運動を制御する磁場を発生させる
手段として設けた少なくとも1個以上の電磁石又はコイ
ルから構成されることを特徴とするガルバノミラー。(1) As a tracking control means for the laser beam of an optical memory device, (a) an alloy whose basic composition is samarium (Sm) and cobalt (Co) is pulverized in a galvanometer mirror having a structure in which a permanent magnet is a part of the movable part. The obtained magnetic powder is mixed and kneaded with nylon resin, extrusion molded into a disc shape, and the disc is movable in the thickness direction with multipolar magnetization of at least four divisions in the circumferential direction of the disc. Permanent magnet (b) A back yoke made of a soft magnetic material such as iron installed on one plane of the movable permanent magnet. (c) The back yoke is at an angle of 45 degrees with respect to the rotation axis of the movable part of the movable permanent magnet. (d) a support mechanism configured by a reflecting mirror fixed at an angle of (d) a support shaft that rotatably supports a movable part consisting of the reflecting mirror, the back yoke, and the movable permanent magnet; (e) the movable part; As a means for holding the neutral position, a permanent magnet for neutral holding and a holding magnetic pole (f) are provided outside the movable permanent magnet, and a rotational movement of the movable part is provided on the opposite surface of the back yoke installation surface of the permanent magnet. A galvanometer mirror comprising at least one electromagnet or coil provided as a means for generating a magnetic field for controlling.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29646987A JPH01137226A (en) | 1987-11-25 | 1987-11-25 | Galvanomirror |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29646987A JPH01137226A (en) | 1987-11-25 | 1987-11-25 | Galvanomirror |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01137226A true JPH01137226A (en) | 1989-05-30 |
Family
ID=17833955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29646987A Pending JPH01137226A (en) | 1987-11-25 | 1987-11-25 | Galvanomirror |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01137226A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023103646A1 (en) * | 2021-12-08 | 2023-06-15 | 南京泉峰科技有限公司 | Power tool |
-
1987
- 1987-11-25 JP JP29646987A patent/JPH01137226A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023103646A1 (en) * | 2021-12-08 | 2023-06-15 | 南京泉峰科技有限公司 | Power tool |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5062095A (en) | Actuator and method of manufacturing thereof | |
JPS6249016A (en) | Sliding displacement device and electric device with said device | |
JPH0574133B2 (en) | ||
JPH01137226A (en) | Galvanomirror | |
JPH0249223A (en) | Galvanomirror | |
JPH01137224A (en) | Galvanomirror | |
JPH01102424A (en) | Galvanomirror | |
JPH01102423A (en) | Galvanomirror | |
JPH01102420A (en) | Galvanomirror | |
JPS58175143A (en) | Optical pickup | |
JPH01102419A (en) | Galvanomirror | |
JPH01137225A (en) | Galvanomirror | |
JPS63110950A (en) | Rotary actuator assembly | |
JPH01113930A (en) | Separate type optical head | |
JPH01102425A (en) | Galvanomirror | |
JPH01102748A (en) | Separable optical head | |
JPH01102422A (en) | Galvanomirror | |
JPH01102421A (en) | Galvanomirror | |
JPH01113929A (en) | Lens focusing actuator | |
JPH01130339A (en) | Separation type optical head | |
JPH01107330A (en) | Separated optical head | |
JP2699426B2 (en) | Actuator | |
JPH02183418A (en) | Optical head | |
JPH01113928A (en) | Lens focusing actuator | |
JP2699438B2 (en) | Actuator |