JPH01136519A - Electronic type circuit breaker - Google Patents

Electronic type circuit breaker

Info

Publication number
JPH01136519A
JPH01136519A JP29246187A JP29246187A JPH01136519A JP H01136519 A JPH01136519 A JP H01136519A JP 29246187 A JP29246187 A JP 29246187A JP 29246187 A JP29246187 A JP 29246187A JP H01136519 A JPH01136519 A JP H01136519A
Authority
JP
Japan
Prior art keywords
current
phase
circuit breaker
wire
electronic circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29246187A
Other languages
Japanese (ja)
Inventor
Atsushi Yoshida
敦至 吉田
Satoshi Suzuki
智 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Electric Inc
Original Assignee
Kawamura Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Electric Inc filed Critical Kawamura Electric Inc
Priority to JP29246187A priority Critical patent/JPH01136519A/en
Publication of JPH01136519A publication Critical patent/JPH01136519A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To detect an overcurrent with a simple configuration having two current detectors by employing first and second power source detectors for detecting the sum or difference of currents flowing to leads. CONSTITUTION:The sum or difference of currents flowing to two 3r, 3s of 3-wired leads 3r, 3s, 3t is detected by a current detector 6, and the sum or difference of the currents flowing to the two leads 3s, 3t is detected by a current detector 9. The outputs of the detectors 6, 9 are input through rectifiers 12, 14 to a controller 25, and the currents flowing to the leads 3r, 3s, 3t are calculated. When the calculated current value exceeds a predetermined value, a thyristor 23 is conducted, and a breaking switch 20.

Description

【発明の詳細な説明】 光町Ω且酌 [産業上の利用分野] 本発明は電子式遮断器に関し、詳しくは3線式の導電線
のうち少なくとも1つの導電線に流れる電流が所定値を
越えるとき前記導電線を含む電気回路を遮断する電子式
遮断器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electronic circuit breaker. The present invention relates to an electronic circuit breaker that interrupts an electric circuit including the conductive wire when the conductive wire is exceeded.

[従来の技術] 3線式(R相、S相、T相)の導電線に消費電力の大き
い機器を接続したときや地絡が起きたときに導電線に過
電流が流れるのを精度良くかつ応答性良く防止するため
に、従来、電子式の遮断器が用いられている。この種の
遮断器として、トロイダル形のカレントトランスフォー
マ(以下CTとも云う)の内側に導電線を通し、各CT
によって検出される各導電線に流れる電流値が予め設定
された上限値を越えるとき総ての導電線を遮断するよう
構成されたものがある。トロイダル形のカレントトラン
スフォーマはトロイダル内側の導電線に流れる電流の変
化によって誘導起電力を発生するものであり、導電線に
流れる電流の大きさを極めて精度良く検出できる。した
がって、このCTの出力を増幅して、遮断手段としての
電磁式または半導体式の開閉スイッチを駆動すれば精度
よくかつ応答性よく導電線を遮断できるのである。
[Conventional technology] Accurately prevents overcurrent from flowing in the conductive wires when a device with large power consumption is connected to the conductive wires of a 3-wire system (R phase, S phase, T phase) or when a ground fault occurs. In order to prevent this problem with good response, electronic circuit breakers have conventionally been used. In this type of circuit breaker, a conductive wire is passed inside a toroidal current transformer (hereinafter also referred to as CT), and each
There is a device configured to cut off all the conductive wires when the current value flowing through each conductive wire detected by the above exceeds a preset upper limit value. A toroidal current transformer generates an induced electromotive force by changing the current flowing through the conductive wire inside the toroid, and can detect the magnitude of the current flowing through the conductive wire with extremely high accuracy. Therefore, by amplifying the output of this CT and driving an electromagnetic or semiconductor switch as a cut-off means, the conductive line can be cut off with high accuracy and responsiveness.

[発明が解決しようとする問題点コ しかしながら、以下に掲げる点において猶−層の改善が
要望された。CTおよびCTの取付部品並びに電気部品
は導電線毎に独立に設けなければならない。したがって
、3線式の場合には3個のCT及びその電気部品、取付
部品が必要となる。
[Problems to be Solved by the Invention However, improvements in the margins were desired in the following points. CT and CT fittings and electrical components must be provided independently for each conductive line. Therefore, in the case of a three-wire system, three CTs, their electrical parts, and mounting parts are required.

これらの大きさ及び重量は電子式遮断器のおおきなウェ
イトを占めることから、小型化に限界があると共に、部
品点数が増えて製造工数を要するという問題があった。
Since the size and weight of these elements account for a large portion of the electronic circuit breaker, there is a problem in that there is a limit to miniaturization, and the number of parts increases, which requires manufacturing man-hours.

本発明の電子式遮断器は上記問題点を解決し、好適に過
電流を防止することを目的としてなされた。
The electronic circuit breaker of the present invention has been made for the purpose of solving the above problems and suitably preventing overcurrent.

発1江l」成 かかる目的を達成する本発明の構成について以下説明す
る。
The structure of the present invention that achieves the above object will be described below.

[問題点を解決するための手段] 本発明の電子式遮断器は、3線式の導電線のうち少なく
とも1つの導電線に流れる電流が所定値を越えるとき前
記導電線を含む電気回路を遮断する遮断手段を備えた電
子式遮断器であって、前記3線式の導電線のうち2本の
導電線に流れる電流の和もしくは差を検出する第1の電
流検出器と、 前記3線式の導電線のうち前記第1の電流検出手段とは
異なる組合せの2本の導電線に流れる電流の和もしくは
差を検出する第2の電流検出器と、前記第1および第2
の電流検出器の出力を演算して前記3線式の導電線に流
れる電流値を算出する算出手段と、 該算出された電流値が所定値を越えるとき前記遮断手段
を駆動する駆動手段と5、 を備えたことを特徴とする ここで、3線式の導電線に流れる電流は3相ま一3= たは単相の交流電流のいずれでも良い。第1および第2
の電流検出器は3線式の導電線のうち2本の導電線に流
れる電流の和もしくは差を検出するものである。2本の
導電線に流れる電流の変化によって生ずる誘導起電力か
ら電流を検出するトロイダル形のカレントトランスフォ
ーマや、各導電線に低抵抗器を介在し低抵抗器両端の電
圧を検出する構成などを挙げることができる。カレント
トランスフォーマを用いた場合には、2本の導電線のカ
レントトランスフォーマへの挿通方向を互いに同方向も
しくは反対方向にすることによって電流の和、差を容易
に検出できる゛。
[Means for Solving the Problems] The electronic circuit breaker of the present invention interrupts an electric circuit including the conductive wire when the current flowing through at least one of the three-wire conductive wires exceeds a predetermined value. An electronic circuit breaker is equipped with a circuit breaker that detects the sum or difference of currents flowing through two of the three-wire conductive wires; a second current detector for detecting the sum or difference of currents flowing through two conductive wires in a combination different from that of the first current detection means;
calculation means for calculating the current value flowing through the three-wire conductive wire by calculating the output of the current detector; and driving means for driving the cutoff means when the calculated current value exceeds a predetermined value. Here, the current flowing through the three-wire conductive wire may be either three-phase or single-phase alternating current. 1st and 2nd
The current detector detects the sum or difference of currents flowing through two of the three-wire conductive wires. Examples include a toroidal current transformer that detects current from the induced electromotive force generated by changes in the current flowing through two conductive wires, and a configuration that inserts a low resistor in each conductive wire and detects the voltage across the low resistor. be able to. When a current transformer is used, the sum and difference of currents can be easily detected by inserting two conductive wires into the current transformer in the same or opposite directions.

算出手段は第1および第2の電流検出器の出力を演算す
ることによって3線式の導電線に流れる電流値を算出す
るものである。たとえば、第1図に示すように、3相交
?m(R相、S相、T相)のうちR相、S相に流れる電
流IR,ISの和を第1の電流検出器で検出し、S相、
T相に流れる電流IS、  ITの和を第2の電流検出
器で検出し、さらに、第1の電流検出器および第2の電
流検出器の出力を合成する構成とした場合、それぞれの
出力を抵抗器Rt、Rr、Rsに流れる電流it、ir
、isの検出によって行なうと、 IR+ Is+IT:O−(1) の関係からそれぞれ次の式が得られる。すなわち、it
=  (IR+l5)=IT  ・・−(2)ir= 
 (Is+IT)=IR−(3)is=it+ir  
=−Is  ・・・ (4)したがって、電流it、i
r、isの値を検出することによって各相に流れる電流
を知ることができる。また、電流it、ir、isを整
流して算出する構成としてもよい。さらに、地絡が起き
たときに(1)の関係式が成り立たなくなるとして地絡
を検出する機能を付加してもよい。
The calculation means calculates the value of the current flowing through the three-wire conductive wire by calculating the outputs of the first and second current detectors. For example, as shown in Figure 1, three-phase intersection? m (R phase, S phase, T phase), the sum of currents IR and IS flowing in the R phase and S phase is detected by the first current detector, and the S phase,
If the configuration is such that the sum of currents IS and IT flowing in the T phase is detected by a second current detector, and the outputs of the first current detector and the second current detector are combined, each output is Currents it, ir flowing through resistors Rt, Rr, Rs
, is, the following equations are obtained from the relationship: IR+Is+IT:O-(1). That is, it
= (IR+l5)=IT...-(2)ir=
(Is+IT)=IR-(3)is=it+ir
=-Is... (4) Therefore, the current it, i
By detecting the values of r and is, it is possible to know the current flowing in each phase. Alternatively, the calculation may be performed by rectifying the currents it, ir, and is. Furthermore, a function may be added to detect a ground fault by assuming that the relational expression (1) no longer holds true when a ground fault occurs.

また、第1の電流検出器がR相、S相に流れる電流の差
を検出し、第2の電流検出器がS相、T相に流れる電流
の差を検出する構成の場合には、抵抗器Rt、Rr、R
sに流れる電流it、ir。
In addition, in the case of a configuration in which the first current detector detects the difference between the currents flowing in the R phase and the S phase, and the second current detector detects the difference in the currents flowing in the S phase and the T phase, the resistance Equipment Rt, Rr, R
The current it, ir flowing through s.

isは下記のようになる。is is as follows.

it=  (IRIS)     −(5)ir=  
 (IT  Is)       −(6)is=i 
 t+i  r=3◆ ISさらに、式(5)、  (
6)を用いることにより、1t−2◆1r=3◆■T i  r−2+  i  t=3+  IRを得ること
ができる。したがって、第1および第2の電流検出器が
3線式導電線のうち2本の導電線の差を検出する場合に
おいても、各相の電流を検出することができる。
it= (IRIS) −(5)ir=
(IT Is) −(6)is=i
t+i r=3◆ IS Furthermore, equation (5), (
6), it is possible to obtain 1t-2◆1r=3◆■T i r-2+ it=3+ IR. Therefore, even when the first and second current detectors detect the difference between two of the three-wire conductive wires, the currents of each phase can be detected.

遮断手段としては電子式遮断器内の3線式の導電線の総
てを遮断する構成、あるいは電子式遮断器の外部に設け
られ電子式遮断器内の3線式の導電線を回路の一部とす
る電気回路を遮断する構成な゛どを挙げることができる
。遮断手段はトライアック等の半導体スイッチあるいは
電磁継電器により実現できる。
The interrupting means may be configured to interrupt all of the 3-wire conductive wires within the electronic circuit breaker, or may be provided outside the electronic circuit breaker and connect the 3-wire conductive wires within the electronic circuit breaker to one part of the circuit. Examples include a configuration that interrupts the electrical circuit connected to the unit. The interrupting means can be realized by a semiconductor switch such as a triac or an electromagnetic relay.

[作用コ 上記構成を有する本発明の電子式遮断器は、第1の電流
検出器を用いて3線式の導電線のうち2本の導電線に流
れる電流の和もしくは差を検出し、第2の電流検出器を
用いて3線式の導電線のうち第1の電流検出器とは異な
る組合せの2本の導電線に流れる電流の和もしくは差を
検出し、算出手段により第1および第2の電流検出器の
出力から3線式の導電線に流れる電流値を算出し、算出
された電流値が所定値を越えるとき駆動手段によって遮
断手段を駆動させ、3線式の導電線を含む電気回路を遮
断する。
[Operation] The electronic circuit breaker of the present invention having the above configuration detects the sum or difference of the currents flowing through two of the three-wire conductive wires using the first current detector, and The second current detector is used to detect the sum or difference of the currents flowing through two of the three-wire conductive wires in a different combination from the first current detector, and the calculation means The current value flowing through the three-wire conductive wire is calculated from the output of the current detector No. 2, and when the calculated current value exceeds a predetermined value, the cutting means is driven by the driving means, including the three-wire conductive wire. Break the electrical circuit.

[実施例] 以上説明した本発明の構成・作用を一層明らかにするた
めに、以下本発明の電子式遮断器の好適な実施例につい
て説明する。第2図は実施例の電子式遮断器の構成を表
す。
[Examples] In order to further clarify the configuration and operation of the present invention described above, preferred embodiments of the electronic circuit breaker of the present invention will be described below. FIG. 2 shows the configuration of the electronic circuit breaker of the embodiment.

図示するように、本実施例の電子式遮断器1は、3相交
流のうちR相、S相の導電線3r、3sを内側に挿通す
るトロイダル式のカレントトランスフォーマ(CT)6
及びS相、T相の導電線3s。
As shown in the figure, the electronic circuit breaker 1 of this embodiment includes a toroidal current transformer (CT) 6 through which conducting wires 3r and 3s of the R phase and S phase of the three-phase alternating current are inserted.
and S-phase and T-phase conductive wires 3s.

3tを内側に挿通するトロイダル式のカレントトランス
フォーマ9と、2個のCT6,9の出力をそれぞれ全波
整流する整流器12.14と、通電流時にR相、S相、
T相の総ての導電線3r、3s、3tを遮断する電磁式
の遮断スイッチ20と、整流器12.14の出力が所定
値を上回るときサイリスタ23にトリガパルスを出力し
て遮断スイッチ20の引き外しコイル20aを駆動する
制御回路25とを備えて構成されている。
A toroidal current transformer 9 that inserts a CT 3t inside, a rectifier 12, 14 that performs full-wave rectification of the outputs of the two CTs 6 and 9, and R-phase, S-phase,
An electromagnetic cutoff switch 20 cuts off all conductive wires 3r, 3s, and 3t of the T phase, and a trigger pulse is output to the thyristor 23 to pull the cutoff switch 20 when the output of the rectifier 12.14 exceeds a predetermined value. The control circuit 25 is configured to include a control circuit 25 that drives the removal coil 20a.

このように構成された電子式遮断器1の機能をわかり易
く説明するために、3相交流の各導電線に1つずつのC
Tが取り付けられた従来の電子式遮断器の機能と比較し
て説明する。第1図および第3図はそれぞれ本実施例の
電子式遮断器における電流の検出および従来の電子式遮
断器における電流の検出を模式的に表す回路図である。
In order to clearly explain the function of the electronic circuit breaker 1 configured in this way, one C
This will be explained in comparison with the functions of a conventional electronic circuit breaker equipped with a T. FIG. 1 and FIG. 3 are circuit diagrams schematically showing current detection in the electronic circuit breaker of this embodiment and current detection in a conventional electronic circuit breaker, respectively.

第4図は従来の電子式遮断器の電流検出部を模式的に表
す回路図である。
FIG. 4 is a circuit diagram schematically representing a current detection section of a conventional electronic circuit breaker.

まず始めに、3相平衡時の場合を説明する。つまり、1
20度位相が異なった振幅の等しい電圧(R相、S相、
T相)が各導電線間に印加され、各導電線間には抵抗値
の等しい負荷が接続されている場合(第1図のスイッチ
S1.S2.S3及び第3図のスイッチS4.S5.S
6の総てが閉じている状態)である。このとき、従来の
各導電線毎に設けられた各CT(第3図参照)からの出
力電流IR,Is、  ITは、第5図−点鎖線のベク
トルに示すように位相の120度異なった振幅の等しい
ものとなる。一方、本実施例のCT(第1図参照)から
の出力型?iit、ir及びこれらの合成電流isは、
先述した式 %式%(2) から第5図実線のベクトルに示すように1r−is間、
1s−ir間の位相がそれぞれ60度ずれた振幅の等し
いものとなる。第6図(A)、  (B)にそれぞれ実
測した電流波形を示す。電流波形IRI  IS、  
IT及びir、is、itは位相差の異なる正弦波形で
あるが、第7図に示すように、これらを整流した電圧■
、■(■は第4図の抵抗器Rの両端電圧、■は第2図A
点の電圧を表す。)はほぼ同一の出力波形となる。
First, the case of three-phase equilibrium will be explained. In other words, 1
Equal amplitude voltages with 20 degree phase difference (R phase, S phase,
T phase) is applied between each conductive wire, and loads with equal resistance values are connected between each conductive wire (switches S1.S2.S3 in FIG. 1 and switches S4.S5. in FIG. 3). S
6 are all closed). At this time, the output currents IR, Is, and IT from each CT (see Figure 3) provided for each conventional conductive line have a phase difference of 120 degrees as shown in the vector of the dotted chain line in Figure 5. The amplitudes will be equal. On the other hand, the output type from the CT (see Fig. 1) of this embodiment? iit, ir and their combined current is,
From the formula % formula % (2) mentioned above, as shown by the solid line vector in Figure 5, between 1r and is,
The phases between 1s and ir have the same amplitude and are shifted by 60 degrees. Figures 6(A) and 6(B) show the actually measured current waveforms. Current waveform IRI IS,
IT, ir, is, and it are sinusoidal waveforms with different phase differences, but as shown in Figure 7, the rectified voltage ■
, ■ (■ is the voltage across resistor R in Figure 4, ■ is the voltage across resistor R in Figure 2
Represents the voltage at a point. ) have almost the same output waveform.

つぎに、3相不平衡時の場合を説明する。つまり、R相
−8相の導電線間がオープンでS相−T相、R相−T相
の導電線間に抵抗値の等しい負荷が接続された場合(第
1図のスイッチS1及び第3図のスイッチS4のみオフ
の状態)である。このとき、従来のCTの出力電流IR
,Is、  ITは、第8図−点鎖線のベクトルに示す
ようにIRIs間の位相差60度、l5IT間の位相差
150度で出力電流ITの振幅が出力電流IS、  I
Rの振幅の2倍のものとなる。 一方、本実施例のCT
6゜9の出力電流は、第8図実線のベクトルに示すよう
に1r−is間の位相差120度、1s−it間の位相
差30度で出力電流1tの振幅が出力型?mts、ir
の振幅の2倍のものとなる。第9図(A)、(B)に実
測したこれらの出力波形を示す。図示のように、従来の
CTの出力波形と本実施例の出力波形とは異なるが、第
10図(A)。
Next, a case in which three phases are unbalanced will be explained. In other words, when the R-phase to 8-phase conductive wires are open and loads with equal resistance values are connected between the S-phase to T-phase and R-phase to T-phase conductive wires (switches S1 and 3 in Figure 1 Only switch S4 in the figure is off). At this time, the output current IR of the conventional CT
, Is, IT, the amplitude of the output current IT is equal to the output current IS, I when the phase difference between IRIs is 60 degrees and the phase difference between I5IT is 150 degrees, as shown in the vector of the dotted chain line in Fig. 8.
The amplitude is twice that of R. On the other hand, the CT of this example
The output current of 6°9 has a phase difference of 120 degrees between 1r and is and a phase difference of 30 degrees between 1s and it, as shown by the solid line vector in Figure 8, and the amplitude of the output current 1t is output type? mts, ir
The amplitude will be twice that of . Figures 9(A) and 9(B) show these actually measured output waveforms. As shown, the output waveform of the conventional CT and the output waveform of this embodiment are different, but in FIG. 10(A).

(B)に示すように絶対値をとるとほぼ同一の波形とな
る。したがって、第11図に示すように整流した出力電
圧■、■はほぼ一致する。
As shown in (B), if the absolute values are taken, the waveforms are almost the same. Therefore, as shown in FIG. 11, the rectified output voltages (1) and (2) almost match.

つづいて、S相−T相の導電線間をオープンにしR相−
5相、R相−T相の導電線間に等しい抵抗値の負荷を接
続した場合(第1図のスイッチS2及び第3図のスイッ
チS5のみオフの状態)の3相不平衡時ζこついて説明
する。第12図の出力電流のベクトル、第13図(A)
、  (B)の電流波形、第14図の整流した電圧波形
に示すように、前述した3相不平衡時と同様に、電流波
形は異なるが整流後の出力波形■、■はほぼ一致する。
Next, open the conductive wires of the S phase and T phase, and open the conductive wires of the R phase and
When a load of equal resistance value is connected between the 5-phase, R-phase and T-phase conductive wires (only switch S2 in Figure 1 and switch S5 in Figure 3 are off), ζ trouble occurs when three phases are unbalanced. explain. Vector of output current in Fig. 12, Fig. 13 (A)
, As shown in the current waveform in (B) and the rectified voltage waveform in FIG. 14, the current waveforms are different, but the output waveforms (2) and (2) after rectification are almost the same, as in the case of three-phase unbalance.

さらに、R相−T相の導電線間をオープンにしS相−R
相、S相−T相の導電線間に等しい抵抗値の負荷を接続
した場合(第1図のスイッチS3及び第3図のスイッチ
S3のみオフの状態)の3相不平衡時においても、第1
5図の出力電流のベクトル、第16図(A)、(B)の
実測した電流波形、第17図の整流した電圧波形に示す
ように、電流波形は異なるが、整流後の出力波形■、■
はほぼ同一となる。
Furthermore, the conductive wires of the R phase and T phase are opened, and the conductive wires of the S phase and R phase are opened.
Even in the case of three-phase unbalance when a load of equal resistance value is connected between the S-phase and T-phase conductive wires (only switch S3 in Fig. 1 and switch S3 in Fig. 3 are off), the 1
As shown in the output current vector in Figure 5, the measured current waveforms in Figures 16 (A) and (B), and the rectified voltage waveform in Figure 17, the current waveforms are different, but the output waveform after rectification is ■
are almost the same.

以上詳しく説明したように、本実施例の電子式遮断器1
において、導電線3r、3sを内側に挿−11= 通ずるCT6の出力及び導電線3s、3tを内側に挿通
ずるCT9の出力をそれぞれ整流器12゜14で整流し
た出力の和は、負荷の状態によらず、総ての導電線にC
Tを設けた従来の電子式遮断器の出力と一致する。した
がって、電子式遮断器1は整流後の出力の和が予め設定
された値、たとえば60[A]を越えると、制御回路2
5によりサイリスタ23にトリガパルスを出力してサイ
リスタ23をオンし、引き外しコイル20aを駆動して
R相、S相、T相の総ての導電線3r、  3s。
As explained in detail above, the electronic circuit breaker 1 of this embodiment
Inserting the conductive wires 3r and 3s inside -11 = The sum of the outputs of the CT6 and the output of the CT9 passing the conductive wires 3s and 3t inside are rectified by rectifiers 12 and 14, respectively, depending on the load condition. C to all conductive wires regardless of
This corresponds to the output of a conventional electronic circuit breaker equipped with T. Therefore, when the sum of outputs after rectification exceeds a preset value, for example 60 [A], the electronic circuit breaker 1
5 outputs a trigger pulse to the thyristor 23, turns on the thyristor 23, drives the tripping coil 20a, and connects all the conductive wires 3r and 3s of the R phase, S phase, and T phase.

3tの接点20bをオフし遮断する。3t contact 20b is turned off to shut off.

以上示したように、本実施例の電子式遮断器1によれは
、2個のCT6.9を用いただけで、3個のCTを用い
た従来の電子式遮断器と同様に3線式の導電線3r、3
s、3tに流れる電流の過電流を防止できる。したがっ
て、−組のCTおよびCTの取付部品並びに電気部品を
省くことができ、その大きさ及び重量を軽減して小型化
できる。
As shown above, the electronic circuit breaker 1 of this embodiment has only two CT6.9s, and is a three-wire type circuit breaker similar to the conventional electronic circuit breaker using three CTs. Conductive wires 3r, 3
It is possible to prevent overcurrent of the current flowing through s and 3t. Therefore, it is possible to omit the set of CTs, their attachment parts, and electrical parts, and to reduce their size and weight.

また、部品点数を抑えて、コストを低減できると共に製
造工数を短縮できる。
In addition, the number of parts can be reduced to reduce costs and manufacturing man-hours.

以上本発明の実施例について説明したが、本発明はこう
した実施例に何等限定されるものではなく、例えば3相
3線式の導電線に代えて単相3線式の導電線に適用して
もよい。第18図(A)。
Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments in any way. For example, the present invention may be applied to a single-phase three-wire conductive wire instead of a three-phase three-wire conductive wire. Good too. Figure 18(A).

(B)、  (C)は第2図においてそれぞれR相−8
相間、R相−T相間、S−T相間を単相電圧とした場合
のCT6.CT9の出力電圧および整流後の出力電圧を
衷す。図示するように、整流後の電圧波形はいずれの場
合においても同じになる。
(B) and (C) are R phase-8 in Fig. 2, respectively.
CT6 when single-phase voltage is used between phases, between R phase and T phase, and between S and T phases. Observe the output voltage of CT9 and the output voltage after rectification. As shown in the figure, the voltage waveform after rectification is the same in either case.

尚、ホットラインはIPでも2Pでもよい。Note that the hotline may be IP or 2P.

え吸少苅深 以上詳述したように、本発明の電子式遮断器む乙よれば
、第1及び第2の電流検出器を用いるだけで、3個の電
流検出器を用いた従来の場合と同様に3線式の導電線に
流れる電流の過電流を防止できる。したがって、−組の
電流検出器および電流検出器の取付部品並びに電気部品
を省くことができ、その大きさ及び重量を軽減して小型
化できる。
As detailed above, according to the electronic circuit breaker of the present invention, only the first and second current detectors are used, compared to the conventional case using three current detectors. Similarly, overcurrent of the current flowing through the three-wire conductive wire can be prevented. Therefore, it is possible to omit the second set of current detectors, their mounting parts, and electrical parts, and the size and weight of the current detectors can be reduced, resulting in miniaturization.

また、部品点数を抑えて、コストを低減できると共に製
造工数を短縮できる。
In addition, the number of parts can be reduced to reduce costs and manufacturing man-hours.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の電子式遮断器における電流の検出を説
明する説明図、第2図は実施例の電子式遮断器の構成を
表す回路図、第3図は従来の電子式遮断器における電流
の検出を説明する説明図、第4図は従来の電子式遮断器
の電流検出部を表す説明図、第5図は出力電流をベクト
ルで表す説明図、第6図(A)、  (B)はそれぞれ
実施例の電子式遮断器および従来の電子式遮断器におい
て実測した出力電流を表すグラフ、第7図は整流後の出
力電圧を表すグラフ、第8図は出力電流をベクトルで表
す説明図、第9図は(A)、(B)はそれぞれ実施例の
電子式遮断器および従来の電子式遮断器において実測し
た出力電流を表すグラフ、第10図(A)、  (B)
はそれぞれ実施例の電子式遮断器および従来の電子式遮
断器の出力電流の絶対値を表す説明図、第11図は整流
後の出力電圧を表すグラフ、第12図は出力電流をベク
トルで表す説明図、第13図(A)、  (B)はそれ
ぞれ実施例の電子式遮断器および従来の電子式遮断器に
おいて実測した出力電流を表すグラフ、第14図は整流
後の出力電圧を表すグラフ、第15図は出力電流をベク
トルで表す説明図、第16図(A)、  (B)はそれ
ぞれ実施例の電子式遮断器および従来の電子式遮断器に
おいて実測した出力電流を表すグラフ、第17図は整流
後の出力電圧を表す説明図、第18図(A)、(B)、
(C)はそれぞれ変形例の電子式遮断器における出力電
流。 整流後の出力電圧を表すグラフである。 1 ・・・ 電子式遮断器 6.9  ・・・ カレントトランスフォーマ(CT)
12.14  ・・・ 整流器 20 ・・・ 遮断スイッチ 20a  ・・・ 引き外しコイル 23 ・・・ サイリスタ 25 ・・・ 制御回路
FIG. 1 is an explanatory diagram for explaining current detection in the electronic circuit breaker of the embodiment, FIG. 2 is a circuit diagram showing the configuration of the electronic circuit breaker of the embodiment, and FIG. An explanatory diagram for explaining current detection, Fig. 4 is an explanatory diagram for the current detection section of a conventional electronic circuit breaker, Fig. 5 is an explanatory diagram for representing the output current as a vector, and Figs. 6 (A), (B) ) are graphs representing the output currents actually measured in the electronic circuit breaker of the example and the conventional electronic circuit breaker, respectively, FIG. 7 is a graph representing the output voltage after rectification, and FIG. 8 is an explanation representing the output current as a vector. Figures 9 (A) and (B) are graphs showing the output currents actually measured in the electronic circuit breaker of the example and the conventional electronic circuit breaker, respectively, and Figures 10 (A) and (B)
are explanatory diagrams representing the absolute values of the output currents of the electronic circuit breaker of the example and the conventional electronic circuit breaker, respectively, FIG. 11 is a graph representing the output voltage after rectification, and FIG. 12 is a vector representing the output current. Explanatory drawings, FIGS. 13(A) and 13(B) are graphs representing the output currents actually measured in the electronic circuit breaker of the example and the conventional electronic circuit breaker, respectively, and FIG. 14 is a graph representing the output voltage after rectification. , FIG. 15 is an explanatory diagram showing the output current as a vector, and FIGS. Figure 17 is an explanatory diagram showing the output voltage after rectification, Figure 18 (A), (B),
(C) shows the output current in each modified electronic circuit breaker. It is a graph showing the output voltage after rectification. 1... Electronic circuit breaker 6.9... Current transformer (CT)
12.14... Rectifier 20... Cutoff switch 20a... Tripping coil 23... Thyristor 25... Control circuit

Claims (1)

【特許請求の範囲】 3線式の導電線のうち少なくとも1つの導電線に流れる
電流が所定値を越えるとき前記導電線を含む電気回路を
遮断する遮断手段を備えた電子式遮断器であって、 前記3線式の導電線のうち2本の導電線に流れる電流の
和もしくは差を検出する第1の電流検出器と、 前記3線式の導電線のうち前記第1の電流検出手段とは
異なる組合せの2本の導電線に流れる電流の和もしくは
差を検出する第2の電流検出器と、前記第1および第2
の電流検出器の出力を演算して前記3線式の導電線に流
れる電流値を算出する算出手段と、 該算出された電流値が所定値を越えるとき前記遮断手段
を駆動する駆動手段と、 を備えたことを特徴とする電子式遮断器。
[Scope of Claims] An electronic circuit breaker comprising interrupting means for interrupting an electric circuit including the conductive wire when a current flowing through at least one of the conductive wires of a three-wire system exceeds a predetermined value. , a first current detector that detects the sum or difference of currents flowing through two of the three-wire conductive wires; and a first current detection means among the three-wire conductive wires. a second current detector that detects the sum or difference of currents flowing through two conductive wires of different combinations;
calculation means for calculating the current value flowing through the three-wire conductive wire by calculating the output of the current detector; and driving means for driving the cutoff means when the calculated current value exceeds a predetermined value. An electronic circuit breaker characterized by being equipped with.
JP29246187A 1987-11-19 1987-11-19 Electronic type circuit breaker Pending JPH01136519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29246187A JPH01136519A (en) 1987-11-19 1987-11-19 Electronic type circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29246187A JPH01136519A (en) 1987-11-19 1987-11-19 Electronic type circuit breaker

Publications (1)

Publication Number Publication Date
JPH01136519A true JPH01136519A (en) 1989-05-29

Family

ID=17782105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29246187A Pending JPH01136519A (en) 1987-11-19 1987-11-19 Electronic type circuit breaker

Country Status (1)

Country Link
JP (1) JPH01136519A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001119986A (en) * 1999-10-14 2001-04-27 Nissan Motor Co Ltd Method and apparatus for detecting current of sr motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001119986A (en) * 1999-10-14 2001-04-27 Nissan Motor Co Ltd Method and apparatus for detecting current of sr motor

Similar Documents

Publication Publication Date Title
US4685022A (en) Ground fault circuit interrupter capable of deriving energy from ground fault current in order to achieve circuit interruption in the presence of a reduced supply voltage
JP2735598B2 (en) Solid trip device
US7050279B2 (en) Method and apparatus for high impedance grounding of medium voltage AC drives
JP4234682B2 (en) Arc fault detection circuit breaker system
JPH0340718A (en) Static tripping device in protective breaker in system of ac power
US6160689A (en) Two wire solid state AC/DC circuit breaker
CA2147231C (en) Method and device for protecting busbars
EP0637865B1 (en) Transformer differential relay
US5488303A (en) GFCI with auxiliary coil current blocking means and improved test button configuration
JPH01136519A (en) Electronic type circuit breaker
US3525019A (en) Power protection apparatus
US3974423A (en) Differential current protective device
JPH10191552A (en) Overvoltage detection circuit for earth leakage breaker
NZ194200A (en) Three phase circuit breaker tripped by single phase fault
JPH07312823A (en) Dc leak detection and protective device
JPS6314566B2 (en)
US3184644A (en) Polyphase electroresponsive apparatus
JPS63290122A (en) Overcurrent releasing device for breaker
JP3449172B2 (en) Three-phase four-wire neutral-phase open-phase detector and circuit breaker
RU2785005C1 (en) Device for protecting a three-phase electrical installation from open-phase operation
JP2787873B2 (en) Three-phase unbalance detector
JP2686071B2 (en) Neutral wire open phase detection circuit breaker
RU2242829C2 (en) Ground fault detecting and protecting device for electrical machines and apparatuses (alternatives)
SU997168A1 (en) Device for phase break protection of star-connected three phase electric motor
SU421082A1 (en) THREE PHASE RELAY CURRENT