JPH01135838A - Fiber-reinforced resin molding material - Google Patents

Fiber-reinforced resin molding material

Info

Publication number
JPH01135838A
JPH01135838A JP29195087A JP29195087A JPH01135838A JP H01135838 A JPH01135838 A JP H01135838A JP 29195087 A JP29195087 A JP 29195087A JP 29195087 A JP29195087 A JP 29195087A JP H01135838 A JPH01135838 A JP H01135838A
Authority
JP
Japan
Prior art keywords
molding material
resin
thickness
fiber
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29195087A
Other languages
Japanese (ja)
Inventor
Chikau Sonoo
園尾 矢
Yasutaka Sakumoto
作元 泰隆
Sadao Kawashima
川島 貞夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP29195087A priority Critical patent/JPH01135838A/en
Priority to US07/272,414 priority patent/US4997693A/en
Priority to EP19880119153 priority patent/EP0316922A3/en
Priority to JP63290205A priority patent/JPH0289626A/en
Publication of JPH01135838A publication Critical patent/JPH01135838A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)

Abstract

PURPOSE:To provide the present molding material, extremely high in tensile strength in the longer direction, outstanding in transparency, useful as a transparent plate, etc., having such a construction that continuous filaments paralleled in the longer direction are incorporated, as the reinforcing material, in a synthetic resin as the matrix. CONSTITUTION:The objective molding material <=0.2mm (pref. 0.2-0.1mm) thick with the ratio: width/thickness = 25-200, having such a construction that continuous filaments paralleled in the longer direction are incorporated, as the reinforcing material, in a synthetic resin as the matrix. Preferably, said continuous filaments is a glass fiber roving, while said synthetic resin a thermoplastic one.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は連続繊維を補強材とし合成樹脂が含浸付層溶融
されてなる繊維補強樹脂成形材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a fiber-reinforced resin molding material made by using continuous fibers as reinforcing materials and melting a layer of impregnated synthetic resin.

[従来の技術] 繊維補強樹脂からなる成形材料は種々のものが知られて
いる。かかる成形材料において、代表的なものとしてガ
ラス繊維を含有する熱硬化性樹脂からなるFRPベレッ
ト、あるいはBMC,SMCの如きプリプレグが、また
、ガラス繊維を含有する熱可塑性樹脂からなるF RT
 Pペレット、シート、テープなど各種の形態のものが
実用に供されている。
[Prior Art] Various molding materials made of fiber-reinforced resins are known. Typical examples of such molding materials include FRP pellets made of thermosetting resin containing glass fibers, prepregs such as BMC and SMC, and FRT made of thermoplastic resin containing glass fibers.
Various forms such as P pellets, sheets, and tapes are in practical use.

上+ic!の如き繊維補強樹脂からなる成形材料におい
て含有されている繊維は織布であるものもあるが、多く
は連続ロービング繊維を切断したヂョップドストランド
が使用されている。したがって、繊維は連続性がなく、
しっ)も不均質となり易(、故に成形することによって
得られる成形物は充分な強度を期待することができない
という問題点がある。さらに成形物中における繊維に対
する合成樹脂の含浸は必ずしも充分でなく、特に熱可塑
性樹脂を用いる場合、合成樹脂が透明性を有するもので
あっても不透明なものとなる。
Top+ic! Although some of the fibers contained in molding materials made of fiber-reinforced resins are woven fabrics, most use chopped strands obtained by cutting continuous roving fibers. Therefore, the fibers are not continuous;
There is also the problem that the molded product obtained by molding cannot be expected to have sufficient strength.Furthermore, the impregnation of the synthetic resin into the fibers in the molded product is not necessarily sufficient. In particular, when a thermoplastic resin is used, even if the synthetic resin is transparent, it will be opaque.

一方、連続した繊維として1″rlI記のような連続ロ
ービング繊維に合成樹脂の重合体を含むエマルジョンを
含浸させた後、乾燥し、さらに加熱しながら圧縮加工す
ることによって繊維が一定方向に引き揃えられた厚さ 
0.3〜I mmの薄いシート状あるいはテープ状の繊
維補強樹脂成形材料が実用に供されている。かかる材料
の製造方法として、例えばガラス繊維のロービングを塩
化ビニール樹脂の重合体を含むエマルジョンに含浸して
乾燥せしめ、次いで加熱するとともに圧縮して薄板状に
するシートの製造方法が特公昭47−13218号公報
によって公知となっている。また熱可塑性樹脂を溶融状
態で押出しヘッドから張力を加えた連続繊維束中に流入
させる溶融押出し法によって得られる樹脂含有リボン状
体とその製造方法が特開昭61−40113号公報に開
示されている。
On the other hand, continuous roving fibers such as those shown in 1″rlI are impregnated with an emulsion containing a synthetic resin polymer, dried, and then compressed while heating, so that the fibers are aligned in a certain direction. thickness
Fiber-reinforced resin molding materials in the form of thin sheets or tapes of 0.3 to I mm are in practical use. As a method for producing such a material, for example, a method for producing a sheet is disclosed in Japanese Patent Publication No. 47-13218, in which glass fiber roving is impregnated with an emulsion containing a vinyl chloride resin polymer, dried, and then heated and compressed into a thin plate. It is publicly known by the publication No. Further, JP-A-61-40113 discloses a resin-containing ribbon-shaped body obtained by a melt extrusion method in which a thermoplastic resin is flowed in a molten state from an extrusion head into a continuous fiber bundle under tension, and a method for manufacturing the same. There is.

「発明の解決しようとする問題点] 前記の繊維が一定方向に引き揃えられたシート状あるい
はテープ状の繊維補強樹脂成形材料はjllにロービン
グ繊維の表面に樹脂が付着されているという程度のもの
であり、樹脂は容易に剥離、脱落してしまい、樹脂の付
着されない部分を生ずる。したがって、上記の材料を用
いて成形物を得る場合、加熱圧縮工程において、樹脂の
繊維間への含浸が充分行なわれず、樹脂が不均一に付着
されていることとあいまって均質な樹脂層をイイする成
形物を得ることは困難であった。また成形材料として薄
板状あるいはテープ状の繊維補強樹脂成形材料を得る手
段として、例えば樹脂含浸ロービング繊維を圧縮ロール
間で加圧下に押し拡げる手段も採用されるが、かかる手
段では繊維の切断やケバ立ちを生じさせ、結果として成
形物の強度を低下させることになる。したがって連続繊
維が一定方向に引き揃えられた繊維補強樹脂成形材料と
してその厚さはおのずと限定されてしまい 0.2mm
以下のように薄いものは現存しない。
"Problems to be Solved by the Invention" The sheet-like or tape-like fiber-reinforced resin molding material in which the fibers are aligned in a certain direction is such that the resin is attached to the surface of the roving fibers. The resin easily peels off and falls off, resulting in areas where the resin is not attached. Therefore, when obtaining molded products using the above materials, it is necessary to ensure that the resin is sufficiently impregnated between the fibers during the heating compression process. Coupled with the fact that the resin is not uniformly applied, it is difficult to obtain a molded product with a homogeneous resin layer.Furthermore, it has been difficult to obtain a molded product with a homogeneous resin layer.Furthermore, it has been difficult to obtain a molded product with a homogeneous resin layer. For example, a method of spreading the resin-impregnated roving fibers under pressure between compression rolls is also adopted as a means of obtaining the resin, but such a method may cause the fibers to break or become fluffy, resulting in a decrease in the strength of the molded product. Therefore, as a fiber-reinforced resin molding material in which continuous fibers are aligned in a certain direction, its thickness is naturally limited to 0.2 mm.
There are no thin ones like the one below.

さらに、溶融押出し法によって得られる樹脂含有リボン
状体も、その製造に際して溶融された樹脂の高い粘性に
より繊維束中での流動抵抗の不均一性及び繊維表面の極
性などが原因となって繊維間への樹脂の流入は必ずしも
充分ではなく、リボン状体の繊維束の周辺のみに偏在す
る傾向が認められる。したがって成形材料として、その
厚さが薄く、しかも樹脂が充分に含浸されてなるものと
いうには程遠いものである。
Furthermore, in the case of resin-containing ribbon-like bodies obtained by melt extrusion, the high viscosity of the melted resin during production causes uneven flow resistance within the fiber bundle and polarity of the fiber surface. The flow of resin into the fiber bundle is not necessarily sufficient, and there is a tendency for the resin to be unevenly distributed only around the fiber bundles of the ribbon-like body. Therefore, as a molding material, it is far from being thin and sufficiently impregnated with resin.

而して、繊維補強樹脂成形材料において、繊維が連続し
て一定方向に引き揃えられてなり、厚さは極めて薄く、
しかも樹脂量の多いものにおいては、それを成形してな
る成形物は繊維補強材が含有されていても透明を有して
いて、それらを例えば交互に配列して積層成形した成形
物は強度が著しく向上されるなどの利点なイ1している
ことが認められる。かかる成形材料としてテープ状物の
製造方法についての発明は即ち、本発明者等の発明とし
て出願されている(特願昭62−156477号)。こ
のテープ状物の製造方法においては成形材料としてのテ
ープ厚さ及び幅/厚さの比は特に限定されてはいないが
、ロービングを開東展開することによって厚さの薄いも
のの製造が可能であった。
Therefore, in fiber-reinforced resin molding materials, the fibers are continuously aligned in a certain direction, and the thickness is extremely thin.
Moreover, in the case of products containing a large amount of resin, the molded product obtained by molding the resin remains transparent even if it contains fiber reinforcing materials, and the molded product obtained by laminating and molding these materials by arranging them alternately has a high strength. It is recognized that there are some advantages such as significantly improved performance. An invention relating to a method for manufacturing a tape-like material as a molding material has been filed as an invention by the present inventors (Japanese Patent Application No. 156477/1982). In this method for producing a tape-like product, the thickness of the tape as a molding material and the width/thickness ratio are not particularly limited, but it is possible to produce a thin product by expanding the roving. Ta.

本発明者等は上記の製造方法によって製造されるテープ
状の成形材料としての好適な形状寸法について検討した
。その結果、従来より求められていたi、すい成形材料
において、その厚さと、幅/厚さの比において最も好適
な範囲を見い出し本発明を完成するに至ったものである
The present inventors studied suitable shapes and dimensions for a tape-shaped molding material manufactured by the above manufacturing method. As a result, we have found the most suitable ranges for the thickness and width/thickness ratio of the conventionally sought after molding material, and have completed the present invention.

したがって本発明は従来の問題点を解決した繊維補強樹
脂成形材料として、強く求められていた種々の利点をイ
■する特定厚さと幅/厚さの比を有する成形材料を新規
に提供することを目的とするものである。
Therefore, the present invention aims to provide a new fiber-reinforced resin molding material that solves the conventional problems and has a specific thickness and width/thickness ratio that provides various strongly desired advantages. This is the purpose.

[問題点を解決するための手段] 即ち、本発明は連続繊維を補強材とし合成樹脂が含浸付
着されてなる繊維補強樹脂成形材料において、連続繊維
が長さ方向に引き揃えられてなり、かつ該樹脂成形材料
の厚さは0.2mm以下であって、幅/厚さの比が25
〜200であることを特徴とする繊維補強樹脂成形材料
を提供するものである。
[Means for Solving the Problems] That is, the present invention provides a fiber-reinforced resin molding material in which continuous fibers are used as reinforcing materials and a synthetic resin is impregnated and adhered thereto, in which the continuous fibers are aligned in the longitudinal direction, and The thickness of the resin molding material is 0.2 mm or less, and the width/thickness ratio is 25.
The present invention provides a fiber-reinforced resin molding material characterized in that the fiber-reinforced resin molding material has a molecular weight of 200 to 200.

本発明において樹脂中に含何される補強材としての連続
繊維はロービングを出発材料としていて、例えば、ガラ
ス繊維、炭素繊維、セラミック繊維、金属繊維などに代
表される無機繊維あるいはポリアミド繊維、ポリイミド
繊維、ポリアミドイミド繊維などに代表される有機繊維
などの繊維(フィラメント)が集束剤によって集束され
たものである。ここで本発明の成形材料及び該成形材料
を用いた成形物は透明性を有するという点においてガラ
ス繊維ロービングが用いられなるのが好適である。
In the present invention, the continuous fibers as a reinforcing material contained in the resin are made from roving, and include inorganic fibers such as glass fibers, carbon fibers, ceramic fibers, metal fibers, polyamide fibers, and polyimide fibers. Fibers (filaments) such as organic fibers such as polyamide-imide fibers are bundled with a binding agent. Here, it is preferable to use glass fiber roving in that the molding material of the present invention and the molded product using the molding material have transparency.

ロービングは通常微小径の繊維(フィラメント)の複数
本が集束剤によって集束されてなるものであるが、例え
ば、ガラス繊維ロービングの通常品として径約2mmの
ものは、径約12μmのフィラメントが4500本程度
集束されてなるものである。使用されるロービングの径
が太いものであると、成形材料の製造方法における開東
展開で本発明の厚さ及び幅/厚さの比のものが得られず
、しかも樹脂が繊維中に充分含浸されず、不均一なもの
となる。
Rovings are usually made up of multiple fibers (filaments) with a fine diameter bound together by a binding agent. For example, a typical glass fiber roving with a diameter of about 2 mm has 4,500 filaments with a diameter of about 12 μm. It is something that is focused to some degree. If the diameter of the roving used is large, the thickness and width/thickness ratio of the present invention cannot be obtained in the Kaito expansion of the molding material manufacturing method, and the resin may not be sufficiently impregnated into the fibers. The result will be uneven.

本発明の成形材料における合成繊維は熱可塑性樹脂であ
る。製造方法において連続繊維としてのロービングに樹
脂をエマルジョンとして含浸させることからして、エマ
ルジョンになり得て、好ましくは透明性を有する樹脂で
あるのが望ましい。かかる点を考慮して、例えば、塩化
ビニル、塩化ビニリデン、酢酸ビニル、アクリル酸エス
テル、メタクリル酸エステル、スチレン、アクリロニト
リル、エチレン、プロピレン、含フッ素糸jii量体な
どのjド独重合体、更に他の共!′n合可能な単量体と
共に共重合して得られる共重合体などである。そして、
これらのうち特に塩化ビニルを単独に、あるいは塩化ビ
ニルの性質を低下させることのない程度の量の酢酸ビニ
ル、塩化ビニリデン、アクリル酸エステル、メタクリル
酸エステル、アクリロニトリル、マレイン酸無水物、マ
レイン酸エステルなどと共に小金して得られる塩化ビニ
ル系の共重合体など繊維に含浸し難いものとして知られ
ているものが使用されていてもよい。尚、当然のことと
して熱可塑性樹脂であって、不透明性のもの、あるいは
容色されたものであってもよいことは勿論である。成形
材料としての樹脂量は、多い程好適であるが、いわゆる
イグニッション・ロス(Ig 1oss )として30
%以上であるのが望ましい。
The synthetic fiber in the molding material of the present invention is a thermoplastic resin. Since the roving as a continuous fiber is impregnated with resin in the form of an emulsion in the manufacturing method, it is desirable that the resin is capable of forming an emulsion and preferably has transparency. In consideration of this point, for example, vinyl chloride, vinylidene chloride, vinyl acetate, acrylic ester, methacrylic ester, styrene, acrylonitrile, ethylene, propylene, j-domopolymers such as fluorine-containing yarn jiimer, and others. Together! These include copolymers obtained by copolymerizing with monomers that can be polymerized. and,
Among these, vinyl chloride alone, or vinyl acetate, vinylidene chloride, acrylic ester, methacrylic ester, acrylonitrile, maleic anhydride, maleic ester, etc. in an amount that does not deteriorate the properties of vinyl chloride, etc. In addition, materials known to be difficult to impregnate into fibers, such as a vinyl chloride copolymer obtained by Kogane Co., Ltd., may also be used. It goes without saying that the thermoplastic resin may be opaque or colored. The amount of resin used as a molding material is preferably as large as possible, but the so-called ignition loss (Ig 1oss) is 30
% or more is desirable.

本発明の繊維補強樹脂成形材料は前記の如く、本発明者
等によって発明された繊維補強樹脂テープの製造方法に
したがって製造される。
As described above, the fiber-reinforced resin molding material of the present invention is manufactured according to the method for manufacturing a fiber-reinforced resin tape invented by the present inventors.

成形材料としての厚さ及び幅/厚さの比を本発明の範囲
とするためにはロービングを樹脂のエマルシコンに含浸
せしめた後の開東展開においてその条件であるロービン
グに加える引張応力を、得られる成形物の所望の厚さ及
び幅乙厚さの比となるように調節することによって行な
われる。かかる開束展開によってロービングはテープ状
に延べ拡げられ、フィラメントはその長さ方向に引き揃
えられる。
In order to keep the thickness and width/thickness ratio of the molding material within the range of the present invention, the tensile stress applied to the roving, which is the condition for Kaito expansion after impregnating the roving with a resin emulsion, must be obtained. This is done by adjusting the desired thickness of the molded product and the ratio of width to thickness. By such unbundling and expansion, the roving is expanded into a tape-like shape, and the filaments are aligned in the length direction.

而して、通常の1本のロービングの開東展開において、
例えば、径12μmのフィラメントが3000本集束集
札てなる径が2mmφのものであるとロービングの引張
応力を適度に調整して開束展開することによって厚さ約
0.1mm、幅約l Ommの幅/厚さ比が 100な
るテープ状の成形材料が得られる。
Therefore, in the normal Kaito expansion of one roving,
For example, if 3,000 filaments with a diameter of 12 μm are bundled together and the diameter is 2 mmφ, by appropriately adjusting the tensile stress of the roving and unfolding the filament, the thickness will be about 0.1 mm and the width will be about 1 Omm. A tape-shaped molding material having a width/thickness ratio of 100 is obtained.

ここで本発明の成形材料は厚さ0.2mm以下。Here, the molding material of the present invention has a thickness of 0.2 mm or less.

幅/厚さの比が25〜200とされるが、25以下の範
囲では樹脂量が少なく、しかも不均一なものとなり易く
、これを用いてなる成形物は透明性に劣り、特にそれを
成形材料としてなる成形物は強度の低いものとなる。一
方、200を超える範囲は実用化が困難である。例えば
本発明による上記の厚さ約0.1mm、幅/厚さの比が
 100である幅20mmのものは、その断面調査にお
いてフィラメントは厚さ方向に約5本、幅方向に約50
0本がほぼ均一に配列されていて樹脂がフィラメント間
に密に満たされている。しかも透明性を有していて、こ
れを用いた成形物の強度は充分高められている。一方、
例えば同様なロービングを使用したとしても厚さ 0.
4mmで幅/厚さの比が20である幅が8mmのものは
フィラメントが厚さ方向において偏在が著しく、樹脂は
フィラメント間に充分病たされることなく、極めて不均
質で、しかも透明性にも劣っている。また、厚さが0.
1mm以下と極めて薄いものであるとフィルム状の成形
条件となり、扱い難く繊維が含有されていても強化材と
してイT効に作用することなく成形材料として不適当な
ものとなる。これらは実験的な事実に基づいたものであ
り、これらによって成形材料として好適な厚さ及び幅/
厚さの比が決定されたものである。実施例において更に
具体的に明らかとされる。
The width/thickness ratio is said to be 25 to 200, but if it is less than 25, the amount of resin is small and tends to be non-uniform, and molded products made using this have poor transparency and are particularly difficult to mold. The molded material used as the material has low strength. On the other hand, a range exceeding 200 is difficult to put into practical use. For example, in the case of the above-mentioned film according to the present invention, which has a thickness of about 0.1 mm and a width/thickness ratio of 100 and a width of 20 mm, a cross-sectional examination shows that there are about 5 filaments in the thickness direction and about 50 filaments in the width direction.
The filaments are arranged almost uniformly, and the resin is densely filled between the filaments. Moreover, it has transparency, and the strength of molded products made using it is sufficiently increased. on the other hand,
For example, even if similar rovings are used, the thickness is 0.
When the width is 4 mm and the width/thickness ratio is 20, the filaments are extremely unevenly distributed in the thickness direction, and the resin is not sufficiently affected between the filaments, is extremely heterogeneous, and is not transparent. is also inferior. Also, the thickness is 0.
If it is extremely thin, such as 1 mm or less, the molding conditions will be film-like, making it difficult to handle, and even if it contains fibers, it will not work as a reinforcing material, making it unsuitable as a molding material. These are based on experimental facts, and based on these, the suitable thickness and width /
The thickness ratio has been determined. This will be made clearer in more detail in the Examples.

補強材としてのロービングの繊維(フィラメント)が一
定方向に引き揃えられて樹脂中に含有され、特定の厚さ
及び幅/厚さの比よりなる本発明の繊維補強樹脂成形材
料は、次のようにして成形物とされる。例えば一定の長
さに裁断して、その複数本を並列に配して、その上下面
に同種あるいは異種の樹脂よりなる平板を載置して加圧
加熱成形することにより繊維が一定方向に揃えられた成
形物とすることができる。また、他の例として、一定長
さに裁断したものを縦横クロスに配列して同様に成形す
ることによって強度の高められた成形物とすることもで
きる。特に成形材料としての応用において、その配列を
自由に選択すること、あるいは織物状とすることによっ
て強度が高められ、しかも美観的に優れた成形物とする
ことなど、広い応用が期待されるものである。
The fiber-reinforced resin molding material of the present invention, in which roving fibers (filaments) as a reinforcing material are aligned in a certain direction and contained in the resin, and has a specific thickness and width/thickness ratio, is as follows. It is made into molded products. For example, the fibers are aligned in a certain direction by cutting them to a certain length, arranging them in parallel, placing flat plates made of the same or different types of resin on the top and bottom surfaces, and pressurizing and heating forming them. It can be made into a molded article. In addition, as another example, a molded product with increased strength can be obtained by cutting pieces to a certain length and arranging them in a vertical and horizontal manner and molding them in the same manner. In particular, in its application as a molding material, it is expected to have a wide range of applications, such as by freely selecting its arrangement or by making it into a woven fabric, which can increase strength and create molded products with excellent aesthetics. be.

[実施例] 実施例1〜7 径が約13μmのガラス繊維(フィラメント)を約45
00本実束してなるガラス繊維ロービングに塩化ビニル
樹脂のエマルジョンを含浸せしめて第1表に示される厚
さとは幅とを有する成形材料が得られるように開東展開
におけるロービングの引張応力を調整して開束展開した
後、加熱処理して塩化ビニル樹脂中に補強材としてのガ
ラス繊維が含有される第1表に示される厚さと幅とを有
するテープ状の成形材料を得た。
[Example] Examples 1 to 7 Glass fiber (filament) with a diameter of approximately 13 μm was
The tensile stress of the roving during Kaito expansion was adjusted so that a molding material having the thickness and width shown in Table 1 was obtained by impregnating a glass fiber roving made of 00 fibers in a bundle with a vinyl chloride resin emulsion. After opening and developing the bundle, heat treatment was performed to obtain a tape-shaped molding material containing glass fiber as a reinforcing material in the vinyl chloride resin and having the thickness and width shown in Table 1.

得られた成形材料の形状(厚さ、幅、幅/厚さの比)測
定、断面の拡大鏡によるフィラメント調査、Ig 1o
ss測定、透明性調査及びその長さ方向の引張強度測定
を行ない、その結果を第1表に示す。
Measurement of the shape (thickness, width, width/thickness ratio) of the obtained molding material, investigation of the filament using a cross-sectional magnifying glass, Ig 1o
ss measurement, transparency investigation, and tensile strength measurement in the longitudinal direction were carried out, and the results are shown in Table 1.

比1咬例1〜2 実施例と同様にして開束展開におけるロービングの引張
応力を第1表に示す厚さと幅を有する成形材料の得られ
るように調整した他は実施例と同様にして塩化ビニル樹
脂中に補強材としてのガラス繊維が含イ了される第1表
に示される厚さと幅とを有するテープ状の成形材料を得
た。
Ratio 1 Bite Examples 1 to 2 Chloride was prepared in the same manner as in the example except that the tensile stress of the roving in the opening of the bundle was adjusted to obtain a molding material having the thickness and width shown in Table 1. A tape-shaped molding material containing glass fiber as a reinforcing material in a vinyl resin and having the thickness and width shown in Table 1 was obtained.

これらの形状、特性などを実施例と同様に調査及び測定
して、それらの結果を第1表に示す。
Their shapes, properties, etc. were investigated and measured in the same manner as in the Examples, and the results are shown in Table 1.

第1表 実施例8〜10 実施例1.4及び7における塩化ビニル樹脂エマルジョ
ンに代えて、塩化ビニル−アクリル酸エステルの具申合
体(塩化ビニル/アクリル酸エステル: 95/ 5 
)を乳化剤にて乳化混合してなるエマルジョンを用いた
他は上記実施例と同様にして第2表に示される厚さと幅
とを有するテープ状の成形材料を得た。
Table 1 Examples 8 to 10 Instead of the vinyl chloride resin emulsion in Examples 1.4 and 7, a composite of vinyl chloride and acrylic ester (vinyl chloride/acrylic ester: 95/5) was used.
A tape-shaped molding material having the thickness and width shown in Table 2 was obtained in the same manner as in the above Example, except that an emulsion obtained by emulsifying and mixing ) with an emulsifier was used.

この成形材料の形状、特性などを前記実施例と同様に調
査及び測定して、その結果を第2表に示す。
The shape, properties, etc. of this molding material were investigated and measured in the same manner as in the above Examples, and the results are shown in Table 2.

実施例11〜13 実施例1.4及び7における塩化ビニル樹脂エマルジョ
ンに代えて、メタクリル酸メチルを乳化重合して得られ
た重合体(固形分48%)を含むラテックスを乳化剤に
よって調整したエマルシコンを用いた他は上記実施例と
同様にして第2表に示される厚さと幅とを有するテープ
状の成形材料を得た。
Examples 11 to 13 Instead of the vinyl chloride resin emulsion in Examples 1.4 and 7, an emulsicon prepared by using an emulsifier to prepare a latex containing a polymer (solid content 48%) obtained by emulsion polymerization of methyl methacrylate was used. A tape-shaped molding material having the thickness and width shown in Table 2 was obtained in the same manner as in the above Example except that the material was used.

この成形材料の形状、特性などを前記実施例と同様に調
査及び測定して、その結果を第2表に示す。
The shape, properties, etc. of this molding material were investigated and measured in the same manner as in the above Examples, and the results are shown in Table 2.

第2表 実施例I4 実施例4にて得られたテープ状の成形材料を用い、長さ
方向に揃えてl Ommの間隔を保って12木を並列配
置し、その上に30X 30mmの厚さ 0.1mmの
塩化ビニル樹脂板を載置して加熱するとともに15kg
/mm2の圧力を加えて成形し、厚さ約0、2mmのガ
ラス繊維含有透明積層板を得た。このようにして成形さ
れた積層板について、物性として繊維の長さ方向の引張
強度、曲げ強度、曲げ弾性率を測定した。
Table 2 Example I4 Using the tape-shaped molding material obtained in Example 4, 12 pieces of wood were arranged in parallel in the length direction with a spacing of 1 Omm, and on top of them 30 x 30 mm thick. A 0.1 mm vinyl chloride resin plate is placed and heated, and a 15 kg
A glass fiber-containing transparent laminate having a thickness of about 0.2 mm was obtained by applying a pressure of /mm2. The physical properties of the thus formed laminate were measured for tensile strength, bending strength, and bending elastic modulus in the longitudinal direction of the fibers.

これらの物性測定結果を第3表に示す。The results of these physical property measurements are shown in Table 3.

実施例15〜16 実施例9及び12にて得られたテープ状の成形材料を用
い、長さ方向に揃えてl Ommの間隔を保って12本
を並列配置し、その上に3QX 30mmの厚さ2mm
のポリメチルクリレート板を載置して加熱するとともに
20kg/mm2の圧力を加えて成形し、厚さ約2mm
のガラス繊維含有透明積層板を得た。このようにして成
形された積層板について実施例14と同様にして物性を
測定した。
Examples 15 to 16 Using the tape-shaped molding materials obtained in Examples 9 and 12, 12 tapes were arranged in parallel in the length direction with an interval of 1 Omm, and a 3Q x 30 mm thick film was placed on top of the tape-shaped molding materials obtained in Examples 9 and 12. 2mm
A polymethyl acrylate plate was placed on the plate, heated and molded by applying a pressure of 20 kg/mm2 to a thickness of approximately 2 mm.
A glass fiber-containing transparent laminate was obtained. The physical properties of the thus formed laminate were measured in the same manner as in Example 14.

その結果を第3表に示す。The results are shown in Table 3.

第3表 実施例17 実施例4にて得られたテープ状の成形材料を用い、縦と
横に交互に編み、この編物を5枚重ねて圧縮成形にて積
層成形して方向性の殆どない厚さ約1mm、30X 3
0mmのガラス繊維含有積層板な得た。
Table 3 Example 17 The tape-shaped molding material obtained in Example 4 was knitted alternately vertically and horizontally, and five pieces of this knitted fabric were stacked and laminated by compression molding to have almost no directionality. Approximately 1mm thick, 30X3
A glass fiber-containing laminate with a thickness of 0 mm was obtained.

この積層板の物性を測定したところ、引張強度19.1
1〜24.8kg/mm2、曲げ強度22.2〜25.
1kg/mm2、曲げ弾性率1720kg/mm2であ
った。
When the physical properties of this laminate were measured, the tensile strength was 19.1
1 to 24.8 kg/mm2, bending strength 22.2 to 25.
The elastic modulus was 1 kg/mm2 and the bending elastic modulus was 1720 kg/mm2.

比1咬例3 厚さ1mmの透明塩化ビニル樹脂板の物性を測定したと
ころ引張強度5.7kg/mm”、曲げ強度9.8kg
/mm2.曲げ弾性率280kg/mm”であった。
Ratio 1 bite example 3 The physical properties of a transparent vinyl chloride resin plate with a thickness of 1 mm were measured, and the tensile strength was 5.7 kg/mm, and the bending strength was 9.8 kg.
/mm2. The flexural modulus was 280 kg/mm''.

「発明の効果」 本発明の繊維補強樹脂成形材料は、それ自身で透明性を
有し、しかも長さ方向に繊維が引き揃えられていること
から、長さ方向に対する引張強度が、極めて太きいとい
う特徴を有している。特に成形材料としてIjlいるこ
とにより、透明板やその他の成形物を得ることができて
、その配列を種々選定することによって強度が向上され
、しかも美観的にも優れた板体、その他の成形物が得ら
れるという効果が認められる。
"Effects of the Invention" The fiber-reinforced resin molding material of the present invention has transparency by itself, and since the fibers are aligned in the length direction, the tensile strength in the length direction is extremely large. It has the following characteristics. In particular, by using Ijl as a molding material, it is possible to obtain transparent plates and other molded products, and by selecting various arrangements of Ijl, strength can be improved, and plates and other molded products with excellent aesthetics can be obtained. It is recognized that this method has the effect of providing

手続ネ由正書 昭和63年1 月2−7日procedure manual January 2-7, 1985

Claims (4)

【特許請求の範囲】[Claims] (1)連続繊維を補強材として合成樹脂中に含有する繊
維補強樹脂成形材料において、連続繊維が長さ方向に引
き揃えられてなり、かつ該樹脂成形材料の厚さは0.2
mm以下であって幅/厚さの比が25〜200であるこ
とを特徴とする繊維補強樹脂成形材料。
(1) In a fiber-reinforced resin molding material containing continuous fibers as reinforcing materials in a synthetic resin, the continuous fibers are aligned in the length direction, and the thickness of the resin molding material is 0.2
A fiber-reinforced resin molding material having a width/thickness ratio of 25 to 200.
(2)樹脂成形材料の厚さが0.2〜0.1mmである
特許請求の範囲第1項記載の樹脂成形材料。
(2) The resin molding material according to claim 1, wherein the resin molding material has a thickness of 0.2 to 0.1 mm.
(3)連続繊維がガラス繊維ロービングである特許請求
の範囲第1項記載の樹脂成形材料。
(3) The resin molding material according to claim 1, wherein the continuous fibers are glass fiber rovings.
(4)合成樹脂が熱可塑性樹脂である特許請求の範囲第
1項記載の樹脂成形材料。
(4) The resin molding material according to claim 1, wherein the synthetic resin is a thermoplastic resin.
JP29195087A 1987-11-20 1987-11-20 Fiber-reinforced resin molding material Pending JPH01135838A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP29195087A JPH01135838A (en) 1987-11-20 1987-11-20 Fiber-reinforced resin molding material
US07/272,414 US4997693A (en) 1987-11-20 1988-11-17 Fiber-reinforced resin material and fiber-reinforced resin laminate using it as base material
EP19880119153 EP0316922A3 (en) 1987-11-20 1988-11-17 Fiber-reinforced resin material and fiber-reinforced resin laminate using it as base material
JP63290205A JPH0289626A (en) 1987-11-20 1988-11-18 Fibre reinforced resin mold material and fibre reinforced resin laminated board as base material thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29195087A JPH01135838A (en) 1987-11-20 1987-11-20 Fiber-reinforced resin molding material

Publications (1)

Publication Number Publication Date
JPH01135838A true JPH01135838A (en) 1989-05-29

Family

ID=17775558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29195087A Pending JPH01135838A (en) 1987-11-20 1987-11-20 Fiber-reinforced resin molding material

Country Status (1)

Country Link
JP (1) JPH01135838A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508794A (en) * 2007-11-30 2011-03-17 テイジン・アラミド・ビー.ブイ. Flexible continuous tape from multifilament yarns and methods for making them
JP2013104056A (en) * 2011-11-17 2013-05-30 Fukuvi Chemical Industry Co Ltd Fiber-reinforced plastic tape
KR20140038960A (en) * 2011-04-11 2014-03-31 솔베이(소시에떼아노님) Manufacture and use of a composite material comprising fibres and at least one vinyl chloride polymer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508794A (en) * 2007-11-30 2011-03-17 テイジン・アラミド・ビー.ブイ. Flexible continuous tape from multifilament yarns and methods for making them
KR20140038960A (en) * 2011-04-11 2014-03-31 솔베이(소시에떼아노님) Manufacture and use of a composite material comprising fibres and at least one vinyl chloride polymer
JP2013104056A (en) * 2011-11-17 2013-05-30 Fukuvi Chemical Industry Co Ltd Fiber-reinforced plastic tape

Similar Documents

Publication Publication Date Title
US4997693A (en) Fiber-reinforced resin material and fiber-reinforced resin laminate using it as base material
JP5572947B2 (en) Molding material, fiber reinforced plastic, and production method thereof
JP3821467B2 (en) Reinforcing fiber base material for composite materials
JP5551386B2 (en) Fiber / resin composite sheet and FRP molded body
JP2009114612A (en) Method for producing chopped fiber bundle and molding material, molding material, and fiber-reinforced plastic
JPH0657407B2 (en) Fiber reinforced pellet structure
WO2013118689A1 (en) Carbon fiber composite material
JP2009114611A (en) Method for producing chopped fiber bundle and molding material, molding material, and fiber-reinforced plastic
JP2008545151A (en) Method for producing composite optical body containing inorganic fiber
JPH064246B2 (en) Flexible composite material and manufacturing method thereof
JPH0580499B2 (en)
JPH01135838A (en) Fiber-reinforced resin molding material
JPS6036136A (en) Manufacture of long-sized product of thermoplastic resin reinforced with fiber
JPS63183836A (en) Composite body and manufacture thereof
JPH0724830A (en) Production of thermoplastic unidirectional prepreg sheet
JPH0289626A (en) Fibre reinforced resin mold material and fibre reinforced resin laminated board as base material thereof
JPH0617027B2 (en) Method for producing composite
JP3035618B2 (en) Fiber-reinforced thermoplastic resin sheet material and method for producing the same
US20150292146A1 (en) Stampable sheet
JP3067058B2 (en) Non-woven fabric for resin reinforcement
JPH01190414A (en) Preparation and laminated molding of fiber-reinforced resin tape
CH643304A5 (en) METHOD FOR PRODUCING FIBRES FROM THERMOPLASTIC copolymers of acrylonitrile.
JP2000061940A (en) Prepreg
JP2605384B2 (en) Thermoplastic composite sheet for molding and molded article thereof
JPH0335100B2 (en)