JPH01136906A - Manufacture of infiltration-joining sintered machining parts - Google Patents

Manufacture of infiltration-joining sintered machining parts

Info

Publication number
JPH01136906A
JPH01136906A JP29589187A JP29589187A JPH01136906A JP H01136906 A JPH01136906 A JP H01136906A JP 29589187 A JP29589187 A JP 29589187A JP 29589187 A JP29589187 A JP 29589187A JP H01136906 A JPH01136906 A JP H01136906A
Authority
JP
Japan
Prior art keywords
infiltration
shaft member
hole
shaft
hole member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29589187A
Other languages
Japanese (ja)
Other versions
JP2521778B2 (en
Inventor
Takeshi Kobayashi
剛 小林
Kazuo Asaka
一夫 浅香
Tadashi Takagi
高木 忠
Naohiro Suzuki
鈴木 直弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP62295891A priority Critical patent/JP2521778B2/en
Publication of JPH01136906A publication Critical patent/JPH01136906A/en
Application granted granted Critical
Publication of JP2521778B2 publication Critical patent/JP2521778B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To stably obtain the title machining part, which is a compositely combined part having air-tightness to the diametral direction and the end face direction by joining a hole member and a shaft member whose relative change in size is mutually differed between the heating process and cooling process, in the temperature range up to the melting point of the infiltrated material. CONSTITUTION:The compressed powder body having ferrous shaft part and the compressed powder body having stepped hole part are separately formed and the shaft member is fitted into the stepped hole member. Both member are combined so that the hole member is relatively expanded at larger than the shaft member by >=0.04% to develop the gap in the size changes at joining diameters during heating at less than the melting point of the infiltrating material in the process of sintering and copper infiltration for both members while adding the infiltrating material and the hole member is relatively shrunk at larger than the shaft member by >=0.05% after infiltration or during cooling. In order to obtain this purpose, it is considered that carbon content in the hole member molded form is more than it in the shaft member by 0.02wt.% or both members are combined by Fe-C series and Fe-C-P series, etc.

Description

【発明の詳細な説明】 この発明は、複数個の圧粉体を組合せ焼結および銅溶浸
により接合して1個の焼結部品を作る、いわゆる焼結溶
浸接合法の改良に関するものであり、特に耐圧性の必要
な油圧および空圧部品に好適なものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in the so-called sinter-infiltration joining method, in which a single sintered part is made by joining a plurality of green compacts by combination sintering and copper infiltration. It is particularly suitable for hydraulic and pneumatic parts that require pressure resistance.

押型で成形できない複雑な形状をした鉄系焼結部品は、
単純形状の部材に分けて成形し、それぞれの成形体また
はその焼結体を組合せ、各部材ごとの焼結寸法変化の差
を応用したり、ろう付けまたは銅溶浸により接合して作
られている。
Iron-based sintered parts with complex shapes that cannot be molded with pressing dies are
It is made by molding the parts into simple-shaped parts, combining the molded bodies or their sintered bodies, applying the difference in sintered dimension change of each part, or joining them by brazing or copper infiltration. There is.

このうち、銅溶浸による接合は、接合部材の空孔を通じ
て気密性を生じ、材料強度および耐摩耗性がよいという
特徴を持ち、特に耐圧性が要求される油圧部品に適用さ
れている。
Among these, joining by copper infiltration creates airtightness through the pores of the joining member, and has the characteristics of good material strength and wear resistance, and is particularly applied to hydraulic parts that require pressure resistance.

また溶浸材は銅を主成分とし、溶浸中に鉄系基材を浸蝕
しないようにCoやFe、Mn等を含んだ材料が用いら
れている。
Further, the infiltrant is made of copper as a main component, and a material containing Co, Fe, Mn, etc. is used so as not to erode the iron-based base material during infiltration.

ところで、2個の分割部材を径方向で嵌合して接合する
場合は、溶浸後の接合部の部材間隙が出来るだけ小さく
、溶浸材が隙間を満たすように、望ましくは溶浸された
後の部材間隔が0.02mm以下になるようにすると溶
浸鋼が接合部を満たして気密性が良好になる。また、部
材間隔が大きいと溶浸鋼の吸い込みが悪くなり、気密性
が確保できないことがある。
By the way, when joining two divided members by fitting them in the radial direction, it is preferable to use the infiltrated material so that the gap between the members at the joint after infiltration is as small as possible and the infiltrated material fills the gap. If the spacing between the subsequent members is set to 0.02 mm or less, the infiltrated steel will fill the joint, resulting in good airtightness. Furthermore, if the distance between the members is large, the suction of the infiltrated steel will be poor, and airtightness may not be ensured.

また、部材の孔寸法と軸寸法は経験に基づいて設定する
が、押型で形成できるため量産は容易である。
Furthermore, although the hole dimensions and shaft dimensions of the member are set based on experience, mass production is easy because they can be formed by pressing.

さらに、2個の分割部材を端面で接合する場合は、成形
体の面が粗く平坦度も余りよくないので、部材間隔は大
きくなりやすいが、上方部材の自重でまたは別に重りを
載せることにより接合できる。
Furthermore, when joining two divided members at their end faces, the surface of the molded body is rough and the flatness is not very good, so the distance between the parts tends to be large. can.

これら溶浸接合は、部材を圧粉体とし、焼結と溶浸を一
連に行なう方法が経済的に有利であり、主流になってい
る。
In these infiltration bonding methods, a method in which the member is a compacted powder body and sintering and infiltration are performed in series is economically advantageous and has become mainstream.

しかし、軸部を受は持つ圧粉体と、段付きの孔部を有す
る圧粉体の組合せのように、径方向と端面方向を同時に
接合する場合、一方だけの接合に比べて困難である。そ
れは、径方向の間隔を少なくさせようとすると、加熱中
に軸と孔面が接して冶金的な拡散結合が起こり、端面間
の隙間が充分小さくなる前に拘束されてしまう。その結
果、端面接合部の気密性が8−6れない。そのため、こ
の端面部隙間を溶浸鋼で埋めようとして溶浸鋼の量を増
やすと、必ずしも隙間内にとどまらず、部材の表面にま
で溢れ出してしまい不良品になる。
However, when joining both the radial direction and the end face direction at the same time, such as a combination of a powder compact with a shaft bearing and a powder compact with a stepped hole, it is more difficult than joining only one side. . If an attempt is made to reduce the radial spacing, the shaft and hole surfaces will come into contact with each other during heating and metallurgical diffusion bonding will occur, resulting in restraint before the gap between the end surfaces becomes sufficiently small. As a result, the airtightness of the end surface joint is not 8-6. Therefore, if the amount of infiltrated steel is increased in an attempt to fill this end gap with infiltrated steel, the infiltrated steel will not necessarily remain in the gap, but will overflow to the surface of the member, resulting in a defective product.

一方、軸部材を細めに設定して前述した拘束を避けよう
とすると、端面間は接合するが、径方向の接合が不十分
になってしまう。また、両部材を組合せた後、搬送して
溶浸材が溶けるまでの間に軸部材が動いてしまい、組合
せ位置精度を要求される部品には適用できない。
On the other hand, if an attempt is made to avoid the above-described restriction by making the shaft member narrower, the end faces will be joined, but the radial joining will be insufficient. In addition, after the two members are assembled, the shaft member moves during the time between transportation and melting of the infiltrant material, so that it cannot be applied to parts that require precision in assembly position.

この発明は、径方向も端面方向も気密性のある複合組合
せ部品を安定して量産することを目的としてなされたも
ので、多くの試験研究の結果、溶浸鋼の融点以下の温度
範囲における軸部材と孔部材の熱膨張率差と、溶浸また
は冷却過程の熱膨張差とを分けて考え、昇温中は径方向
に隙間を生じ、冷却過程では隙間が小さくなる軸部材と
孔部材の組合せにより解決することができた。
This invention was made with the aim of stably mass producing composite parts that are airtight in both the radial direction and the end face direction. Considering separately the difference in thermal expansion coefficient between the member and the hole member and the difference in thermal expansion during the infiltration or cooling process, a gap is created in the radial direction during heating and the gap becomes smaller during the cooling process between the shaft member and the hole member. I was able to solve the problem by combining them.

すなわち、この製造方法は鉄系の軸部を有する圧粉体と
段付きの孔部を有する圧粉体をそれぞれ成形し、段付き
の孔部材に軸部材を嵌め合せる場合、溶浸材を添えて焼
結および銅溶浸する過程においては、溶浸材の融点以下
の加熱中における接合径の寸法変化は相対的に孔部材が
0.04%以上膨張して接合部に隙間を生じること、か
つ、溶浸俊または冷却過程では孔部材が軸部材より0゜
05%の膨張ないし相対的に収縮する関係を持つ、両部
材の組成が異なる組合せを特徴とするものである。
In other words, this manufacturing method involves molding a green compact with an iron-based shaft and a green compact with a stepped hole, and when fitting the shaft into the stepped hole, an infiltrant is applied. In the process of sintering and copper infiltration, the dimensional change in the joint diameter during heating below the melting point of the infiltrant material will cause the hole member to expand by 0.04% or more and create a gap at the joint; In addition, during the infiltration process or the cooling process, the hole member expands or contracts relative to the shaft member by 0.05%, and the combination is characterized by a combination in which the two members have different compositions.

また、この発明の実M態様として、孔部材成形体の炭素
量を軸部材よりも重量比で0.02%以上多くするとか
、Fe−C系とFe−C−P系、Fe−C系とFe−c
−x r系の組合せ等が考えられる。
In addition, as an actual M aspect of the present invention, the carbon content of the hole member molded body is increased by 0.02% or more by weight ratio than that of the shaft member, or Fe-C type, Fe-C-P type, Fe-C type and Fe-c
-x r system combinations, etc. are possible.

第1図はこの発明の基本的な作用を説明する加熱および
冷却過程における部材の熱膨張率を模式的に示した概念
図であり、この図は軸部材2と孔部材1とを組合せ、所
要量溶浸鋼3を添えて焼結炉中で加熱し、焼結および銅
溶浸した俊、常温まで冷却する過程の両部材の膨張率を
比較したものである。
FIG. 1 is a conceptual diagram schematically showing the coefficient of thermal expansion of a member during the heating and cooling process to explain the basic operation of the present invention. This figure compares the expansion coefficients of both parts during the process of heating them in a sintering furnace with a quantity of infiltrated steel 3, sintering and infiltrating them with copper, and cooling them to room temperature.

図中■のように圧粉体を組合せるとき、両部材1.2の
組合せ位相を合せて締まり嵌め、または中間底めで嵌合
する。軸寸法は孔寸法よりもプラス0.02mm〜マイ
ナス0.01mmに設定する。
When assembling the powder compacts as shown in (■) in the figure, the two members 1 and 2 are fitted in an interference fit or in an intermediate bottom position by matching the assembly phase. The shaft dimension is set to be plus 0.02 mm to minus 0.01 mm from the hole dimension.

これより太いと嵌合の際に孔付き部材がυ1れることが
必り、細いと緩すぎて移動中に組合せ位相がずれてしま
うおそれがある。組合せ圧粉体に溶浸鋼3を添えて加熱
すると、軸部材2の方が熱膨張が小さく、■のように径
方向に隙間を生じ、軸部材2は自重で落下し孔部材1の
段部に接触する。
If it is thicker than this, the member with the hole will necessarily be displaced by υ1 when fitting, and if it is thinner, it will be too loose and there is a risk that the combination phase will shift during movement. When the combined green compact is heated with infiltrated steel 3, the shaft member 2 has smaller thermal expansion and a gap is created in the radial direction as shown in ■. contact the area.

次いで■のように溶浸鋼が溶融すると、通常の溶浸が行
なわれるとともに、少なくとも端面接合部は銅で満たさ
れた状態になる。そして、溶浸が終わる頃、および冷却
過程になると、溶浸中の寸法よりも小さくなる傾向にな
り、両部材1,2の相対的な膨張率は軸部材2が大きく
なる。この結果、■のように径方向の隙間が小さくなり
、両部材1,2の組合せ条件によっては孔付き部材を押
し広げる結果となり、接触面は拡散接合される。
Next, when the infiltrated steel is melted as shown in (3), normal infiltration is performed and at least the end surface joints are filled with copper. Then, when the infiltration is finished and during the cooling process, the dimensions tend to be smaller than those during the infiltration, and the relative expansion coefficient of the two members 1 and 2 becomes larger for the shaft member 2. As a result, the radial gap becomes smaller as shown in (2), and depending on the combination conditions of the two members 1 and 2, the perforated member is pushed wider, and the contact surfaces are diffusion bonded.

このように両部材1,2の組合せは組成によって行なわ
れる。例えば孔付き部材が炭素を含む鉄系材料の場合は
軸部材はそれより0.2%以上炭素量を少なくする。
In this way, both members 1 and 2 are combined depending on their composition. For example, if the holed member is made of an iron-based material containing carbon, the shaft member should have a carbon content less than that by 0.2% or more.

実施例 以下本発明の実施例について詳細に説明する。Example Examples of the present invention will be described in detail below.

実施例1 第1表は、各種組成に調整した鉄系圧粉体を焼結および
銅溶浸する過程の熱膨張率を測定した結果を示している
。各組成の混合粉を密度6.8g/Cm3に成形し、溶
浸銅は2.5%COを含有する銅合金粉末の成形体を載
せて還元性雰囲気中で加熱し、昇温途中1000’Cと
、1130℃で保持した時、および冷却中800°Cの
ときの成形体寸法を基準にした線膨張率を測定した。
Example 1 Table 1 shows the results of measuring the coefficient of thermal expansion during the process of sintering and copper infiltration of iron-based green compacts adjusted to various compositions. The mixed powder of each composition was molded to a density of 6.8 g/Cm3, and the infiltrated copper was heated in a reducing atmosphere with a molded body of copper alloy powder containing 2.5% CO. C, and the coefficient of linear expansion based on the molded body dimensions when held at 1130°C and at 800°C during cooling were measured.

例えば、試料番号1と試料番号3を比較すると、後者は
昇温時には膨張率が大きく、溶浸後および冷却中は膨張
率が小さい値を示しており、この材料組合せの場合は軸
部材に試料番号1を採用すれば所望する結果が得られる
と推定される。
For example, when comparing Sample No. 1 and Sample No. 3, the latter has a large expansion coefficient when the temperature rises, and a small expansion coefficient after infiltration and during cooling. It is presumed that if number 1 is adopted, the desired result will be obtained.

実施例2 実施例1で用いた各種組成の混合粉を用い、第2図に示
す形状の部品に適用した。軸部材2は外径40mmの円
筒状でA−A方向に切込みが付いている。段付きの孔部
材1は全体が円筒状でB−8方向にスリットを備えてい
る。A−A方向は端面だけの接合、B−8方向は径方向
だけの接合、その他は両方の接合になる。両部材とも成
形密度は6.8g/Cm3であり、軸部材の外径寸法と
孔部材の内径寸法は同じに設定した。
Example 2 The mixed powders of various compositions used in Example 1 were applied to parts having the shape shown in FIG. The shaft member 2 has a cylindrical shape with an outer diameter of 40 mm and has a notch in the A-A direction. The stepped hole member 1 has a cylindrical shape as a whole and is provided with a slit in the B-8 direction. In the A-A direction, only the end faces are joined, in the B-8 direction, only the radial direction is joined, and in the other directions, both are joined. The molding density of both members was 6.8 g/Cm3, and the outer diameter of the shaft member and the inner diameter of the hole member were set to be the same.

各組成の両部材成形体を準備し、各組成の全部の組合せ
都合324種類を、ハンドプレスで丁寧に嵌合した。
Two-member molded bodies of each composition were prepared, and all 324 combinations of each composition were carefully fitted together using a hand press.

溶浸銅は実施例1と同じCU−Co材料で、溶浸率が9
0%になるよう重量を調整した。ここで溶浸率は[溶浸
後の計算密度−成形体密度]÷[成形体計算空孔率Xi
/100X溶浸銅比重]X100である。
The infiltrated copper is the same CU-Co material as in Example 1, and the infiltration rate is 9.
The weight was adjusted to 0%. Here, the infiltration rate is [calculated density after infiltration - density of compact] ÷ [calculated porosity of compact Xi
/100X infiltrated copper specific gravity]X100.

組合せた試料は軸部材2を上側にして、その上に溶浸銅
をのせ、温度1130’C1分解アンモニアガス中で焼
結および溶浸した。
The combined sample was placed with the shaft member 2 on top, infiltrated copper was placed thereon, and sintered and infiltrated in 1130'C1 decomposed ammonia gas.

そして、溶浸した各試料について気密試験を行なった。Then, an airtightness test was conducted on each infiltrated sample.

その結果を第2表に示す。Q印は漏れがないもの、*は
漏れがあったものを表わしている。
The results are shown in Table 2. The Q mark indicates that there was no leakage, and the * mark indicates that there was a leakage.

なお、試験方法は第2図の断面図のように、下端面と上
部の内孔を塞ぎ、内孔空間に圧カフkg/Cm2の圧縮
空気を導入し、試料を水中に沈めた。
As shown in the cross-sectional view of FIG. 2, the test method involved closing the lower end face and the upper inner hole, introducing compressed air at a pressure cuff of kg/cm2 into the inner hole space, and submerging the sample in water.

第2表において、漏れを生じた試料は、第1表の熱膨張
率と照合すると、昇温中に軸部材2は孔部材1より膨張
するか、溶浸後に軸部材の膨張量が少なすぎるかの材料
組合せであることがわかる。
In Table 2, when comparing the samples with leakage to the coefficient of thermal expansion in Table 1, the shaft member 2 expands more than the hole member 1 during temperature rise, or the amount of expansion of the shaft member after infiltration is too small. It can be seen that this is a combination of materials.

漏れのない組合せのうち、傾向が明確な例は組成番号1
〜6の組合せである。軸部材より孔部材の炭素量が0.
2%以上多い関係がある。このような炭素口の関係は組
成番号7〜10.11〜14.15〜18でも同様な傾
向を示している。
Among the combinations without omissions, an example with a clear trend is composition number 1.
-6 combinations. The carbon content of the hole member is 0.0 compared to the shaft member.
There are more than 2% more relationships. The same tendency is observed in composition numbers 7 to 10.11 to 14.15 to 18.

これは、従来の焼結接合方法で行なわれている軸部材の
方の炭素量を多くするという考え方と全く反対である。
This is completely opposite to the idea of increasing the amount of carbon in the shaft member, which is carried out in the conventional sinter joining method.

リンを含む材料の組合せにおいて、リン量の傾向は明確
に現われていないが、炭素含有量が同じ組合せのとき、
軸部材のリン量が多いと良い結果を示している。
There is no clear trend in the amount of phosphorus in combinations of materials containing phosphorus, but when the combinations have the same carbon content,
Good results are shown when the amount of phosphorus in the shaft member is large.

ニッケルを含む材料の組合せは、炭素の作用が出ていて
、ニッケルの1頃向は明確でない。
In combinations of materials containing nickel, the effect of carbon is apparent, and the orientation of nickel is not clear.

また、異なる成分中の組合せであっても所定の要件を満
たしていれば、良好な接合が得られることがわかる。
Furthermore, it can be seen that good bonding can be obtained even if the combination of different components satisfies predetermined requirements.

以上、第1表および第2表より、良好な接合が得られた
条件は次の通りである。
From Tables 1 and 2 above, the conditions under which good bonding was obtained are as follows.

まず、昇温中の熱膨張率は軸部材2より孔部材1が0.
04〜0.66%大きい組合せである。
First, the coefficient of thermal expansion during temperature rise is 0.0 for the hole member 1 than for the shaft member 2.
This combination is 0.04 to 0.66% larger.

隙間が大きければ端部の接触がよくなる傾向にあるから
、0.04%以上大きい組合せであればよい。
Since the larger the gap, the better the contact between the ends tends to be, the combination should be 0.04% or more larger.

次に、溶浸後の冷却過程の熱膨張率は、軸部材2より孔
部材1が0.05%大きい組合せないし軸部材の方が1
.36%大きい組合せの範囲内である。孔部材の方が0
.05%大きいことは、本試料の場合には部材間隔が0
.02mmあることになる。また軸部材の方が大きいこ
とは、隙間がほとんど無くよい接合が得られる反面、孔
部材を外側に押し広げていることになり、薄肉の部材を
用いなければならない形状の場合は、膨張率の差が小さ
い組成組合せにした方がよい。
Next, the coefficient of thermal expansion in the cooling process after infiltration is 0.05% larger for hole member 1 than shaft member 2, and for shaft member 1
.. Within the range of 36% larger combinations. The hole member is 0
.. 05% larger means that the member spacing is 0 in the case of this sample.
.. There will be 02mm. Also, the fact that the shaft member is larger means that a good joint can be obtained with almost no gaps, but on the other hand, it means that the hole member is being pushed outward, and in the case of a shape that requires the use of thin-walled members, the expansion rate may be reduced. It is better to choose a composition combination with a small difference.

なお、本実施例で示した成分系以外であっても、本発明
の要件に合致した部材組合せであれば同じ効果が得られ
ることはいうまでもない。
It goes without saying that even if the component system is other than that shown in this example, the same effect can be obtained as long as the combination of components meets the requirements of the present invention.

また、第3図(イ)、(ロ)、(ハ)、(ニ)に示すも
のは、本願製造方法により得られる各種機械部品の適用
例を示す断面図であるが、その他種々な形態が考えられ
る。
In addition, although FIGS. 3(a), (b), (c), and (d) are sectional views showing application examples of various mechanical parts obtained by the manufacturing method of the present invention, various other forms are also available. Conceivable.

以上のように、本発明方法によれば、溶浸材の融点に達
するまでの加熱過程において、相対的に孔部材が軸部材
より0.04%以上膨張して接合部に隙間を生じ、かつ
冷却過程で孔部材が軸部材より0.05%の膨張ないし
相対的に収縮する関係を持つように両部材を接合したも
のであるから、本発明によれば、気密性の優れた接合焼
結部品を安定して量産することができる。
As described above, according to the method of the present invention, during the heating process until the melting point of the infiltration material is reached, the hole member expands by 0.04% or more relative to the shaft member, creating a gap at the joint, and Since both members are joined so that the hole member expands or contracts relative to the shaft member by 0.05% during the cooling process, according to the present invention, the bonded sintered material has excellent airtightness. Parts can be mass-produced stably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は成形体の熱膨張率を説明するための概念図、第
2図は本発明に用いられる試料の形状および気密性試験
方法を説明する説明図、第3図は本発明により得られる
部材の組合せ形態を示す断面図である。 1・・・孔部材 2・・・軸部材 3・・・溶浸材 特許出願人  日立粉末冶金株式会社
Fig. 1 is a conceptual diagram for explaining the coefficient of thermal expansion of a molded body, Fig. 2 is an explanatory diagram for explaining the shape of the sample used in the present invention and the airtightness test method, and Fig. 3 is a conceptual diagram for explaining the coefficient of thermal expansion of a molded body. FIG. 3 is a cross-sectional view showing a combination of members. 1... Hole member 2... Shaft member 3... Infiltration material patent applicant Hitachi Powder Metallurgy Co., Ltd.

Claims (1)

【特許請求の範囲】 1、鉄系金属粉末を圧縮して軸部を有する圧粉体と、段
付きの孔部を有する圧粉体をそれぞれ成形し、段付きの
孔部材に軸部材を嵌め合せた状態で溶浸材とともに加熱
し焼結および銅溶浸することにより複雑形状の機械部品
を得る方法において、上記溶浸材の融点に達するまでの
加熱過程における両部材接合径の寸法変化は相対的に孔
部材が軸部材より0.04%以上膨張して接合部に隙間
を生じ、かつ、溶浸後または冷却過程で孔部材が軸部材
より0.05%の膨張ないし相対的に収縮する関係を持
つ、組成が異なる両部材の組合せを特徴とする溶浸接合
焼結機械部品の製造方法。 2、孔部材成形体の炭素量を軸部材よりも重量比で0.
02%以上多くしたことを特徴とする特許請求の範囲第
1項記載の溶浸接合焼結機械部品の製造方法。
[Claims] 1. Compressing iron-based metal powder to form a compact having a shaft portion and a compact having a stepped hole, respectively, and fitting the shaft member into the stepped hole member. In the method of obtaining complex-shaped mechanical parts by heating together with the infiltrant material, sintering, and copper infiltration, the dimensional change in the joint diameter of both parts during the heating process until the melting point of the infiltrant material is reached is as follows: The hole member expands by 0.04% or more relative to the shaft member, creating a gap at the joint, and the hole member expands or contracts relatively by 0.05% than the shaft member after infiltration or during the cooling process. A method for manufacturing an infiltration-bonded sintered mechanical part, which is characterized by a combination of two members having different compositions and having a relationship between them. 2. The carbon content of the hole member molded body is 0.0% by weight compared to the shaft member.
2. The method of manufacturing an infiltration bonded sintered machine part according to claim 1, wherein the increase is 0.2% or more.
JP62295891A 1987-11-24 1987-11-24 Method for manufacturing infiltration-bonded sintered machine parts Expired - Fee Related JP2521778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62295891A JP2521778B2 (en) 1987-11-24 1987-11-24 Method for manufacturing infiltration-bonded sintered machine parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62295891A JP2521778B2 (en) 1987-11-24 1987-11-24 Method for manufacturing infiltration-bonded sintered machine parts

Publications (2)

Publication Number Publication Date
JPH01136906A true JPH01136906A (en) 1989-05-30
JP2521778B2 JP2521778B2 (en) 1996-08-07

Family

ID=17826499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62295891A Expired - Fee Related JP2521778B2 (en) 1987-11-24 1987-11-24 Method for manufacturing infiltration-bonded sintered machine parts

Country Status (1)

Country Link
JP (1) JP2521778B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103192083A (en) * 2013-04-16 2013-07-10 苏州莱特复合材料有限公司 Production process of copper-infiltrated parts by powder metallurgy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597405A (en) * 1979-01-18 1980-07-24 Toshiba Corp Coupling method of sintered parts
JPS5842702A (en) * 1981-09-04 1983-03-12 Hitachi Powdered Metals Co Ltd Production of composite sintered parts

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597405A (en) * 1979-01-18 1980-07-24 Toshiba Corp Coupling method of sintered parts
JPS5842702A (en) * 1981-09-04 1983-03-12 Hitachi Powdered Metals Co Ltd Production of composite sintered parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103192083A (en) * 2013-04-16 2013-07-10 苏州莱特复合材料有限公司 Production process of copper-infiltrated parts by powder metallurgy

Also Published As

Publication number Publication date
JP2521778B2 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
US4632074A (en) Wear-resistant member for use in internal combustion engine and method for producing the same
JP4849462B2 (en) Method of manufacturing composite sintered machine part and cylinder block
KR101354488B1 (en) Powder metal friction stir welding tool and method of manufacture thereof
JP2006342430A (en) Process for manufacturing compound sintered article, and structure
JPS6324042B2 (en)
JPH0610009A (en) Production of sintered molded iron article having nonporous zone
US10272496B2 (en) Method for producing a valve seat ring
US2725265A (en) Valve stem guides
EP0194504B1 (en) Composite body and method of manufacturing the same
US20090129964A1 (en) Method of forming powder metal components having surface densification
US6843823B2 (en) Liquid phase sintered braze forms
KR100790003B1 (en) Sliding bearing with oil pocket
JPH01136906A (en) Manufacture of infiltration-joining sintered machining parts
KR100707694B1 (en) Sliding bearing with solid-state sintered layer
KR200404483Y1 (en) Sliding bearing comprising of segment sintered material
EP0097027A2 (en) Densification of selected areas of powder metal parts
KR200404467Y1 (en) Sliding bearing with solid-state sintered layer
KR100789994B1 (en) Bush type sliding bearing comprising of sintered segments with sloped joining surface
US20080310777A1 (en) Sliding bearing having sintered layer formed of sintered segments
KR101075116B1 (en) Method of sintered sliding bearing
JPS6184304A (en) Method for joining metallic member to ceramic member
JPS5842702A (en) Production of composite sintered parts
JPS5834524B2 (en) How to join sintered metal
JPS6119703A (en) Preparation of copper infiltrated ferrous sintered body
KR100651331B1 (en) Junction method between different materials

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees