JPH01134456A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH01134456A
JPH01134456A JP29375387A JP29375387A JPH01134456A JP H01134456 A JPH01134456 A JP H01134456A JP 29375387 A JP29375387 A JP 29375387A JP 29375387 A JP29375387 A JP 29375387A JP H01134456 A JPH01134456 A JP H01134456A
Authority
JP
Japan
Prior art keywords
optionally substituted
charge
integer
substituted
transport layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29375387A
Other languages
Japanese (ja)
Inventor
Masayuki Mishima
雅之 三島
Harumasa Yamazaki
山崎 晴正
Takashi Matsuse
松瀬 高志
Tadashi Sakuma
佐久間 正
Hiroyasu Togashi
博靖 冨樫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP29375387A priority Critical patent/JPH01134456A/en
Publication of JPH01134456A publication Critical patent/JPH01134456A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/07Polymeric photoconductive materials
    • G03G5/075Polymeric photoconductive materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To enhance sensitivity and durability by incorporating a polymer of alkyleneimine substituted by a specified hydrazone derivative in an electric charge transfer layer. CONSTITUTION:The charge transfer layer contains at least one of the polymers of alkyleneimines substituted by hydrazone derivatives represented by formula I in which R1 is H, optionally substituted aryl or such aralkyl; each of R2 and R3 is optionally substituted straight or branched alkyl, such aralkyl, or the like, each optionally same or different, and each may combine with each other to form a ring; Y is 1-10C alkyl or alkoxy, or halogen; n is an integer of >=2; m is an integer of 2-20; and (l) is an integer of 0-4, thus permitting sensitivity and durability to be both enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子写真感光体に関し、更に詳しくはヒドラゾ
ン誘導体置換ポリアルキレンイミン重合体を電荷輸送層
中に含む高感度、高耐久性の電子写真感光体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrophotographic photoreceptor, and more particularly to a highly sensitive and highly durable electrophotographic photoreceptor containing a hydrazone derivative-substituted polyalkyleneimine polymer in a charge transport layer. Regarding photoreceptors.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

近年、電子写真方式を用いた複写機、プリンターの発展
は目覚ましく、゛用途に応じて様々な形態、種類の機種
が開発され、それに対応してそれらに用いられる感光体
も無機材料から有機材料まで多種多様のものが開発され
つつある。
In recent years, the development of copiers and printers using electrophotography has been remarkable, with various forms and types of models being developed depending on their uses, and correspondingly, the photoreceptors used in them have also changed from inorganic to organic materials. A wide variety of products are being developed.

従来、電子写真感光体としては、その感度、耐久性の面
から無機化合物が主として用いられてきた。これらの無
機化合物としては、例えば酸化亜鉛、硫化カドミウム、
セレン等を挙げる事ができる。しかしながら、これらは
有害物質を使用している場合が多く、その廃棄が問題と
なり、公害をもたらす原因となる。又、感度の良好なセ
レンを用いる場合、蒸着法等により導電性基体上に薄膜
を形成する必要があり、生産性が劣り、コストアップの
原因となる。近年、無公害性の無機物感光体としてアモ
ルファスシリコンが注目され、その研究開発が進められ
ている。しかしながら、これらも、感度については非常
に優れているが、薄膜形成時において、主にプラズマC
vD法を用いるため、その生産性は極めて劣っており、
感光体コスト、ランニングコストとも大きなものとなっ
ている。
Conventionally, inorganic compounds have been mainly used as electrophotographic photoreceptors due to their sensitivity and durability. Examples of these inorganic compounds include zinc oxide, cadmium sulfide,
Examples include selenium. However, these often use harmful substances, and their disposal becomes a problem and causes pollution. Furthermore, when selenium, which has good sensitivity, is used, it is necessary to form a thin film on a conductive substrate by a vapor deposition method or the like, resulting in poor productivity and increased costs. In recent years, amorphous silicon has attracted attention as a non-polluting inorganic photoreceptor, and its research and development is progressing. However, although these are also very good in sensitivity, they mainly require plasma C
Since the vD method is used, its productivity is extremely low.
Both the photoreceptor cost and the running cost are large.

一方、有機感光体は、焼却が可能であり、無公害の利点
を有し、更に多くのものは塗工により薄膜形成が可能で
大量生産が容易である。それ故にコストが大幅に低下で
き、又、用途に応じて様々な形状に加工する事ができる
という長所を有している。しかしながら、有機感光体に
おいては、その感度、耐久性に問題が残されており、高
感度、高耐久性の有機感光体の出現が強く望まれている
On the other hand, organic photoreceptors can be incinerated and have the advantage of being non-polluting, and many of them can be coated to form thin films, making mass production easy. Therefore, it has the advantage of being able to significantly reduce costs and being able to be processed into various shapes depending on the application. However, problems remain in the sensitivity and durability of organic photoreceptors, and there is a strong desire for an organic photoreceptor with high sensitivity and high durability.

有機感光体の感度向上の手段として様々な方法が提案さ
れているが、現在では電荷発生層と電荷輸送層とに機能
を分離した主に二層構造の機能分離型感光体が主流とな
っている。例えば、露光により電荷発生層で発生した電
荷は、電荷輸送層に注入され、電荷輸送層中を通って表
面。
Various methods have been proposed to improve the sensitivity of organic photoreceptors, but currently the mainstream is a functionally separated photoreceptor with a two-layer structure in which the functions are separated into a charge generation layer and a charge transport layer. There is. For example, charges generated in the charge generation layer due to exposure to light are injected into the charge transport layer and pass through the charge transport layer to the surface.

に輸送され、表面電荷を中和することにより感光体表面
に静電潜像が形成される。機能分離型は単層型に比して
発生した電荷が捕獲される可能性が小さくなり、各層が
それぞれの機能を阻害される事なく、効率良く電荷が感
光体表面に輸送され得る(アメリカ特許第280354
1号)。
By neutralizing the surface charge, an electrostatic latent image is formed on the surface of the photoreceptor. Compared to the single-layer type, the function-separated type has a smaller possibility that generated charges will be captured, and the charges can be efficiently transported to the photoreceptor surface without each layer having its own function inhibited (U.S. patent No. 280354
No. 1).

電荷発生層に用いられる有機電荷発生材としては、照射
される光のエネルギーを吸収し、効率よく電荷を発生す
る化合物が選択使用されており、例えば、アゾ系顔料(
特開昭54−14967号公報)、無金属フタロシアニ
ン顔料(特開昭60−143346号公報)、金属フタ
ロシアニン顔料(特開昭50−16538号公報)、ス
クアリリウム塩(特開昭53−27033号公報)等を
挙げる事ができる。
As the organic charge-generating material used in the charge-generating layer, compounds that absorb the energy of irradiated light and efficiently generate charges are selectively used, such as azo pigments (
JP-A-54-14967), metal-free phthalocyanine pigments (JP-A-60-143346), metal phthalocyanine pigments (JP-A-50-16538), squarylium salts (JP-A-53-27033) ), etc.

電荷輸送層中 電荷発生層からの電荷の注入効率が大きく、更に電荷輸
送層内で電荷の移動度が大である化合物を選定する必要
がある。そのためには、イオン化ポテンシャルが小さい
化合物、ラジカルカチオンが発生しやすい化合物が選ば
れるが、中でもトリアリールアミン誘導体(特開昭53
−47260号公報)、ヒドラゾン誘導体(特開昭57
−101844号公報)、オキサジアゾール誘導体(特
公昭34−5466号公報)、ピラゾリン誘導体(特公
昭52−4188号公報)、スチルベン誘導体(特開昭
58−198043号公報)、トリフェニルメタン誘導
体(特公昭45−555号公報)等がよく用いられる。
It is necessary to select a compound that has a high charge injection efficiency from the charge generation layer into the charge transport layer and also has a high charge mobility within the charge transport layer. For this purpose, compounds with low ionization potential and compounds that easily generate radical cations are selected, among which are triarylamine derivatives (Japanese Patent Laid-Open No. 53
-47260), hydrazone derivatives (Japanese Unexamined Patent Publication No. 57
-101844), oxadiazole derivatives (Japanese Patent Publication No. 34-5466), pyrazoline derivatives (Japanese Patent Publication No. 52-4188), stilbene derivatives (Japanese Patent Publication No. 58-198043), triphenylmethane derivatives (Japanese Patent Publication No. 58-198043), (Japanese Patent Publication No. 45-555) etc. are often used.

しかしながら、これらの電荷移動度は無機物に比較する
と小さいものであり、感度もまだまだ満足できないもの
であった。
However, the charge mobility of these materials is small compared to that of inorganic materials, and the sensitivity is still unsatisfactory.

有機感光体において電荷は分子間をホッピング機構によ
り移動すると提唱されている。移動度は、そのホッピン
グ間距離及び構造的な深いトラップに大きく影響される
。このホッピング間距離に関しては、トリアリールアミ
ン誘導体やヒドラゾン誘導体等の前述の低分子化合物が
結合剤中に分散した構成の電荷輸送層よりは、電荷輸送
官能基が側鎖中もしくは主鎖中に組み込まれた高分子電
荷輸送材の方が好ましい。例えばポリビニルカルバゾー
ル(特公昭34−10966号公報)、ポリビニルアン
トラセン等が提案されている。しかしながら、これらは
ホッピング間距離に関しては好ましいが、構造的な深い
トラップが存在し、その結果、電荷移動度の向上には至
っていないのが、現状である。又、これらの高分子化合
物は有機溶剤に不溶な場合が多く、電子写真感光体作製
時に困難を生じていた。
It has been proposed that charges in organophotoreceptors move between molecules by a hopping mechanism. Mobility is strongly influenced by its interhop distance and deep structural traps. Regarding this distance between hopping, the charge transport functional group is incorporated into the side chain or the main chain, compared to a charge transport layer with a structure in which the aforementioned low molecular weight compounds such as triarylamine derivatives and hydrazone derivatives are dispersed in the binder. A polymeric charge transporting material that has a high molecular weight is preferred. For example, polyvinylcarbazole (Japanese Patent Publication No. 34-10966), polyvinylanthracene, etc. have been proposed. However, although these are preferable in terms of the distance between hoppings, the present situation is that deep structural traps exist, and as a result, the charge mobility has not been improved. Furthermore, these polymer compounds are often insoluble in organic solvents, creating difficulties when producing electrophotographic photoreceptors.

一方、帯電・露光・現像・転写・除電という一連の電子
写真プロセスにおいて、感光体は極めで苛酷な条件下に
置かれ、特にその耐オゾン性、耐摩耗性が大きな問題と
なる。これら耐久性を向上させる目的で結合剤や保!1
715について開発が進んでいるが満足できるものは未
だ得られていない。
On the other hand, in a series of electrophotographic processes such as charging, exposure, development, transfer, and static elimination, photoreceptors are placed under extremely harsh conditions, and their ozone resistance and abrasion resistance are particularly problematic. These binders and retainers are used to improve durability! 1
Development of 715 is progressing, but nothing satisfactory has yet been achieved.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、高感度、°高耐久性の電子写真感光体に
ついて鋭意検討した結果、ある特定のポリアルキレンイ
ミン重合体を電荷輸送層に含む電子写真感光体が、感度
、耐久性ともに優れている事を見出し、本発明に至った
As a result of intensive studies on electrophotographic photoreceptors with high sensitivity and high durability, the present inventors found that an electrophotographic photoreceptor containing a specific polyalkyleneimine polymer in the charge transport layer has excellent sensitivity and durability. This led to the present invention.

即ち、本発明は、導電性支持体、電荷発生層及び電荷輸
送層を必須の構成要素とする電子写真感光体において、
一般式(1) %式% (式中、R5は水素原子、置換されていてもよい直鎖又
は分岐のアルキル基、置換されていてもよいアリール基
、置換されていてもよいアラルキル基のいずれかを表す
。Rz、 R2は同一もしくは相異なって、置換されて
いてもよい直鎖又は分岐のアルキル基、置換されていて
もよいアリール基、置換されていてもよいアラルキル基
のいずれかを表し、R1とR1は一緒になって環を形成
しても良い一、Yは炭素数1〜10個のアルキル基又は
アルコキシ基、あるいはハロゲン原子を表す、nは2以
上の整数であり、mは2〜20の整数1、はO〜4の整
数である。) で示されるヒドラゾン誘導体置換ポリアルキレンイミン
重合体を電荷輸送層中に含むことを特徴とする電子写真
感光体を提供するものである。
That is, the present invention provides an electrophotographic photoreceptor comprising a conductive support, a charge generation layer, and a charge transport layer as essential components,
General formula (1) %Formula% (wherein, R5 is any one of a hydrogen atom, an optionally substituted linear or branched alkyl group, an optionally substituted aryl group, an optionally substituted aralkyl group) Rz and R2 are the same or different and represent any of an optionally substituted linear or branched alkyl group, an optionally substituted aryl group, and an optionally substituted aralkyl group. , R1 and R1 may be taken together to form a ring, Y represents an alkyl group or alkoxy group having 1 to 10 carbon atoms, or a halogen atom, n is an integer of 2 or more, and m is The integer 1 of 2 to 20 is an integer of O to 4. .

一般式(1)で示されるヒドラゾン誘導体置換ポリアル
キレンイミン重合体は容易に合成する事ができるが、そ
の合成法は特に限定されるものではない。
The hydrazone derivative-substituted polyalkyleneimine polymer represented by general formula (1) can be easily synthesized, but the method of synthesis is not particularly limited.

1つの方法は、直鎖状ポリアルキレンイミンと一般式(
2)で示される脱離基含有ヒドラゾン誘導体とを反応せ
しめる方法である。
One method is to combine a linear polyalkyleneimine with the general formula (
This is a method of reacting with the leaving group-containing hydrazone derivative shown in 2).

(式中、R,、R,、R3,Y及び、は、それぞれ式(
1)中のR,、R2,R,、Y及び、と同じであり、X
はハロゲン原子を表す、) 別の方法は、一般式(3)で示されるアミノヒドラゾン
誘導体とα、ω−ジハロゲノアルキレンとを反応せしめ
る方法である。
(In the formula, R,, R,, R3, Y and are each represented by the formula (
1) is the same as R, , R2, R, , Y and , and X
represents a halogen atom) Another method is a method of reacting the aminohydrazone derivative represented by the general formula (3) with α,ω-dihalogenoalkylene.

R。R.

(式中、RI+ R2,R1Y及び、は、それぞれ式(
1)中のR+、 RI R3,Y及び、と同じである。
(In the formula, RI+ R2, R1Y and are each represented by the formula (
Same as R+, RI R3, Y and in 1).

)又、ヒドラゾン誘導体置換ポリエチレンイミン重合体
及びヒドラゾン誘導体置換ポリトリメチレンイミン重合
体に関しては、一般式(4)に示されるアジリジン誘導
体又はアゼチジン誘導体を開環重合せしめる方法をとる
事もできる。
) Furthermore, for the hydrazone derivative-substituted polyethyleneimine polymer and the hydrazone derivative-substituted polytrimethyleneimine polymer, a method of ring-opening polymerization of an aziridine derivative or azetidine derivative represented by general formula (4) can also be used.

R。R.

(式中、pは2又は3であり、R,、R2,R3,Y及
び、は、それぞれ式(1)中のR1,lh、 R3,Y
及び、と同じである。) 本発明で用いるヒドラゾン誘導体置換ポリアルキレンイ
ミン重合体の重合度nは2以上であり、好ましくは4以
上である。これよりも小さいと高分子効果によるホッピ
ング間距離の短縮効果が乏しく、感度は向上しない。ア
ルキレン基のメチレン基の数mは2〜20であり、mが
1もしくは0のヒドラゾン誘導体置換重合体を合成する
事は困難である。又、鋼が20より大であると、電荷の
ホッピング間距離が大となり好ましくない。
(In the formula, p is 2 or 3, and R,, R2, R3, Y and are respectively R1, lh, R3, Y in formula (1)
and are the same. ) The degree of polymerization n of the hydrazone derivative-substituted polyalkyleneimine polymer used in the present invention is 2 or more, preferably 4 or more. If it is smaller than this, the effect of shortening the distance between hoppings due to the polymer effect will be poor, and the sensitivity will not improve. The number m of methylene groups in the alkylene group is 2 to 20, and it is difficult to synthesize a hydrazone derivative-substituted polymer in which m is 1 or 0. Moreover, if the steel is larger than 20, the distance between charge hopping becomes large, which is not preferable.

本発明で用いるヒドラゾン誘導体置換ポリアルキレンイ
ミン重合体の主鎖部ポリアルキレンイミンとしては、例
えばポリエチレンイミン、ポリトリメチレンイミン、ポ
リテトラメチレンイミン、ポリペンタメチレンイミン、
ポリへキサメチレンイミン、ポリへブタメチレンイミン
、ポリオクタメチレンイミン、ポリノナメチレンイミン
、ポリオクメチレンイミン、ポリドデカメチレンイミン
、ポリウンデカメチレンイミン等を挙げることができ、
一方、側鎖部であるヒドラゾン誘導体は例えば式(A)
〜(V)に示されるものが挙げられるが、これらに限定
されるものではない。
Examples of the main chain polyalkyleneimine of the hydrazone derivative-substituted polyalkyleneimine polymer used in the present invention include polyethyleneimine, polytrimethyleneimine, polytetramethyleneimine, polypentamethyleneimine,
Examples include polyhexamethyleneimine, polyhebutamethyleneimine, polyoctamethyleneimine, polynonamethyleneimine, polyocmethyleneimine, polydodecamethyleneimine, polyundecamethyleneimine, etc.
On the other hand, the side chain portion of the hydrazone derivative is, for example, the formula (A)
-(V) include, but are not limited to.

(^)        (B)       (C)(
D)        (E)         (F)
(G)         (H)         (
I)(J) (M)          (N)         
(0)(P)          (Q) (S)         (T)         (
U)(V) これらのヒドラゾン誘導体置換ポリアルキレンイミン重
合体は、多(の溶剤に可溶であり、例えば、ベンゼン、
トルエン、キシレン、テトラリン、クロロベンゼン等の
芳香族系溶剤、ジクロロメタン、クロロホルム、トリク
ロロエチレン、テトラクロロエチレン等のハロゲン系溶
剤、酢酸メチル、酢酸エチル、酢酸プロピル、ギ酸メチ
ル、ギ酸エチル等のエステル系溶剤、アセトン、メチル
エチルケトン等のケトン系溶剤、ジエチルエーテル、ジ
プロピルエーテル、テトラヒドロフラン等のエーテル系
溶剤、メタノール、エタノール、イソプロピルアルコー
ル等のアルコール系溶剤、ジメチルホルムアミド、ジメ
チルアセトアミド、ジメチルスルホキシド等に可溶であ
る。
(^) (B) (C)(
D) (E) (F)
(G) (H) (
I) (J) (M) (N)
(0) (P) (Q) (S) (T) (
U) (V) These hydrazone derivative-substituted polyalkyleneimine polymers are soluble in many solvents, such as benzene,
Aromatic solvents such as toluene, xylene, tetralin, and chlorobenzene, halogen solvents such as dichloromethane, chloroform, trichloroethylene, and tetrachloroethylene, ester solvents such as methyl acetate, ethyl acetate, propyl acetate, methyl formate, and ethyl formate, acetone, and methyl ethyl ketone. It is soluble in ketone solvents such as diethyl ether, dipropyl ether, and tetrahydrofuran, alcohol solvents such as methanol, ethanol, and isopropyl alcohol, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, and the like.

電子写真感光体を作製するにあたっては、導電性支持体
上に電荷発生層及び電荷輸送層を薄膜状に形成せしめる
。導電性支持体の基材としては、アルミニウム、ニッケ
ル等の金属、金属蒸着高分子フィルム、金属ラミネート
高分子フィルム等を用いる事ができ、ドラム状又はシー
ト状の形態で導電性支持体を構成する。
In producing an electrophotographic photoreceptor, a charge generation layer and a charge transport layer are formed in the form of a thin film on a conductive support. As the base material of the conductive support, metals such as aluminum and nickel, metal-deposited polymer films, metal-laminated polymer films, etc. can be used, and the conductive support is configured in the form of a drum or sheet. .

電荷発生層は、電荷発生材及び必要に応じて結合剤、添
加剤よりなり、蒸着法、プラズマCVD法、塗工法等の
方法で作製する事ができる。
The charge generation layer is made of a charge generation material and, if necessary, a binder and additives, and can be produced by a method such as a vapor deposition method, a plasma CVD method, or a coating method.

電荷発生材としては、特に限定される事はなく、照射さ
れる特定の波長の光を吸収し、効率よ(電荷を発生し得
るものならば有機電荷発生材、無機電荷発生材のいずれ
も好適に使用する事ができる。
The charge generating material is not particularly limited, and any organic charge generating material or inorganic charge generating material is suitable as long as it absorbs the irradiated light of a specific wavelength and can efficiently generate a charge. It can be used for.

有機電荷発生材としては、例えば、ペリレン顔料、多環
キノン系顔料、無金属フタロシアニン顔料、金属フタロ
シアニン顔料、ビスアゾ顔料、トリスアゾ顔料、チアピ
リリウム塩、スクアリリウム塩、アズレニウム顔料等が
挙げられ、これらは主として結合剤中に分散せしめ、塗
工により電荷発生層を形成する事ができる。無機電荷発
生材としては、セレン、セレン合金、硫化カドミウム、
酸化亜鉛、アモルファスシリコン等が挙げられる。
Examples of organic charge generating materials include perylene pigments, polycyclic quinone pigments, metal-free phthalocyanine pigments, metal phthalocyanine pigments, bisazo pigments, trisazo pigments, thiapyrylium salts, squarylium salts, azulenium pigments, etc. A charge-generating layer can be formed by dispersing it in an agent and coating it. Inorganic charge generating materials include selenium, selenium alloys, cadmium sulfide,
Examples include zinc oxide and amorphous silicon.

形成された電荷発生層め膜厚は0.1乃至2.04が好
ましく、更に好ましくは0.2乃至1.OImである。
The thickness of the formed charge generation layer is preferably 0.1 to 2.04 mm, more preferably 0.2 to 1.0 mm. It is OIm.

次に、該電荷発生層の上部に、一般式(1)で示される
ヒドラゾン誘導体置換ポリアルキレンイミン重合体を含
む電荷輸送層を薄膜状に形成せしめる。薄膜形成法とし
ては、主に塗工法が用いられ、一般式(1)で示される
ヒドラゾン誘導体置換ポリアルキレンイミン重合体を必
要に応じて結合剤とともに溶剤に溶解し、電荷発生層上
に塗工せしめ、その後、乾燥せしめればよい。
Next, a charge transport layer containing a hydrazone derivative-substituted polyalkyleneimine polymer represented by the general formula (1) is formed in the form of a thin film on top of the charge generation layer. A coating method is mainly used to form a thin film, in which a hydrazone derivative-substituted polyalkyleneimine polymer represented by general formula (1) is dissolved in a solvent together with a binder if necessary, and coated on the charge generation layer. All you have to do is press it, then dry it.

用いられる溶剤としては、ヒドラゾン誘導体置換ポリア
ルキレンイミン重合体、及び必要に応じて用いられる結
合剤が溶解し、且つ電荷発生層が溶解しない溶剤なら特
に限定される事はない。
The solvent to be used is not particularly limited as long as it dissolves the hydrazone derivative-substituted polyalkyleneimine polymer and the binder used if necessary, but does not dissolve the charge generation layer.

必要に・応じて用いられる結合剤としては、絶縁性樹脂
なら特に限定される事はなく、例えばポリカーボネート
、ボリアリレート、ポリエステル、ポリアミド等の縮合
系重合体、ポリエチレン、ポリスチレン、スチレン−ア
クリル共重合体、ポリアクリレート、ポリメタクリレー
ト、ポリビニルブチラール、ポリアクリロニトリル、ポ
リアクリルアミド、アクリロニトリル−ブタジェン共重
合体、ポリ塩化ビニル等の付加重合体、ポリスルホン、
ポリエーテルスルホン、シリコン樹脂等が適宜用いられ
、一種もしくは二種以上のものを混合して用いる事がで
きる。
The binder that can be used as necessary is not particularly limited as long as it is an insulating resin, and examples include condensation polymers such as polycarbonate, polyarylate, polyester, and polyamide, polyethylene, polystyrene, and styrene-acrylic copolymers. , polyacrylate, polymethacrylate, polyvinyl butyral, polyacrylonitrile, polyacrylamide, acrylonitrile-butadiene copolymer, addition polymers such as polyvinyl chloride, polysulfone,
Polyether sulfone, silicone resin, etc. are used as appropriate, and one type or a mixture of two or more types can be used.

上記結合剤の使用量は、一般式(1)で示されるヒドラ
ゾン誘導体置換ポリアルキレンイミン重合体に対して0
.1乃至3重量比であり、好ましくは0.1乃至2重量
比である。これよりも大であると、電荷輸送層における
電荷輸送材濃度が小さくなり、感度が悪くなる。一般式
(1)で示されるヒドラゾン誘導体置換ポリアルキレン
イミン重合体は、特に結合剤を用いなくとも、それ自体
、薄膜形成性、可撓性、接着性に優れており、単独で電
荷輸送層を形成せしめる事もできる。
The amount of the binder used is 0 for the hydrazone derivative-substituted polyalkylene imine polymer represented by the general formula (1).
.. The weight ratio is 1 to 3, preferably 0.1 to 2. If it is larger than this, the concentration of the charge transporting material in the charge transporting layer becomes small, resulting in poor sensitivity. The hydrazone derivative-substituted polyalkyleneimine polymer represented by the general formula (1) has excellent thin film-forming properties, flexibility, and adhesive properties, and can form a charge transport layer by itself without using a binder. It can also be formed.

また、本発明においては、必要に応じて前記のような公
知の電荷輸送材をヒドラゾン誘導体置換ポリアルキレン
イミン重合体と組み合わせて用いることも可能である。
Further, in the present invention, it is also possible to use a known charge transporting material as described above in combination with the hydrazone derivative-substituted polyalkyleneimine polymer, if necessary.

、塗工手段は限定される事はなく、例えばバーコーター
、カレンダーコーター、グラビアコーター、ブレードコ
ーター、スピンコーター、デイツプコーター等を適宜使
用する事ができる。
The coating means is not limited, and for example, a bar coater, calendar coater, gravure coater, blade coater, spin coater, dip coater, etc. can be used as appropriate.

以上の如くにして形成される電荷輸送層の膜厚は10乃
至50−が好ましく、更に好ましくは10乃至30Jn
aである。膜厚が50−よりも大であると電荷の輸送に
より多くの時間を要するようになり、又、電荷が捕獲さ
れる確率も大となり、感度低下の原因となる。一方、1
01mより小であると、機械的強度が低下し、感光体の
寿命が短いものとなり、好ましくない。
The thickness of the charge transport layer formed as described above is preferably 10 to 50Jn, more preferably 10 to 30Jn.
It is a. If the film thickness is greater than 50 -, it will take more time to transport the charge, and the probability that the charge will be captured will also increase, causing a decrease in sensitivity. On the other hand, 1
If it is smaller than 01 m, the mechanical strength will decrease and the life of the photoreceptor will be shortened, which is not preferable.

以上の如くにして一般式(1)で示されるヒドラゾン誘
導体置換ポリアルキレンイミン重合体を電荷輸送層中に
含む電子写真感光体を作製する事ができるが、本発明で
はさらに導電性支持体と電荷発生層の間に必要に応じて
下引き層、接着層、バリヤー層等を設ける事もでき、例
えばポリビニルブチラール、フェノール樹脂、ポリアミ
ド樹脂等が用いられる。また、感光体表面に表面保護層
を設けることもできる。
As described above, an electrophotographic photoreceptor containing a hydrazone derivative-substituted polyalkyleneimine polymer represented by the general formula (1) in the charge transport layer can be produced. An undercoat layer, an adhesive layer, a barrier layer, etc. can be provided between the generation layers, if necessary, and for example, polyvinyl butyral, phenol resin, polyamide resin, etc. are used. Furthermore, a surface protective layer can also be provided on the surface of the photoreceptor.

以上の如くにして得られた電子写真感光体の。An electrophotographic photoreceptor obtained as described above.

使用に際しては、まず感光体表面をコロナ帯電器等によ
り負に帯電せしめる。帯電後、露光される事により電荷
発生層内で露光部に電荷が発生し、正電荷は電荷輸送層
に注入された後、表面にまで輸送され、表面の負電荷が
中和される。
In use, first the surface of the photoreceptor is negatively charged using a corona charger or the like. After being charged and exposed to light, charges are generated in the exposed portion within the charge generation layer, and the positive charges are injected into the charge transport layer and then transported to the surface, where the negative charges on the surface are neutralized.

一方、露光されなかった部分には負電荷が残り、これが
静電潜像を形成する。この部分にトナーが付着し、それ
が紙等の上に転写され、定着される。
On the other hand, negative charges remain in the unexposed areas, which form an electrostatic latent image. Toner adheres to this area, is transferred onto paper, etc., and is fixed.

また、本発明においては、導電性支持体上に、まず電荷
輸送層を設け、その上に電荷発生層を設けて、電子写真
感光体を作製する事も可能である。この場合には、まず
感゛光体表面を正に帯電せしめ、露光後、負電荷は感光
体の表面電荷を中和し、正電荷は電荷輸送層を通って導
電性支持体に輸送される事になる。
Further, in the present invention, it is also possible to produce an electrophotographic photoreceptor by first providing a charge transport layer on a conductive support and then providing a charge generation layer thereon. In this case, the surface of the photoreceptor is first positively charged, and after exposure, the negative charge neutralizes the surface charge of the photoreceptor, and the positive charge is transported to the conductive support through the charge transport layer. It's going to happen.

〔実施例〕〔Example〕

以下、実施例により本発明を更に具体的に説明するが、
本発明はこれらの実施例に限定されるものではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these examples.

合成例 撹拌棒、温度計、冷却管、滴下ロートを備えつけた2!
四ツ目フラスコにp−アミノアセトフェノン−N、N−
ジフェニルヒドラゾン100gを入れ、ジメチルホルム
アミド1!に溶解せしめた。このジメチルホルムアミド
溶液に、氷で冷却しながら、1.2−ショートエタン9
4gのジメチルホルムアミド溶液200dを、撹拌下ゆ
っくり滴下した。滴下終了後、反応系を100’Cにま
で昇温し、5時間撹拌した。その後、室温にまで下げた
後、飽和炭酸水素ナトリウム水溶液31中に注いだ。そ
こへ酢酸エチル31を入れ抽出操作を行った。酢酸エチ
ル層を水で1回洗浄後、300 mZにfi縮した。該
酢酸エチル濃縮溶液をジエチルエーテル32に室温で滴
下し、再沈澱を行った。得られた沈澱を再び酢酸エチル
300−に溶解し、ジエチルエーテル31に室温で滴下
した。同じ操作を3回繰り返した後、得られた沈澱を濾
取し、ジエチルエーテルで3回洗浄し、室温で乾燥を行
い重合体47gを得た。
Synthesis example Equipped with a stirring bar, thermometer, cooling tube, and dropping funnel 2!
Add p-aminoacetophenone-N,N- to the fourth flask.
Add 100 g of diphenylhydrazone and 1 portion of dimethylformamide! It was dissolved in Add 1,2-short ethane 9 to this dimethylformamide solution while cooling with ice.
200 d of 4 g of dimethylformamide solution was slowly added dropwise while stirring. After the dropwise addition was completed, the reaction system was heated to 100'C and stirred for 5 hours. Thereafter, the temperature was lowered to room temperature, and then poured into a saturated aqueous sodium hydrogen carbonate solution 31. Ethyl acetate 31 was added thereto and an extraction operation was performed. After washing the ethyl acetate layer once with water, it was condensed to 300 mZ. The concentrated ethyl acetate solution was added dropwise to diethyl ether 32 at room temperature to perform reprecipitation. The obtained precipitate was dissolved again in 300 g of ethyl acetate and added dropwise to 31 g of diethyl ether at room temperature. After repeating the same operation three times, the resulting precipitate was collected by filtration, washed three times with diethyl ether, and dried at room temperature to obtain 47 g of a polymer.

II−NMR測定により該重合体は、表−1の(5)式
で示されるヒドラゾン誘導体置換ポリエチレンイミン重
合体である事を確認した。
II-NMR measurement confirmed that the polymer was a hydrazone derivative-substituted polyethyleneimine polymer represented by formula (5) in Table 1.

又、ゲルパーミェーションクロマトグラフにより、数平
均分子量は、ポリスチレン換算で−6200であった。
Further, as determined by gel permeation chromatography, the number average molecular weight was -6200 in terms of polystyrene.

同様の操作により、表−1の(6)〜測成に示す各種の
ヒドラゾン誘導体置換ポリアルキレンイミン重合体を合
成した。
By similar operations, various hydrazone derivative-substituted polyalkyleneimine polymers shown in (6) to Measurement in Table 1 were synthesized.

実施例−1 バナジルオキシドフタロシアニン5g、ブチラール樹脂
(エスレックBM−2、種水化学■製)5gをシクロへ
キサノン90m1に添加し、ボールミル中で24時間混
練した。得られた分散液をアルミ板上にバーコーターに
て乾燥後の膜厚が0.5屑となるように塗布し、乾燥さ
せ電荷発生層を形成した。
Example-1 5 g of vanadyl oxide phthalocyanine and 5 g of butyral resin (S-LEC BM-2, manufactured by Tanesui Chemical Co., Ltd.) were added to 90 ml of cyclohexanone and kneaded in a ball mill for 24 hours. The resulting dispersion was applied onto an aluminum plate using a bar coater so that the film thickness after drying was 0.5 shavings, and dried to form a charge generation layer.

次に合成例により得られた式(5)で示されるN。Next, N represented by formula (5) obtained in the synthesis example.

N−ジフェニルヒドラゾン置換ポリエチレンイミン重合
体10gを塩化メチレン90m7に溶解し、これを先に
形成した電荷発生層上にブレードコーターにて乾燥後の
膜厚が25−となるように塗布し、乾燥させ、電荷輸送
層を形成した。
10 g of N-diphenylhydrazone-substituted polyethyleneimine polymer was dissolved in 90 m7 of methylene chloride, and this was coated on the previously formed charge generation layer using a blade coater so that the film thickness after drying would be 25 mm, and dried. , to form a charge transport layer.

このようにして作製した電子写真感光体を川口電機■製
静電複写紙試験装置SP −428を用いて−5,5k
vのコロナ電圧で帯電させたところ、初期表面電位v0
は一780vであった。暗所にて5秒放置後の表面電位
V、は一750vであった。次いで発振波長780nm
の半導体レーザーを照射し、半歯露光量E+/□を求め
たところ、0.5μJ/cm”であり、残留電位りっは
一17Vであった。
The electrophotographic photoreceptor thus produced was tested at -5,5k using an electrostatic copying paper tester SP-428 manufactured by Kawaguchi Denki ■.
When charged with a corona voltage of v, the initial surface potential v0
was -780v. The surface potential V after being left in the dark for 5 seconds was -750V. Next, the oscillation wavelength is 780 nm.
The half-tooth exposure amount E+/□ was determined to be 0.5 μJ/cm'', and the residual potential was -17V.

次に2000回上記操作を繰り返した後のVll+ v
、。
Next, Vll+v after repeating the above operation 2000 times
,.

El/2. VRを測定したところ、それぞれv、==
 −740V。
El/2. When VR was measured, v, ==
-740V.

Vs−730V、 Etzz=0.6 μJ/cm” 
、 VR=  18Vであり、感光体としての性能はほ
とんど衰えておらず、高い耐久性を示す事がわかった。
Vs-730V, Etzz=0.6 μJ/cm”
, VR = 18V, and it was found that the performance as a photoreceptor was hardly deteriorated and that it exhibited high durability.

実施例2〜6 電荷輸送材としてそれぞれ表−1の式(6)〜00)で
表されるヒドラゾン誘導体置換ポリアルキレンイミン重
合体を用いる以外は、実施例1と同様にして電子写真感
光体を作製した。
Examples 2 to 6 Electrophotographic photoreceptors were produced in the same manner as in Example 1, except that hydrazone derivative-substituted polyalkylene imine polymers represented by formulas (6) to 00) in Table 1 were used as charge transport materials, respectively. Created.

作製した電子写真感光体についてそれぞれ川口電機■製
静電複写紙試験装置sp −428を用いて性能評価を
行った。その結果を表−1に示した。又、2000回繰
り返し後(DVo、 Vs、 Etzz、 VRの測定
結果を表−2に示した。
The performance of each of the produced electrophotographic photoreceptors was evaluated using an electrostatic copying paper tester SP-428 manufactured by Kawaguchi Denki ■. The results are shown in Table-1. Furthermore, after 2000 repetitions (DVo, Vs, Etzz, VR measurement results) are shown in Table 2.

表           1 表−1つづき 表         2 実施例−7 実施例−1と同じ方法でアルミ板上に電荷発生層を形成
し、次に式(5)で示されるN、N−ジフェニルヒドラ
ゾン置換ポリエチレンイミン重合体5g、ポリカーボネ
ート樹脂(レキサン141−111 、エンジニアリン
グプラスチックス■製)5gを塩化メチレン90−に溶
解し、これを先に形成した電荷発生層上にブレードコー
ターにて乾燥後の膜厚が254になるよう塗布し、乾燥
させて電荷輸送層を形成した。
Table 1 Table-1 continued Table 2 Example-7 A charge generation layer was formed on an aluminum plate in the same manner as in Example-1, and then a charge generation layer was formed on an aluminum plate using the N,N-diphenylhydrazone-substituted polyethyleneimine polymer represented by formula (5). 5 g of the combined material and 5 g of polycarbonate resin (Lexan 141-111, manufactured by Engineering Plastics ■) were dissolved in 90 methylene chloride, and this was dried with a blade coater on the previously formed charge generation layer to a film thickness of 254 mm. A charge transport layer was formed by coating and drying.

このようにして作製した電子写真感光体を実施例−1と
同じ方法で評価したところ、v、=830V、 Vs=
  820V、 EIyz=0.6 pJ/cm” 。
When the electrophotographic photoreceptor thus produced was evaluated in the same manner as in Example-1, v, = 830V, Vs =
820V, EIyz=0.6 pJ/cm”.

Vl=−20Vであり、結合剤を含んでいる場合にも性
能はほとんど劣る事はなかった。
Vl=-20V, and even when a binder was included, the performance was hardly inferior.

実施例−8 実施例−1において電荷発生材であるバナジルオキシド
フタロシアニンを弐〇〇で示すアゾ顔料にかえた以外は
、実施例−1と同じ方法で電子写真感光体を作製し、評
価を行ったところ、Vo””  770V+ Vs””
  760L Eryz=0.41#J/C0l!IV
l=−21V 、2000回繰り返し後はVo=−75
0V。
Example-8 An electrophotographic photoreceptor was produced and evaluated in the same manner as in Example-1, except that the charge-generating material vanadyl oxide phthalocyanine in Example-1 was replaced with an azo pigment indicated by 2〇. However, Vo”” 770V+ Vs””
760L Eryz=0.41#J/C0l! IV
l=-21V, Vo=-75 after 2000 repetitions
0V.

Vs=  740L H+7g=0.511J/cm”
+ V*=  20Vであった。このように電荷発生材
としてアゾ顔料を用いた場合にも高感度、高耐久性を示
す事がわかった。
Vs=740L H+7g=0.511J/cm”
+V*=20V. As described above, it was found that high sensitivity and high durability were also exhibited when an azo pigment was used as the charge generating material.

10D 比較例 実施例−7において式(5)で示されるN、N−ジフェ
ニルヒドラゾン置換ポリエチレンイミン重合体のかわり
に弐G21で示されるヒドラゾン誘導体を使用する以外
は実施例−7と同じ方法で電子写真感光体を作製し、評
価を行った。
10D Comparative Example Electron production was performed in the same manner as in Example-7, except that the hydrazone derivative represented by 2G21 was used instead of the N,N-diphenylhydrazone-substituted polyethyleneimine polymer represented by formula (5) in Example-7. A photographic photoreceptor was produced and evaluated.

露光前の表面電位はvo=−770v、 vs=−75
0vであり、前述の実施例1〜8と差は見られながった
が、E+1t=2.1BJ/ cra”であり、半減露
光量が悪いものであった。又、残留電位はv、I=−3
2vであった。
The surface potential before exposure is vo=-770v, vs=-75
0v, and no difference was observed from Examples 1 to 8 described above, but E+1t=2.1BJ/cra'', which was a poor half-decreased exposure amount.Also, the residual potential was v, I=-3
It was 2v.

〔発明の効果〕〔Effect of the invention〕

本発明におけるヒドラゾン誘導体置換ポリアルキレンイ
ミン重合体を電荷輸送層中に含む事を特徴とする電子写
真感光体は、初期電位が安定し、暗減衰が小さ(、感度
が高いものである。
The electrophotographic photoreceptor of the present invention, which is characterized by containing a hydrazone derivative-substituted polyalkyleneimine polymer in its charge transport layer, has a stable initial potential, small dark decay (and high sensitivity).

又、繰り返しによる劣化が小さく、耐久性にも優れたも
のである。
Furthermore, it shows little deterioration due to repeated use and has excellent durability.

出願人代理人  古 谷   馨Applicant's agent Kaoru Furutani

Claims (1)

【特許請求の範囲】 導電性支持体、電荷発生層及び電荷輸送層を必須の構成
要素とする電子写真感光体において、一般式(1) ▲数式、化学式、表等があります▼(1) (式中、R_1は水素原子、置換されていてもよい直鎖
又は分岐のアルキル基、置換されていてもよいアリール
基、置換されていてもよいアラルキル基のいずれかを表
す。R_2、R_3は同一もしくは相異なって、置換さ
れていてもよい直鎖又は分岐のアルキル基、置換されて
いてもよいアリール基、置換されていてもよいアラルキ
ル基のいずれかを表し、R_2とR_3は一緒になって
環を形成しても良い。Yは炭素数1〜10個のアルキル
基又はアルコキシ基、あるいはハロゲン原子を表す。n
は2以上の整数であり、mは2〜20の整数、lは0〜
4の整数である。) で示されるヒドラゾン誘導体置換ポリアルキレンイミン
重合体を電荷輸送層中に含むことを特徴とする電子写真
感光体。
[Claims] In an electrophotographic photoreceptor having a conductive support, a charge generation layer, and a charge transport layer as essential components, general formula (1) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(1) ( In the formula, R_1 represents a hydrogen atom, an optionally substituted linear or branched alkyl group, an optionally substituted aryl group, or an optionally substituted aralkyl group. R_2 and R_3 are the same Alternatively, R_2 and R_3 together represent an optionally substituted linear or branched alkyl group, an optionally substituted aryl group, or an optionally substituted aralkyl group. A ring may be formed.Y represents an alkyl group or alkoxy group having 1 to 10 carbon atoms, or a halogen atom.n
is an integer of 2 or more, m is an integer of 2 to 20, and l is an integer of 0 to 20.
It is an integer of 4. ) An electrophotographic photoreceptor comprising a hydrazone derivative-substituted polyalkyleneimine polymer represented by the following formula in a charge transport layer.
JP29375387A 1987-11-20 1987-11-20 Electrophotographic sensitive body Pending JPH01134456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29375387A JPH01134456A (en) 1987-11-20 1987-11-20 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29375387A JPH01134456A (en) 1987-11-20 1987-11-20 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH01134456A true JPH01134456A (en) 1989-05-26

Family

ID=17798782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29375387A Pending JPH01134456A (en) 1987-11-20 1987-11-20 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH01134456A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0686879A1 (en) 1994-06-10 1995-12-13 Fuji Xerox Co., Ltd. Charge-transporting polymer and organic electronic device using the same
US5604064A (en) * 1994-06-10 1997-02-18 Fuji Xerox Co., Ltd. Charge-transporting polymer and organic electronic device using the same
US5639581A (en) * 1994-10-24 1997-06-17 Fuji Xerox Co., Ltd. Charge transporting polymer, process for producing the same, and organic electronic device containing the same
US5654119A (en) * 1995-04-06 1997-08-05 Fuji Xerox Co., Ltd. Organic electronic device comprising charge-transporting polyester and image forming apparatus
US5702856A (en) * 1995-10-11 1997-12-30 Fuji Xerox Co, Ltd. Method for making an image and a photosensitive body for liquid development
US5731118A (en) * 1995-08-25 1998-03-24 Fuji Xerox Co., Ltd. Charge transporting random copolyester resin, process for producing the same and organic electronic device using the same
US5736285A (en) * 1995-06-05 1998-04-07 Fuji Xerox Co., Ltd. Electrophotographic photosensitive member
US5770339A (en) * 1994-10-18 1998-06-23 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor using charge transporting copolyester
US5817739A (en) * 1995-10-18 1998-10-06 Fuji Xerox Co., Ltd. Charge transporting polymer and organic electronic device containing the same
US5948579A (en) * 1995-11-06 1999-09-07 Fuji Xerox Co., Ltd. Electrophotographic photosensitive material
US6020426A (en) * 1996-11-01 2000-02-01 Fuji Xerox Co., Ltd. Charge-transporting copolymer, method of forming charge-transporting copolymer, electrophotographic photosensitive body, and electrophotographic device
US6936679B2 (en) 2002-03-14 2005-08-30 Fuji Xerox Co., Ltd. Charge-transporting polymer
EP1584987A2 (en) * 2004-03-31 2005-10-12 Samsung Electronics Co., Ltd. Poly(hydrazone)-based charge transport materials
US7060783B2 (en) 2003-08-05 2006-06-13 Fuji Xerox Co., Ltd. Diamine compound polymer having condensed aromatic group
US7181156B2 (en) 2003-07-25 2007-02-20 Ricoh Company, Ltd. Image forming apparatus using a cleaning member for preventing noises and process cartridge therefor
JP2007178466A (en) * 2005-12-26 2007-07-12 Fuji Xerox Co Ltd Electrophotographic organic photoconductor and image forming apparatus using the same
US7589166B2 (en) 2005-06-27 2009-09-15 Fuji Xerox Co., Ltd. Thiophene-containing compound and polymer thereof
EP2146251A1 (en) 2008-07-15 2010-01-20 Ricoh Company, Ltd. Electrophotographic photoconductor, image forming apparatus using the same, and process cartridge
US7659410B2 (en) 2006-04-25 2010-02-09 Fuji Xerox Co., Ltd. Thiophene-containing compound and thiophene-containing compound polymer, organic electroluminescent device, production method thereof, and image display medium
US7763737B2 (en) 2007-06-15 2010-07-27 Fuji Xerox Co., Ltd. Carbazole compound, and polymer thereof
US7897313B2 (en) 2006-04-27 2011-03-01 Ricoh Company Limited Electrostatic latent image bearing member, and image forming apparatus and process cartridge using the electrostatic latent image bearing member
US7995950B2 (en) 2005-07-15 2011-08-09 Ricoh Co., Ltd. Image forming apparatus, image forming method and process cartridge involving the use of a cleaning blade that removes toner remaining on a surface of an image bearing member
US8102113B2 (en) 2007-06-07 2012-01-24 Fuji Xerox Co., Ltd. Quinoxaline-containing compounds and polymers thereof
US8207348B2 (en) 2009-10-13 2012-06-26 Fuji Xerox Co., Ltd. Thiazolothiazole compound and thiazolothiazole polymer
WO2012099182A1 (en) 2011-01-21 2012-07-26 Ricoh Company, Ltd. Electrophotographic photoconductor, and image forming method, image forming apparatus, and process cartridge using the electrophotographic photoconductor
US8264140B2 (en) 2007-08-07 2012-09-11 Fuji Xerox Co., Ltd. Organic electroluminescence element and display device

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5604064A (en) * 1994-06-10 1997-02-18 Fuji Xerox Co., Ltd. Charge-transporting polymer and organic electronic device using the same
EP0686879A1 (en) 1994-06-10 1995-12-13 Fuji Xerox Co., Ltd. Charge-transporting polymer and organic electronic device using the same
US5770339A (en) * 1994-10-18 1998-06-23 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor using charge transporting copolyester
US5734003A (en) * 1994-10-24 1998-03-31 Fuji Xerox Co., Ltd. Charge transporting polymer, process for producing the same, and organic electronic device containing the same
US5639581A (en) * 1994-10-24 1997-06-17 Fuji Xerox Co., Ltd. Charge transporting polymer, process for producing the same, and organic electronic device containing the same
US5654119A (en) * 1995-04-06 1997-08-05 Fuji Xerox Co., Ltd. Organic electronic device comprising charge-transporting polyester and image forming apparatus
US5736285A (en) * 1995-06-05 1998-04-07 Fuji Xerox Co., Ltd. Electrophotographic photosensitive member
US5731118A (en) * 1995-08-25 1998-03-24 Fuji Xerox Co., Ltd. Charge transporting random copolyester resin, process for producing the same and organic electronic device using the same
US5702856A (en) * 1995-10-11 1997-12-30 Fuji Xerox Co, Ltd. Method for making an image and a photosensitive body for liquid development
US5817739A (en) * 1995-10-18 1998-10-06 Fuji Xerox Co., Ltd. Charge transporting polymer and organic electronic device containing the same
US5948579A (en) * 1995-11-06 1999-09-07 Fuji Xerox Co., Ltd. Electrophotographic photosensitive material
US6020426A (en) * 1996-11-01 2000-02-01 Fuji Xerox Co., Ltd. Charge-transporting copolymer, method of forming charge-transporting copolymer, electrophotographic photosensitive body, and electrophotographic device
US6936679B2 (en) 2002-03-14 2005-08-30 Fuji Xerox Co., Ltd. Charge-transporting polymer
US7181156B2 (en) 2003-07-25 2007-02-20 Ricoh Company, Ltd. Image forming apparatus using a cleaning member for preventing noises and process cartridge therefor
US7295802B2 (en) 2003-07-25 2007-11-13 Ricoh Company, Ltd Image forming apparatus using a cleaning unit for preventing noises
US7060783B2 (en) 2003-08-05 2006-06-13 Fuji Xerox Co., Ltd. Diamine compound polymer having condensed aromatic group
KR100708112B1 (en) * 2004-03-31 2007-04-16 삼성전자주식회사 A polyhydrazone-based charge transport material, a method of preparing the same and a method of using the same
US7291433B2 (en) 2004-03-31 2007-11-06 Samsung Electronics Co., Ltd. Poly(hydrazone)-based charge transport materials
EP1584987A2 (en) * 2004-03-31 2005-10-12 Samsung Electronics Co., Ltd. Poly(hydrazone)-based charge transport materials
EP1584987A3 (en) * 2004-03-31 2005-11-09 Samsung Electronics Co., Ltd. Poly(hydrazone)-based charge transport materials
US7589166B2 (en) 2005-06-27 2009-09-15 Fuji Xerox Co., Ltd. Thiophene-containing compound and polymer thereof
US7995950B2 (en) 2005-07-15 2011-08-09 Ricoh Co., Ltd. Image forming apparatus, image forming method and process cartridge involving the use of a cleaning blade that removes toner remaining on a surface of an image bearing member
JP2007178466A (en) * 2005-12-26 2007-07-12 Fuji Xerox Co Ltd Electrophotographic organic photoconductor and image forming apparatus using the same
US7910748B2 (en) 2006-04-25 2011-03-22 Fuji Xerox Co., Ltd. Thiophene-containing compound and thiophene-containing compound polymer, organic electroluminescent device, production method thereof, and image display medium
US7659410B2 (en) 2006-04-25 2010-02-09 Fuji Xerox Co., Ltd. Thiophene-containing compound and thiophene-containing compound polymer, organic electroluminescent device, production method thereof, and image display medium
US7902382B2 (en) 2006-04-25 2011-03-08 Fuji Xerox Co., Ltd. Thiophene-containing compound and thiophene-containing compound polymer, organic electroluminescent device, production method thereof, and image display medium
US7897313B2 (en) 2006-04-27 2011-03-01 Ricoh Company Limited Electrostatic latent image bearing member, and image forming apparatus and process cartridge using the electrostatic latent image bearing member
US8102113B2 (en) 2007-06-07 2012-01-24 Fuji Xerox Co., Ltd. Quinoxaline-containing compounds and polymers thereof
US7763737B2 (en) 2007-06-15 2010-07-27 Fuji Xerox Co., Ltd. Carbazole compound, and polymer thereof
US8264140B2 (en) 2007-08-07 2012-09-11 Fuji Xerox Co., Ltd. Organic electroluminescence element and display device
EP2146251A1 (en) 2008-07-15 2010-01-20 Ricoh Company, Ltd. Electrophotographic photoconductor, image forming apparatus using the same, and process cartridge
US8207348B2 (en) 2009-10-13 2012-06-26 Fuji Xerox Co., Ltd. Thiazolothiazole compound and thiazolothiazole polymer
US8592604B2 (en) 2009-10-13 2013-11-26 Fuji Xerox Co., Ltd. Thiazolothiazole compound and thiazolothiazole polymer
WO2012099182A1 (en) 2011-01-21 2012-07-26 Ricoh Company, Ltd. Electrophotographic photoconductor, and image forming method, image forming apparatus, and process cartridge using the electrophotographic photoconductor

Similar Documents

Publication Publication Date Title
JPH01134456A (en) Electrophotographic sensitive body
JPH01134457A (en) Electrophotographic sensitive body
JPH01134462A (en) Electrophotographic sensitive body
KR20120042772A (en) Indole derivative
JPH05107784A (en) Electrophotographic sensitive body
JPH0580550A (en) Electrophotographic sensitive body
JPH02282262A (en) Electrophotographic sensitive body
JPH0421688A (en) Novel organosilicon compound, its production and photo-sensitive material for electrophotography produced by using the same
JPH0315853A (en) Electrophotographic sensitive body
JPH03290665A (en) Electrophotographic sensitive body
JPH0527457A (en) Electrophotographic sensitive material
JPH02285356A (en) Electrophotographic sensitive body
JPH01298363A (en) Electrophotographic sensitive body
JPH0284658A (en) Electrophotographic sensitive body
JPH05224442A (en) Electrophotographic sensitive body
JPH01298364A (en) Electrophotographic sensitive body
JPH05281765A (en) Electrophotographic sensitive body
JPH0210366A (en) Electrophotographic sensitive body
JPH03271296A (en) New silylated triarylamine compound, production thereof and electrophotographic sensitizer containing same compound
JPH0561224A (en) Electrophotographic sensitive body
JPH02285358A (en) Electrophotographic sensitive body
JPH05249710A (en) Electrophotographic sensitive body
JPH05255364A (en) Ferrocene compound and electrophotographic photoreceptor using the same
JPH01237665A (en) Electrophotographic sensitive body
JPH0421687A (en) Novel organosilicon compound, its production and photo-sensitive material for electrophotography produced by using the same