JPH0113664B2 - - Google Patents

Info

Publication number
JPH0113664B2
JPH0113664B2 JP55021399A JP2139980A JPH0113664B2 JP H0113664 B2 JPH0113664 B2 JP H0113664B2 JP 55021399 A JP55021399 A JP 55021399A JP 2139980 A JP2139980 A JP 2139980A JP H0113664 B2 JPH0113664 B2 JP H0113664B2
Authority
JP
Japan
Prior art keywords
terminal station
station
terminal
optical
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55021399A
Other languages
Japanese (ja)
Other versions
JPS56117452A (en
Inventor
Hiroshi Ishida
Tsutomu Shinohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP2139980A priority Critical patent/JPS56117452A/en
Publication of JPS56117452A publication Critical patent/JPS56117452A/en
Publication of JPH0113664B2 publication Critical patent/JPH0113664B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • H04L12/437Ring fault isolation or reconfiguration

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

A 産業上の利用分野 本発明は、ループ状伝送処理システムを構成す
る複数の端末局の何れかに送受信障害等の障害が
発生した場合、その障害発生に係る端末局を自動
的にループ状伝送路より分離せしめる方式に関す
るものである。 B 従来の技術 ループ状伝送処理システムとは第1図に示すよ
うに、例えばループ状伝送路の伝送制御および管
理を行う中央処理装置としてのマスター局1に対
して端末局2〜4を光フアイバ伝送路(以下、単
に光伝送路と称す)5(51〜54)を介してルー
プ状に接続したものである。一般にこのシステム
での信号授受はマスター局1あるいは前位端末局
からの光信号は端末局2あるいは後位端末局(但
し、端末局2を除く)によつて受信される一方、
光信号を受信した端末局は受信に対する応答とし
て受信処理結果を光信号の形で後位端末局あるい
はマスター局1に送信するが如くにして行われる
が、このようなシステムにおける欠点としては端
末局2〜4の何れかに何等かの障害が発生した場
合、その障害によつてその部分でループ状光伝送
路が等価的、実質的に切断され、システムとして
の機能を果たし得なくなることが挙げられる。一
部障害がシステム全体に波及するわけである。こ
のようにシステム全体の信頼度は端末局2〜4
個々の信頼度によつて直接左右されるものであ
る。このため、従来より各端末局に障害検出装置
を設けておき、この障害検出装置が自己端末局に
障害が発生していることを検出した場合には、自
己端末局をループ状光伝送路より自動的に分離せ
しめることが行われている。この分離によつて一
部に発生された障害を他に波及させることなく正
常な端末局はループ状光伝送路を介し、他の正常
な端末局あるいはマスター局との間で光信号の授
受を行い得るわけである。 このように障害検出装置は障害発生に係る端末
局をループ状光伝送路より自動的に分離し、ルー
プ状光伝送路ひいてはシステム全体の信頼性向上
に大きく寄与するものであるが、従来にあつては
その分離制御が障害検出装置によつて行われてい
ることから、そのハードウエア構成が徒に複雑化
し、経済的に分離制御を行い得ないという欠点を
もつている。 第2図はその従来における端末局の一例での概
略構成に示したものである。これによると前位側
光伝送路6と後位側光伝送路8との直接的接続お
よび端末局を介しての間接的接続は光スイツチ7
の切替状態によつている。光スイツチ7は入力
用、出力用の2つのスイツチよりなり、通常状態
では図示の如くの切替状態にある。したがつて、
このような切替状態では前位側光伝送路6を介す
る光信号は光スイツチ7、光フアイバ9、光分岐
結合器10、光フアイバ11を介して光受信器1
2によつて光電変換(必要な場合にはこの直後シ
リアルパラレル変換回路によつてシリアルパラレ
ル変換が行われることもある)された後、端末局
処理装置13に入力されて適当なデータ処理を受
けることになるものである。このデータ処理の結
果は光送信器14で光信号に変換(必要な場合に
はこの直前にパラレルシリアル変換回路によつて
パラレルシリアル変換が行われることもある)さ
れた後、光フアイバ15、光分岐結合器19、光
フアイバ16、光スイツチ7、後位側光伝送路8
を介し、後位端末局あるいはマスター局に伝送さ
れるわけである。 ところでこの第2図において点線表示枠内の部
分は既に述べたところの障害検出装置(以下、端
末局分離装置と称す)を構成しており、端末局が
特定の状態にある場合は障害と判定し、その判定
出力で光スイツチ7の切替状態を前位側光伝送路
6と後位側光伝送路8とが直接的に接続されるべ
く切替するものである。即ち、受信状態信号Aは
光分岐結合器10で得られる分岐受信光信号を光
フアイバ17を介して光受信モニタ18でモニタ
することによつて、また送信状態信号Bは光分岐
結合器19で得られる分岐送信光信号を光フアイ
バ20を介して光送信モニタ20でモニタするこ
とによつて得られ、これら送受信状態信号A,B
にもとづいて障害検出回路22が自己端末局に障
害が発生しているか否かを判定するものである。 この障害検出回路22はゲート類よりなる論理
回路によつて構成されており、その判定論理は下
記の表に示すところである。
A. Industrial Field of Application The present invention provides a method for automatically transmitting loop transmission to the terminal station associated with the failure when a failure such as a transmission/reception failure occurs in any of the plurality of terminal stations configuring the loop transmission processing system. This relates to a method for separating the road from the road. B. PRIOR TECHNOLOGY What is a loop transmission processing system? As shown in FIG. They are connected in a loop through transmission lines (hereinafter simply referred to as optical transmission lines) 5 (5 1 to 5 4 ). In general, in signal transmission and reception in this system, an optical signal from master station 1 or a preceding terminal station is received by terminal station 2 or a succeeding terminal station (excluding terminal station 2);
The terminal station that receives the optical signal transmits the reception processing result in the form of an optical signal to the downstream terminal station or the master station 1 as a response to the reception, but the disadvantage of such a system is that the terminal station If a failure of some kind occurs in any of 2 to 4, the loop-shaped optical transmission line will be equivalently and substantially cut off at that part due to the failure, and the system will no longer be able to function. It will be done. A partial failure will spread to the entire system. In this way, the reliability of the entire system is 2 to 4 terminal stations.
It depends directly on the individual's level of trust. For this reason, each terminal station has traditionally been equipped with a fault detection device, and when this fault detection device detects that a fault has occurred in the own terminal station, the own terminal station is disconnected from the loop optical transmission line. Automatic separation is being carried out. Due to this separation, a normal terminal station can send and receive optical signals to and from other normal terminal stations or the master station via a loop-shaped optical transmission line without causing any faults that occur in one part to spread to others. It can be done. In this way, the fault detection device automatically isolates the terminal station associated with the fault from the loop optical transmission line, and greatly contributes to improving the reliability of the loop optical transmission line and the entire system. However, since the separation control is performed by a fault detection device, the hardware configuration becomes unnecessarily complicated and separation control cannot be performed economically. FIG. 2 shows a schematic configuration of an example of a conventional terminal station. According to this, the direct connection between the front side optical transmission line 6 and the rear side optical transmission line 8 and the indirect connection via the terminal station are made by the optical switch 7.
It depends on the switching state. The optical switch 7 consists of two switches, one for input and one for output, and is in the switching state as shown in the figure in a normal state. Therefore,
In such a switching state, the optical signal passing through the front side optical transmission line 6 is sent to the optical receiver 1 via the optical switch 7, the optical fiber 9, the optical branching coupler 10, and the optical fiber 11.
2 (if necessary, serial-to-parallel conversion may be performed immediately by a serial-to-parallel conversion circuit), and then input to the terminal station processing device 13 where it undergoes appropriate data processing. It is a matter of fact. The result of this data processing is converted into an optical signal by the optical transmitter 14 (if necessary, parallel-to-serial conversion may be performed by a parallel-to-serial conversion circuit immediately before this), and then the optical fiber 15 is converted into an optical signal. Branch coupler 19, optical fiber 16, optical switch 7, rear optical transmission line 8
It is transmitted to the downstream terminal station or master station via the . By the way, the part within the dotted line display frame in Fig. 2 constitutes the fault detection device (hereinafter referred to as the terminal station separation device) mentioned above, and if the terminal station is in a specific state, it is determined to be a fault. Based on the determination output, the switching state of the optical switch 7 is changed so that the front side optical transmission line 6 and the rear side optical transmission line 8 are directly connected. That is, the reception state signal A is obtained by monitoring the branched reception optical signal obtained by the optical branching/coupling device 10 via the optical fiber 17 with the optical reception monitor 18, and the transmission state signal B is obtained by the optical branching/coupling device 19. The resulting branched transmission optical signals are monitored by the optical transmission monitor 20 via the optical fiber 20, and these transmission/reception status signals A and B are obtained.
Based on this, the fault detection circuit 22 determines whether or not a fault has occurred in its own terminal station. This fault detection circuit 22 is constituted by a logic circuit consisting of gates, and its judgment logic is shown in the table below.

【表】 この判定では正常な送受信状態、即ち、光受信
モニタ18、光送信モニタ21がともに光信号存
在の旨の出力を出力しているか、またはともに光
信号不存在の旨の出力を出力している場合以外の
送受信状態を検出して障害発生の判定がなされる
ようになつており、何れか一方のモニタ出力が光
信号存在の旨の出力を出力しているときに、他方
のモニタ出力が光信号不存在の旨の出力を出力し
ている場合には送信障害発生と判断し、障害検出
回路22は自己端末局を前位、後位側光伝送路
6,8より切り離すべくその判定出力をして光ス
イツチ7の切替状態を制御するものである。 ここで表について若干説明を加えれば、受信状
態信号A、送信状態信号BがそれぞれON、OFF
である場合の障害とは、光受信器12、端末局処
理装置13または光送信器14に何等かの障害が
発生して結果的に光送信器14が光信号を送出し
得ない状態におかれる場合である。光送信素子自
体の破壊による送信不能故障もその障害に含まれ
ることは勿論である。また、受信状態信号A、送
信状態信号BがそれぞれOFF,ONの場合の障害
とは、受信処理結果が何等存しないにも拘わらず
結果的に光送信器14が光信号を送信している状
態をいう。ドライバ自体の故障によつて光送信素
子自体が強制的に光送信状態におかれるような故
障が生じたり、端末局処理装置13内で勝手に何
等かの処理が実行された場合などがこの障害に該
当するわけである。 端末局正常の場合は何等かの障害が発生してい
るおそれはあるも、一応正常と看過す他はない。
万一、障害が発生していても、その障害は後に送
受信状態が変化することによつて速やかに検出さ
れ得るから、特に問題とされることはないもので
ある。 以上のように何等かの障害が発生した端末局は
端末局分離装置によつて速やかにループ状光伝送
路より切り離され、その端末局に発生された障害
は他の正常な端末局やマスター局には波及されな
いから、正常な端末局では依然としてマスター局
や前位端末局からの光信号を受信し得、また、そ
の処理結果を後位端末局あるいはマスター局に光
信号の形で送信し得るわけである。 C 発明が解決しようとする課題 しかしながら、第2図に示す方式では、端末局
毎に送受信モニタを設ける必要があるので、各端
末局の装置が大型化し、高価なものになる。特に
光フアイバを伝送路として用いる場合には、それ
が光フアイバ伝送路中に挿入接続されることか
ら、挿入損、分岐損といつた光損失が大きく、こ
れがために局間距離を大きくとれない。また、光
損失が大きい場合に局間距離を大きくするために
は、光送信器には出力パワーが大きい半導体レー
ザを発光素子として使用しなければならないが、
半導体レーザには信頼性が低いという欠点があ
る。こうした欠点に加えて、端末局を伝送路から
分離した後復帰手段がないため、保守管理が難か
しいという問題点もある。 本発明の目的は、端末局を分離するための装置
をコンパクトにすること、分離した端末局の復帰
を簡単に行うことができて保守管理を容易にする
ことにある。 D 実施例 以下、本発明を第3図から第5図により説明す
る。 先ず第3図は本発明に係るループ状伝送処理シ
ステム系の一例でのシステム構成を示したもので
ある。本発明では伝送処理システム系を2重化し
てなり、図示の如くマスター局23、端末局24
〜26およびループ状伝送路28(281〜28
)よりなるループ状伝送処理システム系と、こ
の伝送処理システム系と構成を同一にする、マス
ター局23′、端末局24′〜26′およびループ
状伝送路28′(28′1〜28′4)よりなるルー
プ状伝送処理システム系とからなるものである。
これらループ状伝送処理システム系はその概要に
おいてほぼ第1図に示すものに同様であるが、異
なるところは各端末局24〜26,24′〜2
6′には第2図に示す如くのランダムロジツク構
成の端末局分離装置が装置されず、各端末局24
〜26,24′〜26′のループ状伝送路28,2
8′からの分離制御は、マスター局23,23′と
の間で信号を授受し得る系共通の端末局分離装置
27によつている点である。 ところで、本発明では既に述べた如くにして端
末局のループ状伝送路からの分離を行う関係上端
末局24,24′,25,25′,26,26′対
同志では信号の授受が可能であるようにされる。 第4図は端末局24,24′対の一例での構成
を示したものであるが、他の端末局25,25′,
26,26′対のそれについても同様に考えるこ
とができるものである。これによると端末局2
4,24′は同一構成であつて、通常時にあつて
は前位側伝送路281,28′1(本例では光フアイ
バよりなるものと想定)からの信号は光スイツチ
244,24′4、受信部241,24′1を介して処
理部242,24′2にて処理され、その処理結果
は受信応答として送信部243,24′3、光スイ
ツチ244,24′4を介し、後位側伝送路282
28′2上に伝送せしめられる。即ち、光スイツチ
244,24′4は通常時図示の如くの切換状態に
ある。光スイツチ244,24′4がこのような切
換状態にある間処理部242,24′2各々は自端
末局における受信状態信号c,c′を端末局固有コ
ードとともに相手方の処理部24′2,242、送
信部24′3,243を、更には後位端末局25′,
26′,25,26、マスター局23′,23を介
して端末局分離装置27に知らしめるようにされ
る。 第5図は、マスター局23,23′と端末局分
離装置27との係り合い関係を示したものであ
る。通常時マスター局23,23′は後位側伝送
路284,28′4を介されてくる信号を受信部2
1,23′1を介して処理部232,23′2にて処
理し、必要に応じその処理結果や新たなる信号を
前位側伝送路281,28′1に伝送する一方、受
信信号中より各端末局24〜26,24′〜2
6′からの受信状態信号c,c′を抽出した場合に
は、抽出状態信号d,d′として端末局分離装置2
7に与えるようにされる。端末局分離装置27は
抽出状態信号d,d′より各端末局24〜26,2
4′〜26′の受信状態を常時監視しており、もし
も受信不可能状態である旨の抽出状態信号が存し
ていることを検出した場合には、正常な系に含ま
れる特定の端末局を介し、その端末局と対になつ
ている相手方端末局を分離復帰制御するところと
なるものである。即ち、特定端末局固有コードが
付された端末局制御指令e(またはe′)がマスタ
ー局23または23′を介し、特定端末局に伝送
されるようにするものである。 ここで仮に上記特定端末局が端末局24である
場合を想定すると、処理部242にて自己端末局
宛の端末局制御指令eであることが検出され、そ
の検出出力を端末局分離指令aとして端末局2
4′における光スイツチ24′4に与えれば、伝送
路28′1,28′2が直接接続されるように光スイ
ツチ24′4が切換されることから、端末局24′
はループ状伝送路28′より分離されるところと
なるものである。また、端末局24′が分離され
ている間に端末局24が端末局制御指令eを受信
してその検出出力を端末局復帰指令bとして光ス
イツチ24′4に与えるようにすれば、光スイツチ
24′4を元の切換状態に復帰せしめて端末局2
4′を再びループ状伝送路28′に接続することも
可能となるわけである。尚、処理部24′2より出
力される信号a′〜c′は処理部242より出力される
信号a〜cに相対応するものである。 本発明は以上の如き端末局の分離制御や復帰制
御を適当に行うことによつて故障発生に係る端末
局をループ状伝送路より分離せんとするものであ
る。以下に例を挙げて詳述する。 (1) 最前位端末局より受信不可能状態にある旨の
受信状態信号が端末局分離装置にあつた場合 例えば端末局24に受信故障が生じていれば、
この局24の処理部242からこれと対をなす他
方の端末局24の処理部24′2に、局24のコー
ドと信号不受信の情報とを含む受信状態信号が送
られ、更にこの受信状態信号は端末局24′〜2
6′及びマスター局23′を介して端末局分離装置
27に伝送される。一方端末局24に受信故障が
生じたため、端末局24から伝送路282には信
号が送信されなくなる。この結果端末局25,2
6は信号不受信状態となるから、端末局25,2
6の処理部から夫々端末局25′,26′の処理部
に各局のコードと信号不受信の情報とを含む信号
受信状態信号が同様にマスター局23′を介して
端末局分離装置27に伝送される。説明簡略化の
ために端末局24を含むループ状伝送処理システ
ム系をA系、端末局24′を含むループ状伝送処
理システム系をB系と呼ぶことにすると、この例
ではA系から端末局分離装置27には信号が伝送
されなくなり、従つて先ずA系に異常が生じてい
ると判断される。そしてB系を通じて端末局24
〜26が信号不受信である情報が伝送され、この
情報にもとづいて故障区間が判定される。この場
合マスター局23の送信故障または端末局24の
受信故障の可能性があるが、本発明ではマスター
局については故障を想定していないので、端末局
24の受信故障と判断される。従つてこのような
場合、端末局分離装置27は端末局24が伝送路
281,282より分離されるべくマスター局2
3′を介し、端末局24′に端末局分離指令として
の端末局制御指令を与えるものである。これによ
り端末局24は伝送路281,282より分離され
得、システム系が復旧したことをマスター23が
確認した後はマスター局23、端末局25,26
間で処理が再開されるようになるものである。端
末局24′が受信し得なくなつた場合には、端末
局分離装置27がマスター局23を介し端末局2
4に端末局制御指令を送り、端末局24はそれを
端末局分離指令として端末局24′に与えるとこ
ろとなる。 (2) 最前位端末局を除いた端末局より受信不可能
状態にある旨の受信状態信号が端末局分離装置
にあつた場合 このような場合とは例えば第3図において端末
局25,26,25′,26′の何れかが受信不可
能に陥つた場合である。例えば端末局25より端
末局25′,26′、マスター局23′を介して端
末局分離装置27にその旨の信号があつたとき
は、端末局27はその直前前位局である端末局2
4における送信部か、または端末局25における
受信部に障害が発生していると推定し、先ず端末
局24を分離せしめて系の状態を監視し、その監
視結果如何によつては端末局24を復帰せしめた
後に端末局25を分離するところとなる。端末局
24の分離は端末局24′に端末局分離装置27
が分離指令としての端末局制御指令を与えること
によつて行われるが、端末局24′が分離されて
いる間マスター局23が系の状態を監視し、系が
正常に復帰した場合はそのままにしておくもので
ある。しかし、系が正常に復帰されない場合は端
末局24を端末局24′を介して復帰せしめた後、
端末局25′を介して端末局25を分離すべく端
末局分離装置27が制御するわけである。 E 発明の効果 本発明では、伝送システム系を2重化すると共
に、互いに対応する1対の端末局間では受信状態
信号を一方から他方へ与え、更に他方の伝送シス
テム系を通じて、2つの伝送システム系に共通な
端末局分離装置に伝送している。そして端末局分
離装置では一方の伝送系から伝送信号が送られな
いときに当該一方の伝送系に異常が生じているこ
とを判断し、更に正常な伝送系からの受信状態信
号にもとづいて故障区間を判断し、その区間に含
まれる端末局を分離している。 従つて本発明によれば、各端末局には信号を受
信していないことを検出する装置と分離あるいは
復帰指令を受けて例えばスイツチ244,24′4
を操作するインターフエイスとを設けるだけで済
むから、端末局の装置構成がコンパクトになり、
伝送システム系を2重化するシステムについて従
来方式を適用した場合と比較すれば、非常に経済
的である。 また端末局分離装置は、CPUのソフトウエア
処理で実現できるから、中央処理装置等のソフト
機能に追加することで達成でき、特別なハードウ
エアを必要としない。 そして端末局を伝送路から分離した後でも簡単
に復帰させることができるので、保守管理が容易
である。
[Table] This determination indicates whether the transmission and reception are normal, that is, whether the optical reception monitor 18 and optical transmission monitor 21 are both outputting an output indicating the presence of an optical signal, or both are outputting an output indicating the absence of an optical signal. The occurrence of a failure is determined by detecting the transmission/reception status other than when the optical signal is present. If the terminal station outputs an output indicating the absence of an optical signal, it is determined that a transmission failure has occurred, and the failure detection circuit 22 makes this determination in order to disconnect its own terminal station from the preceding and succeeding optical transmission lines 6 and 8. The output is used to control the switching state of the optical switch 7. Here, to add a little explanation to the table, reception status signal A and transmission status signal B are ON and OFF, respectively.
A failure in this case means that some kind of failure occurs in the optical receiver 12, the terminal station processing device 13, or the optical transmitter 14, resulting in the optical transmitter 14 being unable to send out optical signals. This is the case. Of course, failures that prevent transmission due to destruction of the optical transmitting element itself are also included in such failures. Furthermore, a failure when the reception state signal A and the transmission state signal B are OFF and ON, respectively, is a state in which the optical transmitter 14 is transmitting an optical signal even though there is no reception processing result. means. This failure occurs when a failure occurs in the driver itself that causes the optical transmitting element itself to be forced into an optical transmitting state, or when some processing is executed without permission within the terminal station processing device 13. This applies to If the terminal station is normal, there is a possibility that some kind of failure has occurred, but there is no other choice but to dismiss it as normal.
Even if a failure should occur, it is not a particular problem because the failure can be quickly detected by changing the transmission/reception status later. As described above, a terminal station in which some kind of fault has occurred is immediately separated from the loop optical transmission line by the terminal station separation device, and the fault occurring in that terminal station is transmitted to other normal terminal stations and the master station. Therefore, a normal terminal station can still receive the optical signal from the master station or previous terminal station, and can transmit the processing result in the form of an optical signal to the subsequent terminal station or master station. That's why. C. Problems to be Solved by the Invention However, in the system shown in FIG. 2, it is necessary to provide a transmission/reception monitor for each terminal station, which makes the equipment of each terminal station large and expensive. In particular, when using optical fiber as a transmission line, since it is inserted into the optical fiber transmission line, there are large optical losses such as insertion loss and branching loss, which makes it impossible to maintain a large distance between stations. . In addition, in order to increase the distance between stations when optical loss is large, a semiconductor laser with a large output power must be used as a light emitting element in the optical transmitter.
Semiconductor lasers have the disadvantage of low reliability. In addition to these drawbacks, there is also the problem that maintenance management is difficult because there is no means for returning the terminal station after it is separated from the transmission path. It is an object of the present invention to make a device for separating terminal stations compact, to easily restore the separated terminal stations, and to facilitate maintenance management. D Example The present invention will be explained below with reference to FIGS. 3 to 5. First, FIG. 3 shows the system configuration of an example of a loop-shaped transmission processing system according to the present invention. In the present invention, the transmission processing system is duplicated, and as shown in the figure, a master station 23 and a terminal station 24
~26 and loop-shaped transmission line 28 (28 1 ~28
4 ) A loop-shaped transmission processing system system consisting of a master station 23', terminal stations 24' to 26', and loop-shaped transmission lines 28'(28' 1 to 28') having the same configuration as this transmission processing system system. 4 ) A loop-shaped transmission processing system consisting of:
The outline of these loop-shaped transmission processing systems is almost the same as that shown in FIG. 1, but the difference is that each terminal station 24-26, 24'-2
6' is not equipped with a terminal station separation device having a random logic configuration as shown in FIG.
~26,24'~26' loop-shaped transmission line 28,2
Separation control from 8' is performed by a system-common terminal station separation device 27 that can exchange signals with the master stations 23, 23'. By the way, in the present invention, since the terminal stations are separated from the loop-shaped transmission path as described above, it is not possible to send and receive signals between the terminal stations 24, 24', 25, 25', 26, and 26'. be made to be. FIG. 4 shows an example of the configuration of a pair of terminal stations 24, 24', but other terminal stations 25, 25',
The same can be said of the 26, 26' pair. According to this, terminal station 2
4 and 24' have the same configuration, and under normal conditions, signals from the front side transmission lines 28 1 and 28' 1 (assumed to be composed of optical fibers in this example) are sent to optical switches 24 4 and 24'. 4 , is processed by the processing units 24 2 , 24' 2 via the receiving units 24 1 , 24' 1 , and the processing results are sent to the transmitting units 24 3 , 24' 3 and the optical switches 24 4 , 24' 4 as reception responses. via the rear transmission line 28 2 ,
28'2 . That is, the optical switches 24 4 and 24' 4 are normally in the switching state as shown. While the optical switches 24 4 , 24' 4 are in this switching state, each of the processing units 24 2 , 24' 2 transmits the reception status signals c, c' at its own terminal station along with the terminal station-specific code to the processing unit 24' of the other party. 2 , 24 2 , transmitting units 24' 3 , 24 3 , and further terminal stations 25',
26', 25, 26 and the master stations 23', 23 to notify the terminal station separation device 27. FIG. 5 shows the relationship between the master stations 23, 23' and the terminal station separation device 27. Normally, the master stations 23, 23' receive signals sent via the rear transmission lines 28 4 , 28' 4 to the receiving unit 23, 23'.
3 1 , 23' 1 in the processing units 23 2 , 23' 2 , and transmits the processing results and new signals to the front transmission lines 28 1 , 28' 1 as necessary. Each terminal station 24-26, 24'-2 from the signal
When receiving state signals c and c' from 6' are extracted, the terminal station separation device 2 receives them as extracted state signals d and d'.
7. The terminal station separation device 27 selects each terminal station 24 to 26, 2 from the extracted state signals d and d'.
The reception status of terminal stations 4' to 26' is constantly monitored, and if it is detected that there is an extraction status signal indicating that reception is not possible, a specific terminal station included in the normal system is The terminal station is used to control the separation and return of the partner terminal station that is paired with the terminal station. That is, the terminal station control command e (or e') to which a specific terminal station unique code is attached is transmitted to the specific terminal station via the master station 23 or 23'. Assuming here that the specific terminal station is the terminal station 24, the processing unit 242 detects that the terminal station control command e is addressed to the own terminal station, and sends the detected output to the terminal station separation command a. as terminal station 2
4', the optical switch 24' 4 is switched so that the transmission lines 28' 1 and 28' 2 are directly connected.
is separated from the loop-shaped transmission line 28'. Furthermore, if the terminal station 24 receives the terminal station control command e while the terminal station 24' is separated and gives its detection output to the optical switch 24' 4 as the terminal station return command b, the optical switch 24' 4 to the original switching state and terminal station 2
4' can also be connected to the loop-shaped transmission line 28' again. Note that the signals a' to c' output from the processing section 24'2 correspond to the signals a to c output from the processing section 242 . The present invention attempts to separate a terminal station related to the occurrence of a failure from a loop-shaped transmission path by appropriately performing separation control and recovery control of the terminal station as described above. This will be explained in detail below with examples. (1) When a reception status signal indicating that reception is not possible from the most advanced terminal station is received by the terminal station separation device For example, if a reception failure has occurred in the terminal station 24,
A reception status signal containing the code of the station 24 and information on non-reception of the signal is sent from the processing unit 24 2 of this station 24 to the processing unit 24' 2 of the other terminal station 24 paired with it. The status signal is transmitted from the terminal stations 24' to 2
6' and the master station 23' to the terminal station separation device 27. On the other hand, since a reception failure has occurred in the terminal station 24, no signal is transmitted from the terminal station 24 to the transmission path 282 . As a result, the terminal station 25,2
Since terminal stations 25 and 2 are not receiving signals, terminal stations 25 and 2
Similarly, a signal reception status signal including the code of each station and information on non-reception of the signal is transmitted from the processing unit of 6 to the processing units of the terminal stations 25' and 26', respectively, to the terminal station separation device 27 via the master station 23'. be done. To simplify the explanation, the loop transmission processing system including the terminal station 24 will be referred to as system A, and the loop transmission processing system including the terminal station 24' will be referred to as system B. In this example, from system A to the terminal station No signal is transmitted to the separation device 27, and therefore it is first determined that an abnormality has occurred in the A system. Then, through the B system, the terminal station 24
Information indicating that the signal is not being received is transmitted, and the failure section is determined based on this information. In this case, there is a possibility that there is a transmission failure in the master station 23 or a reception failure in the terminal station 24, but since the present invention does not assume a failure in the master station, it is determined that there is a reception failure in the terminal station 24. Therefore, in such a case, the terminal station separation device 27 selects the master station 2 so that the terminal station 24 is separated from the transmission paths 28 1 and 28 2 .
3', a terminal station control command as a terminal station separation command is given to the terminal station 24'. As a result, the terminal station 24 can be separated from the transmission lines 28 1 and 28 2 , and after the master 23 confirms that the system has been restored, the master station 23 and the terminal stations 25 and 28
This allows processing to be restarted in between. When the terminal station 24' becomes unable to receive data, the terminal station separation device 27 connects the terminal station 2 to the terminal station 24' via the master station 23.
The terminal station control command is sent to the terminal station 4, and the terminal station 24 gives it to the terminal station 24' as a terminal station separation command. (2) When a receiving status signal indicating that reception is not possible is received from a terminal station other than the foremost terminal station. Such a case is, for example, terminal stations 25, 26, and 26 in FIG. This is the case when either 25' or 26' becomes unreceivable. For example, when a signal to that effect is sent from the terminal station 25 to the terminal station separating device 27 via the terminal stations 25', 26' and the master station 23', the terminal station 27 sends a signal to the terminal station 2, which is the immediately preceding station.
It is presumed that a failure has occurred in the transmitting section of the terminal station 24 or the receiving section of the terminal station 25. First, the terminal station 24 is separated and the system status is monitored. Depending on the monitoring results, the terminal station 24 After the terminal station 25 is restored, the terminal station 25 is separated. The terminal station 24 is separated by a terminal station separation device 27 in the terminal station 24'.
This is done by giving a terminal station control command as a separation command, but while the terminal station 24' is separated, the master station 23 monitors the system status, and if the system returns to normal, it is left as is. It is something to keep. However, if the system is not restored normally, after the terminal station 24 is restored via the terminal station 24',
The terminal station separation device 27 controls the terminal station 25 to be separated via the terminal station 25'. E. Effects of the Invention In the present invention, the transmission system is duplexed, a reception status signal is given from one to the other between a pair of mutually corresponding terminal stations, and the two transmission systems are connected through the other transmission system. It is transmitted to a terminal station separation device common to the system. Then, the terminal station separation device determines that an abnormality has occurred in one transmission system when no transmission signal is sent from one transmission system, and further determines the fault area based on the reception status signal from the normal transmission system. The terminal stations included in that section are separated. Therefore, according to the present invention, each terminal station is equipped with a device for detecting that no signal is being received, and a switch 24 4 , 24' 4 in response to a separation or return command.
The equipment configuration of the terminal station becomes compact, as it is only necessary to provide an interface to operate the terminal station.
This method is very economical when compared to the case where the conventional method is applied to a system in which the transmission system is duplicated. Furthermore, since the terminal station separation device can be realized by software processing of the CPU, it can be achieved by adding to the software functions of the central processing unit, etc., and does not require any special hardware. Furthermore, even after the terminal station is separated from the transmission path, it can be easily restored, making maintenance management easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、ループ状伝送処理システムの一例で
のシステム構成図、第2図は、従来における端末
局の一例での概略構成図、第3図は、本発明に係
るループ状伝送処理システムの一例でのシステム
構成図、第4図は、そのループ状伝送処理システ
ムにおける端末局対の一例での構成図、第5図
は、同じくそのループ状伝送処理システムにおけ
るマスター局の構成および端末局分離装置との係
りを示す図である。 23,23′…マスター局、24〜26,2
4′〜26′…端末局、27…端末局分離装置。
FIG. 1 is a system configuration diagram of an example of a loop-shaped transmission processing system, FIG. 2 is a schematic diagram of an example of a conventional terminal station, and FIG. 3 is a diagram of a loop-shaped transmission processing system according to the present invention. FIG. 4 is a system configuration diagram of an example of a pair of terminal stations in the loop-shaped transmission processing system, and FIG. 5 is a diagram of the master station configuration and terminal station separation in the same loop-shaped transmission processing system. It is a diagram showing the relationship with the device. 23, 23'...Master station, 24-26, 2
4' to 26'...Terminal stations, 27...Terminal station separation device.

Claims (1)

【特許請求の範囲】 1 マスター局及び複数の端末局を伝送路を介し
てループ状に接続してなる伝送処理システム系を
2重化すると共に、 各マスター局よりの信号にもとづいて端末局の
状態を判定する端末局分離手段を設け、 互いに対応する1対の端末局間では、一方の局
の受信状態と当該局のコードとを示す受信状態信
号を当該一方の局から他方の局に与え、更にこの
信号を他方の局の属する伝送処理システム系を通
じて端末局分離手段に伝送し、 端末局分離手段では、2つの伝送処理システム
系からの伝送信号の有無にもとづいていずれの系
に異常が生じているかを判断すると共に、正常な
系を通じて送られてきた受信状態信号にもとづい
て故障区間を判定し、故障区間に含まれる端末局
に対して正常な系を通じて、系から分離させるた
めの分離指令を伝送し、その後依然系が正常に復
帰しないときには既に分離している端末局に対し
て系に復帰させるための復帰指令を伝送し、かつ
故障区間に含まれる他の端末局に対して分離指令
を発することを特徴とするループ状伝送処理シス
テムにおける端末局の分離方式。
[Scope of Claims] 1. A transmission processing system consisting of a master station and a plurality of terminal stations connected in a loop via a transmission line is duplicated, and the terminal stations are processed based on signals from each master station. A terminal station separation means for determining the status is provided, and between a pair of mutually corresponding terminal stations, a reception status signal indicating the reception status of one station and the code of the station is given from the one station to the other station. Furthermore, this signal is transmitted to the terminal station separation means through the transmission processing system to which the other station belongs, and the terminal station separation means determines whether there is an abnormality in either system based on the presence or absence of transmission signals from the two transmission processing systems. In addition to determining whether a failure has occurred, the fault section is also determined based on the reception status signal sent through the normal system, and the terminal stations included in the fault section are separated from the system through the normal system. A command is transmitted, and if the system still does not return to normal, a return command is transmitted to the terminal stations that have already been separated to return them to the system, and the isolation is performed to other terminal stations included in the faulty section. A method for separating terminal stations in a loop transmission processing system characterized by issuing commands.
JP2139980A 1980-02-22 1980-02-22 Separation system of terminal station for loop-type transmission process system Granted JPS56117452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2139980A JPS56117452A (en) 1980-02-22 1980-02-22 Separation system of terminal station for loop-type transmission process system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2139980A JPS56117452A (en) 1980-02-22 1980-02-22 Separation system of terminal station for loop-type transmission process system

Publications (2)

Publication Number Publication Date
JPS56117452A JPS56117452A (en) 1981-09-14
JPH0113664B2 true JPH0113664B2 (en) 1989-03-07

Family

ID=12053966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2139980A Granted JPS56117452A (en) 1980-02-22 1980-02-22 Separation system of terminal station for loop-type transmission process system

Country Status (1)

Country Link
JP (1) JPS56117452A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1252168A (en) * 1985-07-24 1989-04-04 Kenneth A. Bobey Communications network

Also Published As

Publication number Publication date
JPS56117452A (en) 1981-09-14

Similar Documents

Publication Publication Date Title
US5781318A (en) Circuit and method of testing for silent faults in a bi-directional optical communication system
JPH1117724A (en) Data transmission system
JP3854372B2 (en) Optical cross-connect device
JPH0113664B2 (en)
JPS6135740B2 (en)
JP2601193B2 (en) Optical transmission system
JPH09261132A (en) Redundancy switching system for data transmission system
JP3149047B2 (en) Redundant data processor
JPH07101475B2 (en) Disaster prevention system
JPH1188391A (en) Network management system
JP2970527B2 (en) Optical communication system
JPS6028173B2 (en) Terminal station separation method
JPS58215145A (en) Loop form data transmission system
JPS598099B2 (en) Terminal station separation device for terminal stations in a loop optical transmission system
CN116566478A (en) Communication equipment for source-sink synchronous switching and optical line protection method
JPH05284116A (en) Data communication system and optical repeater device for the system
JPS6124345A (en) Signal output gate control system
JP3134379B2 (en) Redundant transmission line switching method
JPH09289492A (en) Branching type optical communication device
JPH01101754A (en) Transmission system
JPH07101883B2 (en) Redundant loop back system
JPS598451A (en) Transmission controller
JPS6343445A (en) Optical loop transmission system
JPS6052124A (en) Route switching control system
JPH11261618A (en) Optical lan device