JPH01135973A - Excess flow inhibiting valve - Google Patents

Excess flow inhibiting valve

Info

Publication number
JPH01135973A
JPH01135973A JP62291575A JP29157587A JPH01135973A JP H01135973 A JPH01135973 A JP H01135973A JP 62291575 A JP62291575 A JP 62291575A JP 29157587 A JP29157587 A JP 29157587A JP H01135973 A JPH01135973 A JP H01135973A
Authority
JP
Japan
Prior art keywords
valve
pressure
poppet
spring
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62291575A
Other languages
Japanese (ja)
Inventor
Akira Fuji
富士 明
Masaharu Haniyu
羽生 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62291575A priority Critical patent/JPH01135973A/en
Publication of JPH01135973A publication Critical patent/JPH01135973A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Measuring Volume Flow (AREA)
  • Safety Valves (AREA)
  • Indication Of The Valve Opening Or Closing Status (AREA)

Abstract

PURPOSE:To prevent blocking due to magnetizing action of sludge by detecting a pressure of fluid in an excess flow inhibiting valve using not a magnetic but an electric means. CONSTITUTION:An excess flow inhibiting valve 30, moving a poppet 37 to the downstream side by a differential pressure between the upstream and the downstream of the poppet 37, throttles a flow path. Between a spring 38, holding the poppet 37 of this excess flow inhibiting valve 39, and a wall part of a valve main unit 31 supporting the spring 38, a pressure detecting element 45 is arranged. And when the poppet 37 is moved to the downstream side by the differential pressure, tension of the spring 38, compressed by the poppet 37, is applied to the pressure detecting element 45 in addition to a pressure of fluid in the normal time. As the result, an electric signal is transmitted to a control chamber so as to change larger as compared with that in the normal time, and by detecting this change, the valve is displayed to be placed in a closing condition.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は過流量阻止弁に係り、特に原子炉格納容器の計
装用隔離弁として使用され、格納容器バウンダリーとし
ての機能向上に好適な過流量阻止弁に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an overflow prevention valve, which is particularly used as an isolation valve for instrumentation of a nuclear reactor containment vessel, and which is suitable for improving the function as a containment vessel boundary. Regarding the blocking valve.

〔従来の技術〕[Conventional technology]

原子力発電所の原子炉格納容器においては、第2図及び
第3図に示すように、原子炉1からの高圧ラインの計装
用検出配管2が格納容器3に設置されたペネトレーショ
ン4を貫通して、格納容器外部の計器5に接続されてい
る。
In the reactor containment vessel of a nuclear power plant, as shown in Figs. 2 and 3, the instrumentation detection pipe 2 of the high pressure line from the reactor 1 passes through a penetration 4 installed in the containment vessel 3. , is connected to an instrument 5 outside the containment vessel.

この計装用検出配管2にはペネトレーション4の出口部
に、原子炉1より計器5側を隔Mするための手動隔離弁
6及び下流側の検出配管2の破断、計器5廻りの計装弁
7のリーク、計器5の損傷等の事故発生時に原子炉1内
の放射性−次冷却材の喪失を防止するための過流量制御
弁8が取り付けられている。
This instrumentation detection pipe 2 has a manual isolation valve 6 at the outlet of the penetration 4 to isolate the instrument 5 side from the reactor 1, a broken detection pipe 2 on the downstream side, and an instrumentation valve 7 around the instrument 5. An overflow control valve 8 is installed to prevent loss of radioactive secondary coolant within the reactor 1 in the event of an accident such as a leak or damage to the instrument 5.

これら手動隔離弁6及び過流量阻止弁8は、冷却材喪失
事故発生時に圧力障壁となり、格納容器バウンダリーを
形成するものであり、弁の取付は及び過流量阻止弁8の
開閉状態が制御室で確認できることが技術基準により義
務づけられている。
These manual isolation valves 6 and overflow prevention valves 8 act as pressure barriers and form containment vessel boundaries in the event of a loss of coolant accident. Technical standards require that it can be confirmed.

過流量阻止弁8は、−船釣に第4図に示すように、弁本
体9内にポペット10及びバネ11を有するチエツク弁
m横12を有し、常時はこのチエツク弁機構12のポペ
ット10をばね11により上流側に保持し、前述した計
装配管2の破断等の事故発生時には、閉塞状態となって
いた計装配管2内に流れが生じることにより、ポペット
10の上下流間に差圧が生じると、この差圧によりバネ
11に抗してポペット10を下流側に移動させ、弁体1
4を弁座15に触座させ、流路13を閉じて過流量阻止
弁以降を隔離するものである。
As shown in FIG. 4, the overflow prevention valve 8 has a check valve m side 12 having a poppet 10 and a spring 11 in the valve body 9, and the poppet 10 of the check valve mechanism 12 is normally closed. is held on the upstream side by the spring 11, and in the event of an accident such as the aforementioned rupture of the instrumentation pipe 2, a flow is generated in the instrumentation pipe 2 which has been in a blocked state, thereby reducing the difference between the upstream and downstream sides of the poppet 10. When pressure is generated, this differential pressure causes the poppet 10 to move downstream against the spring 11, causing the valve body 1 to move toward the downstream side.
4 is placed in contact with the valve seat 15, the flow path 13 is closed, and the area after the excessive flow prevention valve is isolated.

また従来の過流量阻止弁8は、弁開閉表示機構として、
弁本体9内に収納されるポペット10を永久磁石で作り
、このポペット10の永久磁石が移動する際その磁力に
より、弁本体9に取付けられたリミットスイッチ16の
接点が入切し、制御室に弁の開閉状態を表示するように
している。
In addition, the conventional excessive flow prevention valve 8 functions as a valve opening/closing display mechanism.
The poppet 10 housed in the valve body 9 is made of a permanent magnet, and when the permanent magnet of the poppet 10 moves, its magnetic force turns on and off the contacts of the limit switch 16 attached to the valve body 9, and the contact is turned on and off in the control room. The open/closed status of the valve is displayed.

ところで過流量阻止弁8及び計装配管2内の液体は静止
流体であり、過流量阻止弁8及び計装配管2内にスラッ
ジが蓄積されることが考えられる。
By the way, the liquid in the overflow prevention valve 8 and the instrumentation piping 2 is a stationary fluid, and it is conceivable that sludge is accumulated in the overflow prevention valve 8 and the instrumentation piping 2.

この蓄積されたスラッジは、弁本体9内のポペット10
の磁力により磁化され、弁本体9とポペット10との間
隙に吸いつき目詰りを起こし、圧力伝播及び弁体14の
開閉に支障をきたす恐れがある。
This accumulated sludge is removed from the poppet 10 inside the valve body 9.
It is magnetized by the magnetic force of the valve body 9 and the poppet 10, and may clog the gap between the valve body 9 and the poppet 10, which may impede pressure propagation and opening/closing of the valve body 14.

そこで、定期的に計器5側より計装配管2、過流量阻止
弁8をフラッシングし、内部に蓄積したスラッジを原子
炉1側に戻すことを行っているが、磁化したスラッジの
ため完全に排出できるものではなく、ボベ・ット10に
かなりのスラッジが付着する。また隔離作動時に、スラ
ッジが弁体14と弁座15に挾まれ、シートリークを起
こし弁の隔離機能を阻害し、冷却材の放出を招くことが
考えられ、定期的に点検し、弁体等のすり合せ加工等の
補修が必要となり、上記過流量阻止弁8の数も膨大であ
るため、多大の労力と時間をかけて隔離機能を維持しな
ければならなかった。
Therefore, the instrumentation piping 2 and overflow prevention valve 8 are periodically flushed from the instrument 5 side to return the sludge that has accumulated inside to the reactor 1 side, but due to magnetized sludge, it is not completely discharged. However, a considerable amount of sludge adheres to the bovet 10. Furthermore, during the isolation operation, sludge may become trapped between the valve body 14 and the valve seat 15, causing seat leakage and inhibiting the isolation function of the valve, leading to the release of coolant. Since the number of overflow prevention valves 8 is enormous, it is necessary to maintain the isolation function with great effort and time.

上記の問題を改良し、弁内スラッジをフラッシング等に
より容易に除去でき、しかもより高信頼性のある過流量
阻止弁に関する従来技術としては特開昭61−6597
8号がある。
Japanese Patent Laid-Open No. 61-6597 discloses a prior art related to an overflow prevention valve that improves the above problem, allows easy removal of sludge inside the valve by flushing, etc., and has higher reliability.
There is No. 8.

この従来技術では、チエツク弁m楕及び弁開閉表示機構
に磁力を使用せず、弁座の下流側にベローズとバネを用
いた圧力検出器を取付けることで、スラッジの磁化によ
る弁内の目詰り防止を図っている。
This conventional technology does not use magnetic force in the check valve m-ellipse or valve opening/closing display mechanism, but by installing a pressure detector using a bellows and spring on the downstream side of the valve seat, it is possible to prevent clogging in the valve due to magnetization of sludge. We are trying to prevent this.

即ち第5図において、この従来技術の過流量阻止弁17
は、チエツク弁機構12のポペット10に永久磁石の使
用を止め、従ってリミットスイッチ16も設置せず、そ
の代わり弁座15の下流側にベローズ18、受圧部19
、バネ20等からなる弁開閉表示機構21を取付けてい
る。
That is, in FIG. 5, this prior art overflow prevention valve 17
stopped using a permanent magnet in the poppet 10 of the check valve mechanism 12, and therefore did not install the limit switch 16, but instead installed a bellows 18 and a pressure receiving part 19 on the downstream side of the valve seat 15.
, a valve opening/closing display mechanism 21 consisting of a spring 20 and the like is attached.

この過流量阻止弁17においては、通常時は、弁座15
の上下流間に圧力差がないことから、ポペット10はば
ね11により上流側に押圧され、流路13は開放状態に
ある。従って原子炉1の圧力は弁内流路13を経て計器
5に圧力を伝えると共に、弁開閉表示機構21の受圧部
19を押圧し、スイッチ棒22を押し上げる。スイッチ
棒22が押し上げられるとスイッチ23の接点を開放し
、制御室に弁開状態の信号が送られる。
In this excessive flow prevention valve 17, normally, the valve seat 15
Since there is no pressure difference between the upstream and downstream sides, the poppet 10 is pressed upstream by the spring 11, and the flow path 13 is in an open state. Therefore, the pressure in the reactor 1 is transmitted to the meter 5 through the valve internal flow path 13, and also presses the pressure receiving part 19 of the valve opening/closing display mechanism 21, pushing up the switch rod 22. When the switch rod 22 is pushed up, the contacts of the switch 23 are opened, and a signal indicating that the valve is open is sent to the control room.

一方、過流量阻止弁17の下流側で配管破断等が生ピな
場合は、ポペット10の前後に圧力差を生じ、ポペット
10を下流側に押す力が働き、弁体14が弁座15に触
座して弁は閉状態となる。
On the other hand, if there is a pipe rupture or the like on the downstream side of the overflow prevention valve 17, a pressure difference will be generated before and after the poppet 10, a force will act to push the poppet 10 downstream, and the valve body 14 will press against the valve seat 15. When touched, the valve becomes closed.

以上によりポペット10の下流側は減圧され、弁内液体
により押圧されていた受圧部19及びスイッチ棒22は
、バネ20の作用により弁内に押し出されることにより
スイッチ23の接点が入り、弁が閉状態となったことを
表示する。
As a result, the pressure on the downstream side of the poppet 10 is reduced, and the pressure receiving part 19 and the switch rod 22, which had been pressed by the liquid in the valve, are pushed into the valve by the action of the spring 20, so that the contact of the switch 23 is turned on, and the valve is closed. Displays the status.

この弁開閉表示機構21においては、受圧部19及びス
イッチ棒22は可動部であるため、受圧部19とその収
容装置24との間には隙間が必要であり、弁内外をシー
ルするためにはこの隙間をシールしなければならない、
前述したベローズ18はこのために設けられているもの
であり、ベローズ18は受圧部19と受圧部収納装置2
4との間に接続され、それらの間の隙間をシールしてい
る。
In this valve opening/closing display mechanism 21, since the pressure receiving part 19 and the switch rod 22 are movable parts, a gap is required between the pressure receiving part 19 and its accommodation device 24, and in order to seal the inside and outside of the valve. This gap must be sealed,
The bellows 18 described above is provided for this purpose, and the bellows 18 is connected to the pressure receiving part 19 and the pressure receiving part storage device 2.
4 and seals the gap between them.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上記従来技術の過流量阻止弁17において
は、弁開閉表示機構21に関して以下の問題かあった。
However, in the overflow prevention valve 17 of the prior art described above, there were the following problems regarding the valve opening/closing display mechanism 21.

即ち、本弁は冷却材喪失事故発生時に、圧力障壁となり
、格納容器バウンダリーを形成するものであり、高信頼
性を要求される。従来技術においては、ベローズ18を
使用することにより弁内外をシールし、格納容器バウン
ダリーとしての信頼性を向上させることを図っているが
、過流量阻止弁17内の流体は高温、高圧であり、ベロ
ーズ18か破損した場合、過流量阻止弁17内の流体は
、受圧部19と受圧部収納装置24との隙間を通り、過
流量阻止弁17の外部へと放出されることになり、信頼
性に問題があった。
In other words, this valve acts as a pressure barrier and forms a containment vessel boundary in the event of a loss of coolant accident, and is therefore required to have high reliability. In the conventional technology, the bellows 18 is used to seal the inside and outside of the valve to improve reliability as a containment vessel boundary, but the fluid inside the overflow prevention valve 17 is at high temperature and high pressure. If the bellows 18 is damaged, the fluid in the excessive flow prevention valve 17 will pass through the gap between the pressure receiving part 19 and the pressure receiving part storage device 24 and be released to the outside of the excessive flow prevention valve 17, reducing reliability. There was a problem.

信頼性確保のため流木の条件に適したベローズ18を設
計するとなると、構造的にコンパクトにすることが非常
に困難で、過流量阻止弁17の形状が大きなものとなる
If the bellows 18 is designed to be suitable for the conditions of driftwood in order to ensure reliability, it is very difficult to make it structurally compact, and the shape of the overflow prevention valve 17 becomes large.

ところで計装用検出配管2は、第3図に示すように、1
つのペネトレーション4から複数本延出しており、各検
出配管2に上記手動隔離弁6と過流量阻止弁7とが取り
付けられている。従って取り付はスペースにも制限があ
ることから、過流量阻止弁17の形状が大きくなること
は、配置上の大きな障害となる。
By the way, as shown in FIG. 3, the instrumentation detection piping 2 is
A plurality of detection pipes 4 extend from each detection pipe 2, and the manual isolation valve 6 and the overflow prevention valve 7 are attached to each detection pipe 2. Therefore, since the installation space is limited, increasing the size of the excessive flow prevention valve 17 poses a major obstacle in terms of arrangement.

本発明の目的は、スラッジの磁化作用による目詰りを防
止でき、かつ格納容器バウンダリーとしての条件を満足
することのできる高信頼性のある過流量阻止弁を提供す
ることにある。
An object of the present invention is to provide a highly reliable overflow prevention valve that can prevent clogging due to the magnetization of sludge and satisfy the requirements for a containment vessel boundary.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、弁本体内に圧力検出素子を配置し、弁本体
内の圧力を電気的に検出するようにしたことを特徴とす
る過流量阻止弁によって達成される。
The above object is achieved by an overflow prevention valve characterized in that a pressure detection element is disposed within the valve body and the pressure within the valve body is electrically detected.

〔作用〕[Effect]

ポペットに永久磁石を使用しなくてもよいので、スラッ
ジの磁化による弁内の目詰りが発生することはない。ま
た圧力検出素子により圧力変化を電気的に検出するので
、弁内外を貫通するのはその検出された圧力を電気信号
として外部に伝えるゲーブルだけであり、このため従来
、受圧部を可動部とした場合に必要であった隙間が不要
となり、格納容器バランタリーとしての信頼性を向上さ
せることができる。
Since there is no need to use a permanent magnet in the poppet, clogging in the valve due to magnetization of sludge does not occur. In addition, since pressure changes are electrically detected by a pressure detection element, the only thing that passes through the inside and outside of the valve is a cable that transmits the detected pressure to the outside as an electrical signal.For this reason, conventionally, the pressure receiving part was made into a movable part. This eliminates the need for gaps that would otherwise be required, and the reliability of the containment vessel as a balantry can be improved.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図において本発明の過流量阻止弁は全体的に符号3
0で示され、過流量阻止弁30は弁本体31と、弁体3
1内に位置するチエツク弁機構32とを有している。弁
本体31には壁部33によって仕切られた上流側め流路
34及び下流側の流路35が形成され、壁部33にはチ
エツク弁機構32によって開閉制御される流路36が形
成されている。
In FIG. 1, the overflow prevention valve of the present invention is generally designated 3.
0, the excessive flow prevention valve 30 has a valve body 31 and a valve body 3.
1 and a check valve mechanism 32 located within the valve. The valve body 31 is formed with an upstream flow path 34 and a downstream flow path 35 that are partitioned by a wall 33, and the wall 33 is formed with a flow path 36 that is controlled to open and close by a check valve mechanism 32. There is.

チエツク弁機flI32は、流路34内に配置されたポ
ペット37及びバネ38を有し、バネ38は一端がボベ
・yト37に係合しaSが壁#33に支持され、ポペッ
ト37はこのばね38により通常は上流側に保持されて
いる。ポペット37の先端には弁体39が設けられ、壁
部33にはこの弁体39が触座する弁座40が形成され
ている。
The check valve flI32 has a poppet 37 and a spring 38 disposed in the flow path 34, one end of the spring 38 engages with the bove yt 37, aS is supported by the wall #33, and the poppet 37 A spring 38 normally holds it on the upstream side. A valve body 39 is provided at the tip of the poppet 37, and a valve seat 40 on which the valve body 39 touches is formed in the wall portion 33.

弁本体31の上流側流路34と下流側流路35との間に
はまた、ニードル弁41によって開閉される通路42が
形成されている。ニードル弁41はハンドル43により
手動操作される。このニードル弁4.1及び通路42は
、後述するごとく事故時に過流量阻止弁30が開状態と
なり、その後運転を再開させるときに、ニードル弁41
を開けて通路42を連通させ、流134.35の圧力を
同圧にして弁を開状態に復帰させるためのものである。
A passage 42 that is opened and closed by a needle valve 41 is also formed between the upstream passage 34 and the downstream passage 35 of the valve body 31 . The needle valve 41 is manually operated by a handle 43. The needle valve 4.1 and the passage 42 are connected to the needle valve 4.1 when the excessive flow prevention valve 30 is opened in the event of an accident and when the operation is resumed.
This is to open the passage 42 and bring the pressures of the streams 134 and 35 to the same pressure, thereby returning the valve to its open state.

過流量阻止弁30はまた、チエツク弁m椙32の開閉状
態を確認するための弁開閉表示機構44を備えている。
The overflow prevention valve 30 also includes a valve opening/closing display mechanism 44 for checking whether the check valve 32 is open or closed.

弁開閉表示機構44は、バネ38と、バネ38を支持す
る弁本体31の壁部33との間に配置された圧力検出素
子45を有し、この圧力検出素子45は半導体式、スト
レンゲージ式等で構成することができ、検出した圧力を
電気抵抗変化として変換し、ぞの抵抗変化を電気信号と
して取り出すものである。圧力検出素子45にはその電
気信号を外部に伝えるためのケーブル46が接続され、
ケーブル46は弁本体31を貫通してその外側に設置さ
れているプリアンプユニット47に接続されている。プ
リアンプユニット47はさらに端子台48に接続された
ケーブル49仲接続されている。
The valve opening/closing display mechanism 44 has a pressure detection element 45 disposed between the spring 38 and the wall 33 of the valve body 31 that supports the spring 38, and this pressure detection element 45 may be of a semiconductor type or a strain gauge type. It converts the detected pressure into a change in electrical resistance, and extracts the change in resistance as an electrical signal. A cable 46 for transmitting the electric signal to the outside is connected to the pressure detection element 45.
A cable 46 passes through the valve body 31 and is connected to a preamplifier unit 47 installed outside the valve body 31. The preamplifier unit 47 is further connected to a cable 49 connected to a terminal block 48 .

過流量阻止弁30の内外の貫通部であるケーブル46が
弁本体31を貫通する部分には気密性を保ち、弁内外を
シールするために、ケーブル46と弁本体31との間の
微°少隙間にハーメチックシールが施されている。
In order to maintain airtightness at the part where the cable 46 passes through the valve body 31, which is the inside and outside penetration part of the excessive flow prevention valve 30, and to seal the inside and outside of the valve, there is a small gap between the cable 46 and the valve body 31. A hermetic seal is applied to the gap.

なお50はポペット37のストツパである。Note that 50 is a stopper of the poppet 37.

このように構成された過流量阻止弁30においては、通
常時は、ポペット37の上下流間に圧力差がないことか
ら、ポペット37はバネ38により上流側に押され、流
路36は開放となる。このとき、過流量阻止弁30内の
流1体圧力は一定であり、バネ38には力が加わらない
、従って、圧力検出素子45に加わる圧力は過流量阻止
弁30内の流体圧力に等しい、圧力検出素子45はこの
圧力を検出し、圧力検出素子45の電気抵抗変化を電気
信号として変換し、その電気信号をケーブル46により
プリアンプユニット47に送り、プリアンプユニット4
7にて電気信号を増幅した後、ケーブル49を通じ制御
室に伝送される。
In the excessive flow prevention valve 30 configured in this way, since there is normally no pressure difference between the upstream and downstream sides of the poppet 37, the poppet 37 is pushed upstream by the spring 38, and the flow path 36 is opened. Become. At this time, the fluid pressure inside the excessive flow prevention valve 30 is constant, and no force is applied to the spring 38. Therefore, the pressure applied to the pressure detection element 45 is equal to the fluid pressure inside the excessive flow prevention valve 30. The pressure detection element 45 detects this pressure, converts the change in electrical resistance of the pressure detection element 45 into an electrical signal, and sends the electrical signal to the preamplifier unit 47 via the cable 46.
After the electrical signal is amplified at 7, it is transmitted to the control room through a cable 49.

このような通常の作動時、本実施例においてはポペット
37が磁石でないので、スラッジの磁化による弁内の目
詰りが生じることはない、また圧力検出素子45により
圧力変化を電気的に検出するので、弁内外を貫通するの
はその検出された圧力を電気信号として外部に伝えるケ
ーブル46だけである。このため従来、受圧部を可動部
としたために必要であった隙間が不要となり、ケーブル
46の弁本体31貫通部は、ハーメチックシールを施ず
ことにより容易にその気密性を保つことができ、格納容
器バウンダリーとしての信頼性を向上させることができ
る。
During such normal operation, since the poppet 37 in this embodiment is not a magnet, clogging in the valve due to magnetization of sludge does not occur, and pressure changes are detected electrically by the pressure detection element 45. The only thing that passes through the inside and outside of the valve is a cable 46 that transmits the detected pressure to the outside as an electrical signal. This eliminates the need for the gap that was conventionally required when the pressure receiving part was a movable part, and the part where the cable 46 passes through the valve body 31 can easily maintain its airtightness by not applying a hermetic seal. Reliability as a container boundary can be improved.

次に、過流量阻止弁30の下流側で配管破断等事故が生
じた場合は、ポペット37の上下流間に差圧が発生し、
この差圧によりポペット37を下流側に押す力が働き、
弁体39が弁座40に触座して流路36を閉じる。これ
により過流量阻止弁30は閉状態になる。
Next, if an accident such as a pipe rupture occurs on the downstream side of the overflow prevention valve 30, a pressure difference will occur between the upstream and downstream sides of the poppet 37.
This differential pressure acts to push the poppet 37 downstream,
The valve body 39 touches the valve seat 40 and closes the flow path 36. As a result, the excessive flow prevention valve 30 is brought into a closed state.

このように弁体39が閉じると、圧力検出素子45には
通常時の流体圧力に加えて、ポペット37により圧縮さ
れたバネ38の力が加わる。そのため、制御室に伝送さ
れる電気信号は通常時に比べ大となるように変化し、こ
の変化を検知することにより、弁閉状態となったことを
表示することができる。
When the valve body 39 closes in this manner, the force of the spring 38 compressed by the poppet 37 is applied to the pressure detection element 45 in addition to the normal fluid pressure. Therefore, the electrical signal transmitted to the control room changes to become larger than in normal times, and by detecting this change, it is possible to indicate that the valve is in the closed state.

また運転開始時においては、過流量阻止弁30の上流側
にある手動隔離弁6(第2図及び第3図参照)は全閉の
状態にあり、ポペット37の上下流間には流体圧力は印
加されていない、このため、ポペット37は上流側に押
圧され、流路36は開放状態にある。この状態では圧力
検出素子45には流体圧力もバネ38により押圧される
圧力も印加されることはない、そこで、通常の流体圧力
のある弁開状態から弁閉状態になり、バネ38により押
圧される圧力がさらに加わった場合にのみ弁閉状態を表
示し、それ以外の場合を弁開状態と表示するよう設定を
行うことにより、運転開始時においては弁が開状態にあ
ることを表示でき、正しい弁の開閉表示が可能である。
Furthermore, at the start of operation, the manual isolation valve 6 (see Figures 2 and 3) located upstream of the overflow prevention valve 30 is fully closed, and there is no fluid pressure between the upstream and downstream sides of the poppet 37. No voltage is applied, so the poppet 37 is pushed upstream and the flow path 36 is in an open state. In this state, neither the fluid pressure nor the pressure pressed by the spring 38 is applied to the pressure detection element 45. Therefore, the valve changes from the valve open state with normal fluid pressure to the valve closed state and is pressed by the spring 38. By configuring settings to display the valve closed state only when additional pressure is applied, and display the valve open state in other cases, it is possible to display that the valve is in the open state at the start of operation. It is possible to display the correct opening and closing of the valve.

このような利点は、前述した第5図に示す従来の過流量
阻止弁17では得ることができない、即ちこの従来の過
流量阻止弁17の場合は、運転開始時は、上述したよう
に過流量阻止弁17の上流側にある手動隔離弁6は全閉
の状態となっており、ポペット10の上下流開弁流体圧
力は印加されていないことから、ポペット10は上流側
に押圧され、流路13は開放状態にあるが、この状態に
おいては、ポペット10の下流側にある弁開閉表示機構
21の受圧部19にも圧力が印加されておらず、スイッ
チ棒22は下がったままであり、スイツチ23の接点は
入った状態のままである。従ってこの時、制御室には、
弁が閉状態である表示がされることになり、弁の実際の
開閉状態と、制御室での開閉表示は一致していないこと
にをる。
Such an advantage cannot be obtained with the conventional excessive flow prevention valve 17 shown in FIG. The manual isolation valve 6 on the upstream side of the blocking valve 17 is in a fully closed state, and no fluid pressure is applied to open the valves upstream or downstream of the poppet 10, so the poppet 10 is pushed upstream and the flow path is closed. 13 is in an open state, but in this state, pressure is not applied to the pressure receiving part 19 of the valve opening/closing display mechanism 21 located downstream of the poppet 10, and the switch rod 22 remains lowered, and the switch 23 The contacts remain closed. Therefore, at this time, in the control room,
This means that the valve is displayed as closed, and the actual open/closed state of the valve does not match the open/closed display in the control room.

本実施例によれば、このような実際の弁の開閉状態と制
御室での開閉表示との不一致は起こらず、常に正しい弁
の開閉表示をすることができる。
According to this embodiment, such a discrepancy between the actual valve opening/closing state and the opening/closing display in the control room does not occur, and the correct valve opening/closing display can always be displayed.

以上述べたように本実施例によれば、チエツク弁機構3
2及び弁開閉表示Rm44に磁力を使用しないのでスラ
ッジの磁化作用による目詰りが起こらず、確実な弁(j
動が期待でき、また圧力を圧力検出素子45により電気
的に検出しているので過流量阻止弁の気密性を高め、格
納容器バウンダリーとしての信頼性を向上させることが
でき、また圧力検出素子45をばね38の圧力をも検出
できる位置に配置したので、常に正しい弁の開閉表示を
可能とするものである。
As described above, according to this embodiment, the check valve mechanism 3
2 and the valve opening/closing display Rm44 does not use magnetic force, so there is no clogging caused by the magnetization of sludge, and the valve is reliable.
In addition, since the pressure is detected electrically by the pressure detection element 45, the airtightness of the overflow prevention valve can be improved, and the reliability as a containment vessel boundary can be improved. Since the valve is placed at a position where the pressure of the spring 38 can also be detected, it is possible to always correctly display whether the valve is open or closed.

さらに本実施例によれば、従来は流体圧力の一点の設定
値を基準としてオン・オフ的にスイッチの大切を行い、
弁の開閉検出を行っていたのに対して、圧力検出素子4
5を使用し、過流量阻止弁30内の流体圧力を連続的に
測定するため、過流量阻止弁30内の微少な圧力変動も
検出可能であり、この圧力情報を利用して種々の制御が
可能となる利点もある。
Furthermore, according to this embodiment, conventionally the switch is turned on and off based on a set value of fluid pressure at one point.
In contrast to the open/close detection of the valve, the pressure detection element 4
5 is used to continuously measure the fluid pressure inside the overflow prevention valve 30, it is possible to detect minute pressure fluctuations inside the overflow prevention valve 30, and various controls can be performed using this pressure information. There are some advantages that can be achieved.

なお以上の実施例では圧力検出素子45をバネ38と壁
部33との間に配置し、流体圧力だけでなくバネ38に
より押圧される圧力をも検出できるようにしたが、圧力
検出素子45を弁の開閉に関する圧力を検出できるその
他の位置、例えば弁座40の下流側の流路35の壁部に
設置してもよく、この場合でも、流路35における流体
の圧力変動を検出することにより過流量阻止弁30の開
閉状態を検出することができ、同時にスラッジの磁化作
用による目詰りの防止及び気密性の確保による格納容器
バウンダリーとしての信頼性を向上させることができる
Note that in the above embodiment, the pressure detection element 45 is arranged between the spring 38 and the wall 33 so that not only the fluid pressure but also the pressure pressed by the spring 38 can be detected. It may be installed at other locations where the pressure related to opening and closing of the valve can be detected, for example, on the wall of the flow path 35 on the downstream side of the valve seat 40. Even in this case, by detecting the pressure fluctuation of the fluid in the flow path 35, It is possible to detect the open/closed state of the excessive flow prevention valve 30, and at the same time, it is possible to prevent clogging due to the magnetization of sludge and to improve reliability as a containment vessel boundary by ensuring airtightness.

〔発明の効果〕〔Effect of the invention〕

以上明ら・かなように本発明によれば、スラッジ磁化作
用による目詰りを防止することができ、確実な弁作動が
期待できると共に、過流量阻止弁の気密性を高め、格納
容器バウンダリーとしての信頼性を向上させることがで
きる。
As is clear from the above, according to the present invention, clogging due to sludge magnetization can be prevented, reliable valve operation can be expected, and the airtightness of the overflow prevention valve is improved, making it suitable for use as a containment vessel boundary. Reliability can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による過流量制御弁を示す断
面図であり、第2図は過流量阻止弁が装着される検出ラ
インの概要図であり、第3図(a)、(b)及び(c)
は、それぞれ、その検出ラインのペネトレーション出口
側の手動隔離弁及び過流量阻止弁の取り付は状態を示す
上面図、側面図及び端面図であり、第4図は従来の過流
量阻止弁の断面図であり、第5図は別の従来の過流量阻
止弁の断面図である。 符号の説明 30・・・過流量阻止弁  31・・・弁本体32・・
・チエツク弁機構 33・・・壁部34.35.36・
・・流路 37・・・ポペット    38・・・バネ45・・・
圧力検出素子  46・・・ゲーブル出願人  株式会
社 日立製作所 代理人  弁理士 春 日  譲 30−−−一過流量阻止弁 31−一一一弁本体 32−−−−チエツク弁11$! 33−−−一壁部 34.35,36−−−−流路 37−−−−ポペツト 38−−−−バネ 45−−−一圧力検出素子 46−−−−ケーブル 第3図 (a)             包】lb     
  F3
FIG. 1 is a sectional view showing an overflow control valve according to an embodiment of the present invention, FIG. 2 is a schematic diagram of a detection line to which the overflow prevention valve is installed, and FIGS. b) and (c)
are a top view, a side view, and an end view showing the installation status of the manual isolation valve and excessive flow prevention valve on the penetration outlet side of the detection line, respectively, and Fig. 4 is a cross-sectional view of the conventional excessive flow prevention valve. FIG. 5 is a sectional view of another conventional overflow prevention valve. Explanation of symbols 30... Excess flow prevention valve 31... Valve body 32...
・Check valve mechanism 33...Wall part 34.35.36.
...Flow path 37...Poppet 38...Spring 45...
Pressure detection element 46...Gable Applicant Hitachi, Ltd. Agent Patent Attorney Haruhi Yuzuru 30---Transient flow prevention valve 31-111 Valve body 32---Check valve 11$! 33---One wall part 34, 35, 36---Flow path 37---Poppet 38---Spring 45---One pressure detection element 46---Cable Figure 3 (a) package] lb
F3

Claims (2)

【特許請求の範囲】[Claims] (1)弁本体と、弁本体内の流路に配置されたポペット
及びバネを有し、通常はポペットをバネにより流路の上
流側に保持し、ポペットの上下流間に差圧が生じるとそ
の差圧によりポペットを下流側に移動させるチェック弁
機構とを備えた過流量阻止弁において、 弁本体内に圧力検出素子を配置し、この圧力検出素子に
より弁本体内の圧力を電気的に検出するようにしたこと
を特徴とする過流量阻止弁。
(1) It has a valve body, a poppet and a spring arranged in a flow path within the valve body.Usually, the poppet is held on the upstream side of the flow path by a spring, and when a pressure difference occurs between the upstream and downstream sides of the poppet, In an overflow prevention valve equipped with a check valve mechanism that moves the poppet downstream based on the differential pressure, a pressure detection element is placed inside the valve body, and this pressure detection element electrically detects the pressure inside the valve body. An overflow prevention valve characterized in that:
(2)前記圧力検出素子を、バネと、このバネを支持す
る弁本体の壁部との間に配置したことを特徴とする特許
請求の範囲第1項記載の過流量阻止弁。
(2) The overflow prevention valve according to claim 1, wherein the pressure detection element is disposed between a spring and a wall of the valve body that supports the spring.
JP62291575A 1987-11-18 1987-11-18 Excess flow inhibiting valve Pending JPH01135973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62291575A JPH01135973A (en) 1987-11-18 1987-11-18 Excess flow inhibiting valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62291575A JPH01135973A (en) 1987-11-18 1987-11-18 Excess flow inhibiting valve

Publications (1)

Publication Number Publication Date
JPH01135973A true JPH01135973A (en) 1989-05-29

Family

ID=17770697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62291575A Pending JPH01135973A (en) 1987-11-18 1987-11-18 Excess flow inhibiting valve

Country Status (1)

Country Link
JP (1) JPH01135973A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319178U (en) * 1989-07-07 1991-02-25
JPH03125968U (en) * 1990-03-31 1991-12-19

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319178U (en) * 1989-07-07 1991-02-25
JPH03125968U (en) * 1990-03-31 1991-12-19

Similar Documents

Publication Publication Date Title
CN100443791C (en) Valve state sensing module
RU2473829C2 (en) Device to shut off and open fluid flow and appropriate method
US4569365A (en) Device for detecting the operation of a valve
US3930518A (en) Valves
US8049638B2 (en) Sensor for detecting hydrocarbons
US3719203A (en) Safety valve for oil filled cable
US3969923A (en) Leak detector
KR101124554B1 (en) Safety valve apparatus
JPH01135973A (en) Excess flow inhibiting valve
US5111092A (en) Device for sensing reciprocated armature position
US20220034423A1 (en) Hydraulic cartridge valve with activation sensor
JPS6165978A (en) Isolating valve for instrumentation
CZ280407B6 (en) Differential fluid-pressure cylinder
KR102007609B1 (en) Apparatus for preventing overflow
US3943749A (en) Unidirectional meter prover sphere interchange and method
CN206206765U (en) A kind of contactless valve location indicating mechanism
US20230288243A1 (en) Level sensor
CN209977424U (en) Annotate nitrogen isolating valve oil leak monitoring devices
JPS594223Y2 (en) Valve open/close confirmation device
CN212564685U (en) Dual redundant pneumatic valve shutoff device
JPH09112713A (en) Gate valve
JPS5654332A (en) Gas safety device
KR200157616Y1 (en) Structure of solenoid in pressure cooker
KR101667954B1 (en) Valve for automaticaling blocking pressure leak of reset type for instrument measuring pressure
JPS6020861Y2 (en) self-sealing closure device