JPH01135972A - Pressure diaphragm break detecting device - Google Patents

Pressure diaphragm break detecting device

Info

Publication number
JPH01135972A
JPH01135972A JP62292131A JP29213187A JPH01135972A JP H01135972 A JPH01135972 A JP H01135972A JP 62292131 A JP62292131 A JP 62292131A JP 29213187 A JP29213187 A JP 29213187A JP H01135972 A JPH01135972 A JP H01135972A
Authority
JP
Japan
Prior art keywords
pressure
pressure diaphragm
optical fiber
signal
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62292131A
Other languages
Japanese (ja)
Inventor
Yoshinori Mae
前 良典
Kazuhiko Hashiura
橋浦 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP62292131A priority Critical patent/JPH01135972A/en
Publication of JPH01135972A publication Critical patent/JPH01135972A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Safety Valves (AREA)

Abstract

PURPOSE:To detect a pressure diaphragm in its break with high reliability by using an optical fiber and a photoelectric transfer element for a pressure diaphragm break detecting device. CONSTITUTION:A pressure diaphragm 3 is provided in a fluid circuit 5, and when a pressure in the fluid circuit 5 reaches a predetermined value, the pressure diaphragm 3 breaks to open the pressure of predetermined value. Mounting a cutting means 7 to a surface in an opposite side to the surface for the above described pressure diaphragm 3 to receive a fluid pressure, when the pressure diaphragm 3 breaks, the cutting means 7 cuts an optical fiber wire 21 transmitting a signal of ordinary light. As the result, a signal of light, transmitted from a light emitting element 23 through the optical fiber wire 21, is intercepted, and transmitting no conversion signal from a light receiving element 24, by disappearance of this conversion signal, a signal processing circuit 26 outputs a detection signal showing a break of the pressure diaphragm 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、大気から隔離された容器等の機器の内部圧力
が所定圧になったとき破断してその所定圧を開放する圧
力隔膜の破断を検出する圧力隔膜破断検出装置に係り、
特に光ファイバー、光電変換素子を用いた圧力隔膜破断
検出装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the rupture of a pressure diaphragm that ruptures and releases the predetermined pressure when the internal pressure of equipment such as a container isolated from the atmosphere reaches a predetermined pressure. Relating to a pressure diaphragm rupture detection device that detects
In particular, the present invention relates to a pressure diaphragm rupture detection device using optical fibers and photoelectric conversion elements.

〔従来の技術〕[Conventional technology]

従来の技術を第4図、第5図により説明する。 The conventional technique will be explained with reference to FIGS. 4 and 5.

第1図は高速増殖炉原子力発電所の蒸気発生器に圧力隔
膜が設置される例を示す。第4図において蒸気発生器1
は、ナトリウムと水が熱交換する設備であり、ナトリウ
ムは蒸気発生器1の容器la内を流れ、水は容器la内
に設けた伝熱管2の中を流れる。ここで伝熱管2が破損
した場合、高圧側の水がナトリウム中に流出し、ナトリ
ウムと水が反応し、大量の水素を放出するとともに蒸気
発生器1の容器la内の圧力が上昇する。この圧力が上
昇しである圧力を越えると、容器1aから外方に通じる
高圧側配管5に設けたダイヤフラム状の圧力隔膜3を破
断して、高圧側配管5に続く低圧側配管を通して反応生
成物収納容器4へ前記水素が導かれる。
FIG. 1 shows an example in which a pressure diaphragm is installed in a steam generator of a fast breeder reactor nuclear power plant. In Fig. 4, steam generator 1
is a facility in which sodium and water exchange heat; sodium flows in the container la of the steam generator 1, and water flows in the heat exchanger tube 2 provided in the container la. If the heat exchanger tube 2 is broken here, the water on the high pressure side flows out into the sodium, the sodium and water react, and a large amount of hydrogen is released, and the pressure in the container la of the steam generator 1 increases. When this pressure rises and exceeds a certain pressure, the diaphragm-shaped pressure diaphragm 3 provided in the high-pressure side pipe 5 leading from the container 1a to the outside is ruptured, and the reaction product is passed through the low-pressure side pipe following the high-pressure side pipe 5. The hydrogen is introduced into the storage container 4.

第5図は、圧力隔膜の破断検出の原理を示す図である。FIG. 5 is a diagram showing the principle of detecting breakage of a pressure diaphragm.

圧力側配管5の終端のフランジ5aと低圧側配管8の始
端のフランジ8aにより挾まれて圧力隔膜3が設けられ
ており、圧力隔膜3の低圧側の面にはナイフカッタ7が
取付けられ、低圧側配管8にはナイフカッタ7と適切な
距離をおいて金属ワイヤ9が管壁に設けられたコネクタ
10により、管の内径を渡して取付けられている。
A pressure diaphragm 3 is provided between a flange 5a at the end of the pressure side piping 5 and a flange 8a at the starting end of the low pressure side piping 8. A knife cutter 7 is attached to the low pressure side surface of the pressure diaphragm 3, and a knife cutter 7 is attached to the low pressure side surface. A metal wire 9 is attached to the side pipe 8 at an appropriate distance from the knife cutter 7 by a connector 10 provided on the pipe wall, across the inner diameter of the pipe.

金属ワイヤ9には、電源11および断線検出装置12が
直列接続され、通常時は金属ワイヤ9には電流が流れて
いる。ナトリウムと水の反応事故が起きると圧力隔膜3
には、圧力が印加され、所定の圧力に達すると、圧力隔
膜3が破れ、ナイフカッタ7が金属ワイヤ9を切断し、
金属ワイヤ9の電路が遮断される結果、回路電流が零と
なり、断線検出装置12が作動して、圧力隔膜3の破断
を検知し、ナトリウムと水の反応事故を検出する。
A power source 11 and a disconnection detection device 12 are connected in series to the metal wire 9, and a current normally flows through the metal wire 9. When a reaction accident between sodium and water occurs, the pressure diaphragm 3
Pressure is applied to the metal wire 9, and when a predetermined pressure is reached, the pressure diaphragm 3 is torn and the knife cutter 7 cuts the metal wire 9.
As a result of the electrical path of the metal wire 9 being interrupted, the circuit current becomes zero, and the disconnection detection device 12 is activated to detect the rupture of the pressure diaphragm 3 and detect a reaction accident between sodium and water.

なお、この種の装置として関連するものは、例えば公開
特許公報昭57−93226号が挙げられる。
Note that related devices of this type include, for example, Japanese Patent Laid-Open No. 57-93226.

(発明が解決しようとする問題点〕 上記した従来技術では、金属ワイヤ9は強靭であるため
に圧力隔膜3が破断したときに確実にナイフ7により切
断されるように、規定通りの寸法精度や硬度等を厳密に
キープし、また金属ワイヤ9を配管に設置する場合にも
曲げたりしないように注意深く作業しなければならず、
取扱性に問題があった。さらに、切断された金属ワイヤ
9が配管に接触して電路を再構成して、配管等に設置さ
れた計器に悪影響を与える等の問題があった。
(Problems to be Solved by the Invention) In the above-mentioned prior art, the metal wire 9 is strong, so it is necessary to maintain the dimensional accuracy as specified so that it can be surely cut by the knife 7 when the pressure diaphragm 3 ruptures. It is necessary to strictly maintain the hardness, etc., and to work carefully so as not to bend the metal wire 9 when installing it in the piping.
There were problems with handling. Furthermore, there is a problem that the cut metal wire 9 comes into contact with the piping and reconfigures the electric circuit, thereby adversely affecting meters installed in the piping and the like.

さらに、圧力隔壁を設ける容器等の機器には可燃物や危
険物等のプロセス流体が収納されることが多く、これら
プロセスの異常を圧力隔膜の破断検出法により検知する
場合、信頼性向上対策として、検出系を多重化する方式
が増加している。特に原子力発電所における安全系を構
成する計測系においては、検出系の多重化、独立性が要
求される。
Furthermore, equipment such as containers equipped with pressure bulkheads often contain process fluids such as combustibles and hazardous materials, and when detecting abnormalities in these processes using pressure membrane rupture detection methods, it is necessary to , methods of multiplexing detection systems are increasing. In particular, in the measurement system that constitutes the safety system in a nuclear power plant, multiplexing and independence of the detection system are required.

第6a図、第6b図は、前記第5図で説明した検出系を
3回路設け、3つの検出信号のいわゆる2−OlJT−
OF−3で、設備の緊急停止やドレーン等の安全機能を
遂行する場合の検出系の構成例を示す。第6図において
、独立性の要求から、各検出回路の電源11a、llb
、llcは互いに独立して設置されている。このため圧
力隔膜3の破断が発生した場合には、ナイフカッタ7が
金属ワイヤ9a、9b、9cを切断し、各電路が遮断さ
れ、ナトリウムと水の反応事故を検出することになる。
FIGS. 6a and 6b show that three detection systems described in FIG. 5 are provided, and the so-called 2-OlJT-
An example of the configuration of a detection system used in OF-3 to perform safety functions such as emergency shutdown and draining of equipment is shown. In FIG. 6, due to the requirement for independence, the power supplies 11a and llb of each detection circuit are
, LLC are installed independently from each other. Therefore, when the pressure diaphragm 3 breaks, the knife cutter 7 cuts the metal wires 9a, 9b, 9c, each electric circuit is cut off, and a reaction accident between sodium and water is detected.

そのためには、金属ワイヤ9a、9b。For that purpose, metal wires 9a, 9b.

9cが確実に切断され、また切断されたそれらの金属線
が混触して再び検出回路を形成しないように金属ワイヤ
9a、9b、9cを適切な位置に精度よく設置しておく
必要があり取扱性が容易とは云えなかった。
It is necessary to accurately place the metal wires 9a, 9b, and 9c in appropriate positions to ensure that wires 9c are cut and that the cut metal wires do not come into contact with each other and form a detection circuit again. I can't say it was easy.

本発明の目的は、上記の欠点を解消し、光ファイバー、
光電変換素子を用い取扱いが容易でかつ、信頼性の高い
圧力隔膜破断検出装置を提供することにある。
The object of the present invention is to eliminate the above-mentioned drawbacks and to
It is an object of the present invention to provide a pressure diaphragm rupture detection device that uses a photoelectric conversion element and is easy to handle and has high reliability.

〔問題点を解決するための手段〕[Means for solving problems]

流体の圧力が所定圧となったとき破断して所定圧を開放
する圧力隔膜の圧力隔膜破断検出装置において、一方の
面が流体の前記圧力を受け、他方の面が大気圧を受ける
前記圧力隔膜の該他方の面に取付けた切断手段と、前記
圧力隔膜が破断したときに前記切断手段により切断可能
な位置に張った光ファイバー線と、その光ファイバー線
の一端に接続した発光素子と、前記光ファイバー線の他
端に接続した受光素子と、その受光素子に接続した信号
処理回路と、前記発光素子、前記受光素子および前記信
号処理回路のそれぞれに電力を供給する電源とから構成
されていることを特徴とする圧力隔膜検出装置によって
、上記問題は解決される。
In a pressure diaphragm rupture detection device for a pressure diaphragm that ruptures to release a predetermined pressure when the pressure of a fluid reaches a predetermined pressure, one surface of the pressure diaphragm receives the pressure of the fluid and the other surface receives atmospheric pressure. a cutting means attached to the other surface of the pressure diaphragm, an optical fiber line stretched at a position where it can be cut by the cutting means when the pressure diaphragm breaks, a light emitting element connected to one end of the optical fiber line, and the optical fiber line. It is characterized by being comprised of a light receiving element connected to the other end, a signal processing circuit connected to the light receiving element, and a power source that supplies power to each of the light emitting element, the light receiving element, and the signal processing circuit. The above problem is solved by the pressure diaphragm detection device.

〔作用〕[Effect]

流体の圧力が正常な状態にある時、常に、電源はONの
状態にあり、発光素子は光信号を発信し、受光素子は光
ファイバー線を介して前記光信号を受信してその光信号
を電気信号に変換して変換信号として出力し、信号処理
回路は前記変換信号を受信している間は′出力のない状
態を維持する。
When the pressure of the fluid is normal, the power is always on, the light emitting element emits an optical signal, the light receiving element receives the optical signal via the optical fiber line, and converts the optical signal into electricity. The signal is converted into a signal and outputted as a converted signal, and the signal processing circuit maintains a state of no output while receiving the converted signal.

いま、流体回路の圧力が何んらかの原因で上昇して設定
値を越えた時、圧力隔膜は破断し、その圧力隔膜に取付
けた切断手段が光ファイバー線まで飛来してその光ファ
イバー線を切断する。その結果、発光素子から光ファイ
バー線を介して送信されていた光信号が遮断されて、受
光素子は変換信号を発信しなくなり、その変換信号の消
失によって信号処理回路は圧力隔膜の破断を示す検出信
号を出力する。
Now, when the pressure in the fluid circuit increases for some reason and exceeds the set value, the pressure diaphragm ruptures, and the cutting means attached to the pressure diaphragm flies up to the optical fiber line and cuts it. do. As a result, the optical signal that was being transmitted from the light emitting element via the optical fiber line is cut off, and the light receiving element no longer transmits the converted signal.The disappearance of the converted signal causes the signal processing circuit to send a detection signal indicating a rupture of the pressure diaphragm. Output.

〔実施例〕〔Example〕

以下に本発明の一実施例を第1図〜第3図により説明す
る。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3.

第1図は圧力隔膜の破断検出の原理図である。FIG. 1 is a diagram showing the principle of detecting rupture of a pressure diaphragm.

高圧側配管5の終端のフランジ5aと大気圧側配管8の
始端のフランジ8aに挾まれて圧力隔膜3が固定されて
おり、圧力隔膜3の大気圧側の膜面にはナイフカッタ7
が取付けられ、配管8にはナイフカッタ7と適切な距離
をおいて光ファイバー線21が管壁に設けたコネクタ2
2により管内径を渡しと取付けられている。光ファイバ
ー線21の両端には発光素子23および受光素子24が
接続されており、受光素子24には信号処理回路24が
接続されている。さらに発光素子23.受光素子24お
よび信号処理回路26のそれぞれは電源26に接続され
ている。通常、電源25はONの状態であり、発光素子
23が光信号を発信し、光ファイバー線21を介して受
光素子24がその光信号を受信してその光信号を電気信
号に変換して変換信号として出力し、信号処理回路26
はその変換信号を受信している間は出力のない状態を維
持する。
A pressure diaphragm 3 is fixed between a flange 5a at the end of the high pressure side piping 5 and a flange 8a at the starting end of the atmospheric pressure side piping 8, and a knife cutter 7 is attached to the membrane surface of the pressure diaphragm 3 on the atmospheric pressure side.
is attached to the pipe 8, and an optical fiber line 21 is connected to the connector 2 provided on the pipe wall at an appropriate distance from the knife cutter 7.
2, it is installed across the inner diameter of the pipe. A light emitting element 23 and a light receiving element 24 are connected to both ends of the optical fiber line 21, and a signal processing circuit 24 is connected to the light receiving element 24. Further, a light emitting element 23. Each of the light receiving element 24 and the signal processing circuit 26 is connected to a power source 26. Normally, the power supply 25 is in an ON state, the light emitting element 23 emits an optical signal, the light receiving element 24 receives the optical signal via the optical fiber line 21, converts the optical signal into an electrical signal, and sends a converted signal. and the signal processing circuit 26
remains without output while receiving the converted signal.

圧力隔膜3の破断時には、圧力隔膜3に取付けられたナ
イフカッタ7が光ファイバー線21を切断し、発光素子
23から光ファイバー線21を介して送信されていた光
信号が遮断されて、受光素子24は変換信号を発信しな
くなり、その変換信号の消失により信号処理回路26か
らは圧力隔膜3の破断を示す検出信号が出力される。
When the pressure diaphragm 3 breaks, the knife cutter 7 attached to the pressure diaphragm 3 cuts the optical fiber line 21, the optical signal being transmitted from the light emitting element 23 through the optical fiber line 21 is cut off, and the light receiving element 24 The conversion signal is no longer transmitted, and the signal processing circuit 26 outputs a detection signal indicating the rupture of the pressure diaphragm 3 due to the disappearance of the conversion signal.

本実施例によれば、圧力隔膜3の破断により光ファイバ
ー線21が容易に切断されて、圧力隔膜3の破断検出を
確実に行うとともに、従来の電導方式におけるような配
管内での電気回路の構成がなく配管等に取付けられた計
器への悪影響も排除できるという効果がある。
According to this embodiment, the optical fiber line 21 is easily cut due to the rupture of the pressure diaphragm 3, and the rupture of the pressure diaphragm 3 can be detected reliably. This has the effect of eliminating adverse effects on instruments installed in piping, etc.

第2a図、第2b図は前記第1図で説明した光ファイバ
ー線2発光素子、受光素子、信号処理回路および電源よ
り構成された検出系を3系統設け、3つの検出信号の2
−OUT−OF−3で設備の緊急停止やドレーン等の安
全機能を遂行する場合の検出系構成の実施例を示す。第
2図において、3つの検出系は原子力発電所の安全系へ
適用する場合の多重性、独立性を満たす必要があり、配
管路内での独立性は光ファイバー線を使用することによ
り達成される。また検出系全体については、回路、電源
とも周囲から独立しているので問題はない。
Figures 2a and 2b show three systems of detection systems each consisting of the optical fiber line 2 light emitting element, light receiving element, signal processing circuit and power supply explained in Figure 1 above.
- An example of a detection system configuration when performing safety functions such as an emergency stop of equipment or a drain at OUT-OF-3 will be shown. In Figure 2, the three detection systems must satisfy the requirements of redundancy and independence when applied to the safety system of a nuclear power plant, and independence within the pipeline is achieved by using optical fiber lines. . Furthermore, there is no problem with the entire detection system since both the circuit and the power supply are independent from the surroundings.

光ファイバ線21a〜21C2発光素子としての電気/
光度換器27a〜27C1受光素子としての光/′11
気変換器28 a 〜28 c 、電源25a〜25c
、信号処理回路26a〜26cのそれぞれからなるa、
b、cの3系統の検出系は、互いに独立構成されている
。電源25a〜25cは、電気/光度換器27a〜27
C1光/電気変換器28 a 〜28 c 、信号処理
回路268〜26Cへそれぞれ電源を供給するものであ
り、信号処理回路26a〜26cは、これらの回路のそ
れぞれと接続された論理回路29へ伝送する検出信号レ
ベルを調整する機能を有し、論理回路29は3つの検出
信号の2−OUT−〇F−3の論理判断を行う機能を有
する。
Optical fiber lines 21a to 21C2 Electricity as a light emitting element/
Light intensity converter 27a to 27C1 Light as light receiving element/'11
Air converters 28a to 28c, power supplies 25a to 25c
, a consisting of each of the signal processing circuits 26a to 26c,
The three detection systems b and c are configured independently from each other. The power supplies 25a to 25c are electricity/light intensity converters 27a to 27.
It supplies power to the C1 optical/electrical converters 28a to 28c and signal processing circuits 268 to 26C, respectively, and the signal processing circuits 26a to 26c transmit power to the logic circuit 29 connected to each of these circuits. The logic circuit 29 has a function of making a logical judgment on the three detection signals 2-OUT-○F-3.

いま、圧力隔離3が破断してナイフカッタ7が光伝送路
である光ファイバー線21a〜21cを切断した時、そ
れまで電気/光変換器27a〜27cから発信して光フ
ァイバー線21a”21cを介して光/電気変換器28
a〜28cのそれぞれに受信されていた光信号が遮断さ
れて、光/電気変換器28a〜28cは変換信号を発信
しなくなり、それらの変換信号の消失により信号処理回
路26a〜26cのそれぞれは圧力隔膜3の破断を示す
検知信号を出力する。論理回路は光ファイバー線21の
少なくとも2本が切断された場合、すなわち、少なくと
も2つの検知信号を受信した場合に指令信号を出力して
、この指令信号によって装置の緊急停止やドレーン操作
回路のインタロックや警報が行われることになる。第2
図は3系統の検出系の例を示したが、4系統の検出系に
より2−OUT−OF−4の論理演算する場合なども、
基本的には同一構成となる。
Now, when the pressure isolation 3 is ruptured and the knife cutter 7 cuts the optical fiber lines 21a to 21c, which are the optical transmission paths, the electric/optical converters 27a to 27c transmit the signals and transmit them through the optical fiber lines 21a" and 21c. Optical/electrical converter 28
The optical signals received by each of the signal processing circuits 26a to 28c are cut off, and the optical/electrical converters 28a to 28c no longer transmit converted signals, and the disappearance of these converted signals causes each of the signal processing circuits 26a to 26c to become under pressure. A detection signal indicating rupture of the diaphragm 3 is output. The logic circuit outputs a command signal when at least two of the optical fiber lines 21 are disconnected, that is, when at least two detection signals are received, and this command signal causes an emergency stop of the device and an interlock of the drain operation circuit. A warning will be issued. Second
The figure shows an example of a three-system detection system, but it is also possible to perform a logical operation of 2-OUT-OF-4 using a four-system detection system.
Basically they have the same configuration.

第3a図、第3b図は、補強材で補強された光ファイバ
ー線の例を示す断面である。光ファイバー線21は非常
に細いため断線し易い。そこで光ファイバー線21に、
銅などのナイフカッタで切り易く、かつ、所定の強度を
有するように外径や本数を調整した憩採材30を平行に
沿わせ、外被材31でおおわせる。この補強材30を設
けることにより、配管の熱変形等による不用意な断線を
防止する効果がある。
FIGS. 3a and 3b are cross-sections showing an example of an optical fiber line reinforced with a reinforcing material. Since the optical fiber line 21 is very thin, it is easily broken. Therefore, to the optical fiber line 21,
Relief material 30, whose outer diameter and number are adjusted so that it is easy to cut with a knife cutter made of copper or the like and has a predetermined strength, is laid out in parallel and covered with an outer covering material 31. Providing this reinforcing material 30 has the effect of preventing inadvertent disconnection due to thermal deformation of the piping or the like.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、流体回路に設けられた
圧力隔膜が破断した時に、圧力隔膜に取付けられた切断
手段が、その切断手段の切断可能な距離に設けられた通
常光信号を伝送している光ファイバー線を切断して、そ
の光信号の遮断を検知することにより、圧力隔膜の破断
を検出する構成としたことから、光ファイバー線が一旦
切断された後は、この光ファイバー線が流体回路を構成
する部品、例えば鋼管、あるいは流体に接触していても
再び光伝送路を形成することがないので、極めて高い信
頼性をもって圧力隔膜の破断を検出でき、また、光信号
を用いているために安全性が高く、流体固設に設けた計
器にも悪影響を及ぼさないという効果がある。
As explained above, in the present invention, when the pressure diaphragm provided in the fluid circuit is ruptured, the cutting means attached to the pressure diaphragm transmits a normal optical signal provided at a distance that can be cut by the cutting means. By cutting the optical fiber line and detecting the interruption of the optical signal, the rupture of the pressure diaphragm is detected. Components that make up the pressure diaphragm, such as steel pipes, or even if they come into contact with a fluid, do not form an optical transmission path again, so it is possible to detect a rupture of a pressure diaphragm with extremely high reliability, and because it uses optical signals, It has the advantage of being highly safe and having no adverse effect on instruments installed in fixed fluid installations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の圧力隔膜の破断検出の原理同第2図は
第1図に示す検出系を3系統設けた圧力隔膜破断検出装
置の実施例を示す図、第3図は補強光ファイバー線の断
面図、第4図は圧力隔膜を設けた蒸気発生器を示す図、
第5図は従来の圧力隔膜の破断検出の原理図、第6図は
第5図に示す検出系を3系統設けた圧力隔膜破断検出装
置を示す図である。 3・・・圧力隔膜、5(8)・・・流体回路、7・・・
切断手段、21・・・光ファイバー線、23・・・発光
素子。 24・・・受光素子、25・・・電源、26・・・信号
処理世路。
Fig. 1 shows the principle of pressure diaphragm rupture detection according to the present invention. Fig. 2 shows an embodiment of a pressure diaphragm rupture detection device equipped with three detection systems shown in Fig. 1. Fig. 3 shows a reinforced optical fiber line. 4 is a diagram showing a steam generator equipped with a pressure diaphragm,
FIG. 5 is a diagram showing the principle of conventional pressure diaphragm rupture detection, and FIG. 6 is a diagram showing a pressure diaphragm rupture detection apparatus having three detection systems shown in FIG. 5. 3...Pressure diaphragm, 5(8)...Fluid circuit, 7...
Cutting means, 21... optical fiber line, 23... light emitting element. 24... Light receiving element, 25... Power supply, 26... Signal processing circuit.

Claims (1)

【特許請求の範囲】 1、流体の圧力が所定圧となつたとき破断して該所定圧
を開放する圧力隔膜の圧力隔膜破断検出装置において、
一方の面が流体の前記圧力を受け、他方の面が大気圧を
受ける前記圧力隔膜の該他方の面に取付けた切断手段と
、前記圧力隔膜が破断したときに前記切断手段により切
断可能な位置に張つた光ファイバー線と、その光ファイ
バー線の一端に接続した発光素子と、前記光ファイバー
線の他端に接続した受光素子と、その受光素子に接続し
た信号処理回路と、前記発光素子、前記受光素子および
前記信号処理回路のそれぞれに電力を供給する電源とか
ら構成されていることを特徴とする圧力隔膜破断検出装
置。 2、前記光ファイバー線が補強線とともに被覆されてい
ることを特徴とする特許請求の範囲第1項の圧力隔膜破
断検出装置。 3、前記信号処理回路の出力信号が前記流体に関連する
プロセス制御のインタロックや警報の発令に利用される
ことを特徴とする特許請求の範囲第1項又は第2項記載
の圧力隔膜破断検出装置。
[Scope of Claims] 1. A pressure diaphragm rupture detection device for a pressure diaphragm that ruptures to release the predetermined pressure when the pressure of a fluid reaches a predetermined pressure,
a cutting means attached to the other surface of the pressure diaphragm, one surface of which receives the pressure of the fluid and the other surface of which receives atmospheric pressure, and a position at which the cutting can be performed by the cutting means when the pressure diaphragm is ruptured; a light emitting element connected to one end of the optical fiber line, a light receiving element connected to the other end of the optical fiber line, a signal processing circuit connected to the light receiving element, the light emitting element, the light receiving element and a power source that supplies power to each of the signal processing circuits. 2. The pressure diaphragm rupture detection device according to claim 1, wherein the optical fiber line is covered with a reinforcing wire. 3. Pressure diaphragm rupture detection according to claim 1 or 2, wherein the output signal of the signal processing circuit is used for interlocking process control or issuing an alarm related to the fluid. Device.
JP62292131A 1987-11-20 1987-11-20 Pressure diaphragm break detecting device Pending JPH01135972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62292131A JPH01135972A (en) 1987-11-20 1987-11-20 Pressure diaphragm break detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62292131A JPH01135972A (en) 1987-11-20 1987-11-20 Pressure diaphragm break detecting device

Publications (1)

Publication Number Publication Date
JPH01135972A true JPH01135972A (en) 1989-05-29

Family

ID=17777938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62292131A Pending JPH01135972A (en) 1987-11-20 1987-11-20 Pressure diaphragm break detecting device

Country Status (1)

Country Link
JP (1) JPH01135972A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015522763A (en) * 2012-04-03 2015-08-06 ファイク・コーポレーションFike Corporation Remote operation of safety devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015522763A (en) * 2012-04-03 2015-08-06 ファイク・コーポレーションFike Corporation Remote operation of safety devices

Similar Documents

Publication Publication Date Title
US4775855A (en) Hose leak detectors
WO2010002951A2 (en) Distributed optical fiber detection system
US20040177891A1 (en) Leak detection system and method for offshore hose lines
CN216207196U (en) Dynamic pressure sensor with redundancy function
JPH01135972A (en) Pressure diaphragm break detecting device
JP2008193327A (en) Optical power supply information transmitter
CN213585776U (en) Ship-shore connection system for FSRU
JPS58187829A (en) Pipeline monitoring system
CZ333694A3 (en) Method and probe for measuring of flow
EP0092323A1 (en) A bursting disc failure indicator
CN206259002U (en) A kind of redundant looped network circuit structure of hazardous gas detection system
CN111228683A (en) Combustible gas inerting fire extinguishing system of offshore floating reactor cabin
GB2095825A (en) Profile change sensor
CN219713095U (en) Oil gas pipeline leakage monitoring device
CN217057176U (en) Hydrogen-containing natural gas pipeline leakage monitoring and positioning system
CN218010778U (en) Fire main pressure sensor based on ship damage pipe monitoring
KR20140025752A (en) Fuel cell system
EP0064807A2 (en) Improvements in or relating to profile change sensors
US20230408306A1 (en) Sensor device, fault diagnosis system, and method of installing sensor device
CN216043916U (en) Turbine anti-fuel oil pressure protection anti-misoperation system
CN112249227B (en) Ship shore and ship connecting system and cargo emergency cutting-off method thereof
CN220983998U (en) Landslide early warning system for open pit coal mine
CN114046925A (en) High-temperature-resistant dynamic pressure sensor with triple redundancy function
CN211262313U (en) Water supply pipeline joint for temperature and water pressure detection
CN214318921U (en) Temperature sensing fire extinguisher and self-starting extinguishing device