JPH0113320B2 - - Google Patents

Info

Publication number
JPH0113320B2
JPH0113320B2 JP16750080A JP16750080A JPH0113320B2 JP H0113320 B2 JPH0113320 B2 JP H0113320B2 JP 16750080 A JP16750080 A JP 16750080A JP 16750080 A JP16750080 A JP 16750080A JP H0113320 B2 JPH0113320 B2 JP H0113320B2
Authority
JP
Japan
Prior art keywords
period
excitation
current
phase excitation
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16750080A
Other languages
Japanese (ja)
Other versions
JPS5791698A (en
Inventor
Kenichi Chihara
Hiroyuki Mase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16750080A priority Critical patent/JPS5791698A/en
Publication of JPS5791698A publication Critical patent/JPS5791698A/en
Publication of JPH0113320B2 publication Critical patent/JPH0113320B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P8/00Arrangements for controlling dynamo-electric motors rotating step by step
    • H02P8/04Arrangements for starting

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Stepping Motors (AREA)

Description

【発明の詳細な説明】 本発明はステツプモータの駆動方式に係り、特
に起動時および連続回転時のトルク特性を共に均
等化する改善を施したステツプモータの駆動方式
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a step motor drive system, and more particularly to a step motor drive system that has been improved to equalize torque characteristics both at startup and during continuous rotation.

従来、ステツプモータの回転を円滑にするた
め、1組のみのコイルの励磁と2組のコイルの同
時励磁とを交互に繰返しながらステツプモータの
3組のコイルを順次励磁するステツプモータの駆
動方式が広く採用されている。例えば、特公昭37
−7016号公報にはこの駆動方式が詳細に説明され
ている。
Conventionally, in order to make the step motor rotate smoothly, a step motor drive method has been used in which three sets of coils of the step motor are sequentially excited by alternately repeating the excitation of only one set of coils and the simultaneous excitation of two sets of coils. Widely adopted. For example,
This driving method is explained in detail in the publication No. 7016.

また、1組のコイルを励磁するときの電流と2
組のコイルの同時励磁するときの電流和とを略等
しくして発生するトルクを一層凹凸のないものに
することも知られている。
Also, the current when exciting one set of coils and 2
It is also known to make the generated torque even more smooth by making the sum of currents when a set of coils are simultaneously excited substantially equal.

第1図ないし第4図はかかる従来の駆動方式を
説明するための図であり、第1図には1組のコイ
ルを励磁するための回路の一構成例を示し、第2
図は第1図に示す駆動回路に印加される入力信号
とコイルの通電々流(励磁電流)を示し、第3図
には4組のコイルを使用した場合、1相励磁から
2相励磁に切替つて起動する際の起動時付近の励
磁電流を示し、第4図は第3図の同様な励磁電流
であつて2相励磁から1相励磁に切替つて起動す
る際のものを示している。
FIGS. 1 to 4 are diagrams for explaining such a conventional drive system. FIG. 1 shows an example of the configuration of a circuit for exciting one set of coils, and the second
The figure shows the input signal applied to the drive circuit shown in Figure 1 and the coil current (excitation current), and Figure 3 shows the change from one-phase excitation to two-phase excitation when four sets of coils are used. FIG. 4 shows an excitation current similar to that in FIG. 3 when starting after switching from two-phase excitation to one-phase excitation.

第1図において、EH,ELは夫々高低の出力電
圧(24V、5V)をもつ直流の電圧源、QH,QL
スイツチング用トランジスタ、tH,tLは各トラン
ジスタQH,QLベース入力端子、D1は逆流防止用
トランジスタ、D2はフライバツクダイオード、
D3は発振防止用のダイオード、Cは励磁すべき
コイルである。上記コイルCに対して直列に2個
のトランジスタQH,QLが接続され、該直列回路
に高電圧源EHが接続され、またコイルCと一方
のトランジスタQLとの直列回路に低電圧源EL
逆流防止用ダイオードD1を介して接続されてい
る。従つて、トランジスタQLのベース入力端子tL
のみに正の信号が印加されると、低電圧源EL
らコイルCに電流が供給され、トランジスタQL
とトランジスタQHとの双方に同時に正の信号と
負の信号がそれぞれ加えられると、高電圧源EH
からコイルCに電流が供給される。
In Figure 1, E H and E L are DC voltage sources with high and low output voltages (24 V and 5 V), Q H and Q L are switching transistors, and t H and t L are transistors Q H and Q L base input terminal, D1 is a reverse current prevention transistor, D2 is a flyback diode,
D3 is a diode for preventing oscillation, and C is a coil to be excited. Two transistors Q H and Q L are connected in series to the coil C, a high voltage source E H is connected to the series circuit, and a low voltage source is connected to the series circuit of the coil C and one transistor Q L. A source E L is connected via a backflow prevention diode D 1 . Therefore, the base input terminal t L of the transistor Q L
When a positive signal is applied to only the low voltage source E L , current is supplied to the coil C and the transistor Q L
When a positive signal and a negative signal are simultaneously applied to both E H and transistor Q H , the high voltage source E H
Current is supplied to coil C from.

すなわち、第2図に示すように、トランジスタ
QLのベース入力端子tLに正の信号Lが印加され、
トランジスタQHのベース入力端子tHに負の信号H
が印加され、これにより通電開始期間T1では高
電圧源EHがコイルCに電圧を印加して比較的大
きな増加率をもつて電流Iが次第に増加する。ま
た、T,Tでは低電圧源ELのみからコイル
Cに電圧を印加するので、電流Iは次第に減少し
てコイルの内部抵抗速度逆起電力等によつて定ま
るほぼ定常値に達する。なお、上記各励磁期間T
,T,Tはそれぞれ、励磁順の先行する他
の組のコイルと共に2相励磁を行う第1の期間、
1相励磁を行う第2の期間、励磁順の遅れている
他の組のコイルと共に2相励磁を行う第3の期間
に対応している。
That is, as shown in FIG.
A positive signal L is applied to the base input terminal tL of QL ,
A negative signal H is applied to the base input terminal tH of the transistor QH .
is applied, and as a result, the high voltage source EH applies a voltage to the coil C during the energization start period T1 , and the current I gradually increases at a relatively large rate of increase. Further, at T and T, voltage is applied to the coil C only from the low voltage source E L , so the current I gradually decreases and reaches a nearly steady value determined by the internal resistance speed of the coil, back electromotive force, etc. In addition, each of the above excitation periods T
, T, and T are the first periods in which two-phase excitation is performed together with other sets of coils preceding the excitation order,
This corresponds to a second period in which one-phase excitation is performed and a third period in which two-phase excitation is performed together with other sets of coils whose excitation order is delayed.

このようなコイルの励磁を4組分行う4相ステ
ツプモータの場合には、第3図ないし第4図に示
すように各組の励磁電流φ1,φ2,φ3,φ4は丁度
1周期を4等分ずつした時間ずつシフトした状態
になり、更に上記1相励磁、2相励磁を各々行う
期間は1周期を8等分した期間毎に交互に現われ
る。例えば、1相励磁、2相励磁を各々行う期間
を単位とし、適当な1組のコイルに流れる電流
φ1の励磁開始期間を基点とするなら、図示のよ
うに1周期は期間T1〜T3よりなり、第1相の励
磁電流φ1は期間T1〜T3の間流れ、同様に第2の
励磁電流φ2は期間T3〜T5の間、第3相の励磁電
流φ4は期間T7〜T1の間流れることになる。
In the case of a four-phase step motor that excites four sets of coils, the excitation currents φ 1 , φ 2 , φ 3 , φ 4 of each set are exactly 1, as shown in Figures 3 and 4 . A state is reached in which the period is shifted by the time divided into four equal parts, and the periods during which the one-phase excitation and two-phase excitation are performed alternately appear every period divided into eight equal parts. For example, if the unit is the period during which 1-phase excitation and 2-phase excitation are performed, and the excitation start period of current φ 1 flowing through a suitable set of coils is the base point, one cycle is the period T 1 to T as shown in the figure. 3 , the first phase excitation current φ 1 flows during the period T 1 to T 3 , and similarly, the second phase excitation current φ 2 flows during the period T 3 to T 5 , and the third phase excitation current φ 4 flows during the period T 3 to T 5. will flow during the period T 7 to T 1 .

さて、このような各励磁電流φ1〜φ4により発
生するトルクは概略的に各期間T1〜T3の励磁電
流の和に比例していると考えられる。そうする
と、第3図に示す場合には、1相励期間T2,T4
T6,T8では1組のコイルに大きな励磁電流が流
れ、2相励期間T1,T3,T5,T7では比較的小さ
な励磁電流が2組のコイルに流れるため、両者は
略等しく発生トルクのバラツキは少ないものと言
える。
Now, it is considered that the torque generated by each of these excitation currents φ 1 to φ 4 is roughly proportional to the sum of the excitation currents of each period T 1 to T 3 . Then, in the case shown in FIG. 3, one phase excitation period T 2 , T 4 ,
At T 6 and T 8 , a large excitation current flows through one set of coils, and during two-phase excitation periods T 1 , T 3 , T 5 , and T 7 , a relatively small excitation current flows through two sets of coils, so both are approximately equal to each other. Similarly, it can be said that the variation in generated torque is small.

しかしなが、第4図に示すように、ステツプ・
モータを2相励磁状態で停止させておき、その状
態から起動させる場合には、期間T1で示す停止
時の2組のコイルには等しい大きさの電流を流す
必要から両方とも低電圧源に接続されており、起
動時T2で一方の電流φ4が切断され他方の電流φ1
が残ることになるが、この電流φ1はその直前の
期間で高電圧源から供給されたものでないため
に、連続回転時の1相励時或は2相励磁時の電流
に比較し著しく小さい。
However, as shown in Figure 4, the step
If the motor is stopped in a two-phase excitation state and then started from that state, equal currents must flow through the two sets of coils at the time of stop shown in period T 1 , so both must be connected to a low voltage source. connected, and at start-up T 2 one current φ 4 is disconnected and the other current φ 1
will remain, but since this current φ1 was not supplied from a high voltage source in the immediately preceding period, it is significantly smaller than the current during one-phase excitation or two-phase excitation during continuous rotation. .

すなわち、第3図のように1相励磁から2相励
磁へ切替えながら起動する場合と、第4図のよう
に2相励磁から1相励磁へ切替えながら起動する
場合とでは、起動時トルクが大きく異なる欠点を
有する。
In other words, when starting while switching from 1-phase excitation to 2-phase excitation as shown in Fig. 3, and when starting while switching from 2-phase excitation to 1-phase excitation as shown in Fig. 4, the starting torque is large. have different drawbacks.

かくして、本発明はこのような欠点を除去し起
動時のトルク特性もバラツキを有さないステツプ
モータの駆動方式を提供することを目的としてお
り、この目的は本発明においては回転子を各々異
なる回転位置に吸引する複数組のコイルを有する
ステツプモータに対し、1組の上記コイルを励磁
する1相励磁と2組の上記コイルを同時に励磁す
る2相励磁とを交互に繰返しながら順次各コイル
の励磁を行うステツプモータの駆動方式であつ
て、上記コイルの駆動回路は、コイルに印加する
電圧として、励磁期間中に第1の電圧を印加する
とともに、該第1の電圧より高い第2の電圧を所
定期間印加可能に構成され、上記コイルの励磁期
間中は、上記第1の電圧を印加するとともに、上
記励磁期間中において当該コイルの1組のみが励
磁される1相励磁の期間および励磁順の先行して
いる他の組のコイルと共に2相励磁される期間に
は、当該励磁の期間の前半部の所定期間において
上記第1の電圧よりも高い上記第2の電圧を印加
するように各コイルの駆動回路を制御するように
したことによつて達成されるが、以下その一実施
例を図面に従つて詳細に説明する。
Therefore, it is an object of the present invention to provide a step motor drive method that eliminates these drawbacks and does not cause variations in torque characteristics at startup. For a step motor having multiple sets of coils that are attracted to a certain position, each coil is sequentially excited while alternately repeating one-phase excitation that excites one set of the above-mentioned coils and two-phase excitation that simultaneously excites two sets of the above-mentioned coils. In this step motor driving method, the coil drive circuit applies a first voltage to the coil during an excitation period and a second voltage higher than the first voltage. During the excitation period of the coil, the first voltage is applied, and during the excitation period, the first voltage is applied during a one-phase excitation period in which only one set of the coils is excited, and the excitation order is During the two-phase excitation period together with other preceding coils, each coil is applied with the second voltage higher than the first voltage for a predetermined period in the first half of the excitation period. This is achieved by controlling the drive circuit of the following, and one embodiment thereof will be described in detail below with reference to the drawings.

第5図ないし第8図は本発明の一実施例を示す
図であり、第5図には第2図と対応した各励磁電
流オン・オフ制御信号L,H′およびコイルの励
磁電流I′を示し、第6図および第7図には第3図
と第4図とに対応した起動時付近の各相の励磁電
流を示し、第8図は本発明に基いて1組のコイル
を励磁するための回路の一構成例を示している。
5 to 8 are diagrams showing an embodiment of the present invention, and FIG. 5 shows the respective excitation current on/off control signals L, H' corresponding to those in FIG. 2 and the excitation current I' of the coil. FIG. 6 and FIG. 7 show the excitation current of each phase near the time of startup corresponding to FIGS. 3 and 4, and FIG. An example of the configuration of a circuit for this purpose is shown.

本実施例においては、第5図に示すように、1
相励磁期間Tにおける励磁電流I′が直前の期間
T1での高電圧源からの電流供給に依存せず独立
に発生されており、この点が従来と大きく異なつ
ている。
In this embodiment, as shown in FIG.
The excitation current I′ in the phase excitation period T is the period immediately before
It is generated independently without depending on the current supply from the high voltage source at T1 , which is a big difference from the conventional method.

すなわち、この1相励磁期間Tのうちの略前
半部に高電圧源から電流供給を受けるようにして
いる。また、1相励磁期間Tにおいてこの電流
供給を行うと次の2相励磁期間Tにおいては、
単に低電圧源から供給される略定常の電流よりも
大きな電流がしばらくの間流れるので、この2相
励磁に同時に励磁される他の組のコイルの電流、
すなわち期間Tの励磁電流を少し減少させるべ
く、高電圧源から電流供給期間を減じている。従
つて、連続回転時のトルク特性が略均一化されて
いる。
That is, current is supplied from the high voltage source during approximately the first half of this one-phase excitation period T. Furthermore, if this current is supplied during the one-phase excitation period T, then during the next two-phase excitation period T,
Since a current larger than the substantially steady current supplied simply from the low voltage source flows for a while, the current of the other sets of coils excited simultaneously with this two-phase excitation,
That is, in order to slightly reduce the excitation current during period T, the current supply period from the high voltage source is reduced. Therefore, the torque characteristics during continuous rotation are substantially uniform.

一方、起動時のトルク特性については、上記1
相励磁期間Tおける高電圧源からの電流供給に
より均一化されるが、この点は次に第6図および
第7図に従つて説明する。
On the other hand, regarding the torque characteristics at startup, see 1 above.
Uniformity is achieved by supplying current from a high voltage source during the phase excitation period T, and this point will be explained next with reference to FIGS. 6 and 7.

第6図に示すように、1相励磁期間T8から2
相励磁期間T1に切替わりながな起動する場合に
は、2相励磁時に先行して励磁されている組のコ
イルに流れる電流φ4′が低電圧源から供給され、
遅れて励磁される組のコイルに流れる電流φ′、が
所定時間高電圧から供給された後低電圧源から供
給されることになる。上記電流φ4′は連続回転時
の電流(例えば期間T3の電流φ1′)に比較して僅
かながら少ないけれども、この減少量は期間T1
での電流φ4′とφ1′との和に比較すれば無視し得る
程度である。従つて、この期間T1における発生
トルクを他の期間T2,T3,…と同程度にするこ
とができる。
As shown in Figure 6, the 1-phase excitation period T 8 to 2
When switching to the phase excitation period T 1 and starting for a long time, the current φ 4 ' flowing through the coils of the set that is previously excited during two-phase excitation is supplied from the low voltage source,
The current φ' flowing through the delayed set of coils is supplied from the high voltage for a predetermined time and then from the low voltage source. Although the above current φ 4 ' is slightly smaller than the current during continuous rotation (for example, the current φ 1 ' in period T 3 ), this decrease amount is less than the current during period T 1
This is negligible compared to the sum of the currents φ 4 ′ and φ 1 ′. Therefore, the generated torque during this period T 1 can be made comparable to that during other periods T 2 , T 3 , . . . .

また、第7図に示すように、2相励磁期間T1
から1相励磁期間T2に切替わりながら起動する
場合には、2相励磁時の電流φ1′は他期間T3
T4,…の電流と同じであり、従つて発生トルク
も同様である。
Moreover, as shown in FIG. 7, the two-phase excitation period T 1
When starting while switching from 1-phase excitation period T 2 to 1-phase excitation period T 2 , the current φ 1 ′ during 2-phase excitation changes to the other period T 3 ,
The current of T 4 ,... is the same, and therefore the generated torque is also the same.

このように、本実施例においては、第5図に示
す励磁電流をコイルに流すことによつて、第6図
に示す起動時も第7図に示す起動時も略等しい発
生トルクを得ることができ、連続回転時のトルク
特性も損うことはない。
As described above, in this embodiment, by passing the excitation current shown in FIG. 5 through the coil, it is possible to obtain approximately the same generated torque at the time of starting shown in FIG. 6 and at the time of starting shown in FIG. 7. The torque characteristics during continuous rotation will not be affected.

次に具体的に、第5図に示す励磁電流を得るた
めには、どのような駆動回路を構成すればよいか
について、第8図に従つて説明する。第8図に示
す駆動回路は、第1図に示す従来回路に対して、
2個のモノステーブル・マルチバイブレータ
MM1,MM2とオアゲートORを付加して構成さ
れる。これらの付加回路は負の信号を論理“1”
として動作する。すなわち、第1のモノステーブ
ル・マルチバイブレータMM1には第2図に示す
負の信号Hが印加され、その立下りによつて所定
時間のパルス幅を有する負のパルスを発生し、第
2のモノステーブル・マルチバイブレータMM2
には先行して励磁されている他の組のコイルの駆
動回路(図示せず)の低電圧源側のトランジスタ
QL′(図示せず)へ印加されるベース入力信号
tL′が分岐されて印加されている。すなわち、1
相励磁期間Tnの開始時に立下る信号が第2のモ
ノステーブル・マルチバイブレータMM2に印加
され、所定時間のパルス幅を有する負のパルスが
発生する。これら2個のモノステーブルマルチバ
イブレータMM1,MM2からそれぞれ発生した負
のパルスはオアゲート(負論理で動作する)を経
てともにトランジスタQHのベース入力端子tH′に
印加される。この印加信号が第5図H)に示すも
のである。なお、トランジスタQLのベース入力
端子tLに印加される信号は従来の第2図に示すも
のと全く同じである。
Next, what kind of drive circuit should be constructed in order to obtain the excitation current shown in FIG. 5 will be specifically explained with reference to FIG. 8. The drive circuit shown in FIG. 8 is different from the conventional circuit shown in FIG.
2 monostable multivibrators
It is constructed by adding MM 1 , MM 2 and an OR gate. These additional circuits convert negative signals into logic “1”
operates as That is, the negative signal H shown in FIG. 2 is applied to the first monostable multivibrator MM1 , and its fall generates a negative pulse having a pulse width of a predetermined time, and Monostable multivibrator MM 2
The transistor on the low voltage source side of the drive circuit (not shown) for the other set of coils is excited in advance.
Base input signal applied to Q L ′ (not shown)
t L ′ is applied in a branched manner. That is, 1
A falling signal at the start of the phase excitation period Tn is applied to the second monostable multivibrator MM2 , and a negative pulse having a pulse width of a predetermined time is generated. The negative pulses generated from these two monostable multivibrators MM 1 and MM 2 are applied to the base input terminal t H ' of the transistor Q H via an OR gate (operating with negative logic). This applied signal is shown in FIG. 5H). Note that the signal applied to the base input terminal tL of the transistor QL is exactly the same as the conventional one shown in FIG.

このようにして、トランジスタQLがオンとな
る各コイルの1相励磁期間T11および2相励磁期
間T1,T111のうちで、最初の2相励磁期間(先
行して励磁されている他の組のコイルと共に行わ
れる)T1と1相励磁期間T11の略前半にトランジ
スタQHをオンさせると、第5図I1)に示すように
該トランジスタQHがオンされる時間増大する電
流がコイルに流れる。そして、最初の2相励磁期
間T1では零から電流が増大するのでこの期間T1
の平均電流は少なく、他方1相励磁期間T11では
既に電流が低電圧源から供給されている状態を基
点に電流を増加させるため、この期間T11の平均
電流は多い。よつて、1相励磁の1組のコイル電
流を2相励磁時の2組のコイル電流の和に略等し
くすることができる。
In this way, among the one-phase excitation period T 11 and two-phase excitation periods T 1 and T 111 of each coil in which the transistor Q L is turned on, the first two-phase excitation period (other than the previously excited When the transistor Q H is turned on during approximately the first half of the one - phase excitation period T 11 (which is carried out with the coils of the set of Current flows through the coil. Then, in the first two-phase excitation period T 1 , the current increases from zero, so this period T 1
On the other hand, the average current during the one-phase excitation period T 11 is large because the current is increased starting from the state where the current is already being supplied from the low voltage source. Therefore, the coil current of one set during one-phase excitation can be made approximately equal to the sum of the two sets of coil currents during two-phase excitation.

また、1相励磁のコイル電流は直前の期間でス
テツプモータが停止していようが、連続回転して
いようが常に同じ値となり、起動時のトルクが著
しく低下するようなことはない。
In addition, the coil current of one-phase excitation always has the same value regardless of whether the step motor stopped during the previous period or whether it rotated continuously, and the torque at the time of starting does not drop significantly.

以上説明したように、本発明によれば、起動時
のトルク特性も連続回転時のトルク特性もバラツ
キが少なく、スムーズに起動・回転させ得るステ
ツプモータの駆動を行うことが可能である。
As described above, according to the present invention, there is little variation in the torque characteristics during startup and during continuous rotation, and it is possible to drive a step motor that can be started and rotated smoothly.

なお、上記実施例においては、4相ステツプモ
ータの場合について説明したが本発明はこれに限
定されるものでなく、3相もしくは5相以上のス
テツプモータにも同様に適用し得る。また、駆動
回路も第8図に示すものに限定されるものでない
ことは無論である。
In the above embodiment, the case of a four-phase step motor has been described, but the present invention is not limited thereto, and can be similarly applied to a three-phase, five-phase or more step motor. Furthermore, it goes without saying that the drive circuit is not limited to that shown in FIG.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図は従来の駆動方式を説明す
るための図、第5図ないし第8図は本発明の一実
施例を説明するための図であり、第5図は各コイ
ルの励磁動作を説明するための制御信号および励
磁電流を示す図、第6図は1相励磁から2相励磁
に切替る起動を行うときの励磁電流を示す図、第
7図は2相励磁から1相励磁に切替る起動を行う
ときの励磁電流を示す図、第8図はコイルの駆動
回路の一構成例を示す図である。 EH……高電圧源、EL……低電圧源、QH,QL
…スイツチング用トランジスタ、D1,D2,D3
…ダイオード、C……コイル、MM1,MM2……
モノステーブル・マルチバイブレータ、OR……
オアゲート。
Figures 1 to 4 are diagrams for explaining the conventional drive system, Figures 5 to 8 are diagrams for explaining an embodiment of the present invention, and Figure 5 is a diagram for explaining the excitation of each coil. A diagram showing the control signal and excitation current to explain the operation. Figure 6 is a diagram showing the excitation current when switching from 1-phase excitation to 2-phase excitation. Figure 7 is a diagram showing the excitation current when switching from 2-phase excitation to 1-phase excitation. FIG. 8 is a diagram showing an excitation current when starting to switch to excitation, and FIG. 8 is a diagram showing an example of the configuration of a coil drive circuit. E H ...High voltage source, E L ...Low voltage source, Q H , Q L ...
…Switching transistors, D 1 , D 2 , D 3
...Diode, C...Coil, MM 1 , MM 2 ...
Monostable multivibrator, OR...
Orgate.

Claims (1)

【特許請求の範囲】 1 回転子を各々異なる回転位置に吸引する複数
組のコイルを有するステツプモータに対し、1組
の上記コイルを励磁する1相励磁と2組の上記コ
イルを同時に励磁する2相励磁とを交互に繰返し
ながら順次各コイルの励磁を行うステツプモータ
の駆動方式であつて、 上記コイルの駆動回路は、コイルに印加する電
圧として、励磁期間中に第1の電圧を印加すると
ともに、該第1の電圧より高い第2の電圧を所定
期間印加可能に構成され、 上記コイルの励磁期間中は、上記第1の電圧を
印加するとともに、 上記励磁期間中において当該コイルの1組のみ
が励磁される1相励磁の期間および励磁順の先行
している他の組のコイルと共に2相励磁される期
間には、当該励磁の期間の前半部の所定期間にお
いて上記第1の電圧よりも高い上記第2の電圧を
印加するように各コイルの駆動回路を制御するよ
うにしたことを特徴とするステツプモータの駆動
方式。
[Scope of Claims] 1. For a step motor having multiple sets of coils that attract the rotor to different rotational positions, 1-phase excitation that excites one set of the coils and 2 that simultaneously excites two sets of the coils. This is a step motor drive method in which each coil is sequentially excited while alternately repeating phase excitation, and the coil drive circuit applies a first voltage as the voltage to the coil during the excitation period, and , is configured to be able to apply a second voltage higher than the first voltage for a predetermined period, and during the excitation period of the coils, the first voltage is applied, and only one set of the coils is applied during the excitation period. During the one-phase excitation period in which the coil is excited and the two-phase excitation period together with other sets of coils that precede the excitation order, the voltage is higher than the first voltage for a predetermined period in the first half of the excitation period. A drive method for a step motor, characterized in that a drive circuit for each coil is controlled so as to apply the high second voltage.
JP16750080A 1980-11-28 1980-11-28 Driving method for stepping motor Granted JPS5791698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16750080A JPS5791698A (en) 1980-11-28 1980-11-28 Driving method for stepping motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16750080A JPS5791698A (en) 1980-11-28 1980-11-28 Driving method for stepping motor

Publications (2)

Publication Number Publication Date
JPS5791698A JPS5791698A (en) 1982-06-07
JPH0113320B2 true JPH0113320B2 (en) 1989-03-06

Family

ID=15850828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16750080A Granted JPS5791698A (en) 1980-11-28 1980-11-28 Driving method for stepping motor

Country Status (1)

Country Link
JP (1) JPS5791698A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190595A (en) * 1987-01-30 1988-08-08 Canon Inc Driving circuit for stepping motor

Also Published As

Publication number Publication date
JPS5791698A (en) 1982-06-07

Similar Documents

Publication Publication Date Title
JP3890906B2 (en) Brushless motor drive device and motor using the same
JP5016674B2 (en) Motor control circuit, motor system, motor control method
EP1219013B1 (en) State advance controller commutation loop for brushless d.c. motors
JPS62230396A (en) Drive circuit for stepping motor
JPH0113320B2 (en)
JPS58215997A (en) Driving method for stepping motor
JP3244799B2 (en) Starting method of sensorless multi-phase DC motor
JPH1198885A (en) Method for controlling brushless motor
JPS60194797A (en) Holding circuit of pulse motor
JP5327666B2 (en) Stepping motor driving apparatus and stepping motor driving method
JP3244820B2 (en) Starting method of sensorless multi-phase DC motor
JP3298075B2 (en) Motor drive circuit
JPH04173000A (en) Driving circuit for stepping motor
JP3124397B2 (en) How to start a sensorless multi-phase DC motor
JPH07322695A (en) Circuit for controlling driving of stepping motor
JP3248281B2 (en) Rotation control method of sensorless multi-phase DC motor
JPH0773937B2 (en) Printer line feed motor control method
JP3124398B2 (en) Rotation control method of sensorless multi-phase DC motor
JPH05344792A (en) Driver for stepping motor
JPH0564494A (en) Micro angle driving method and circuit for step motor
JPS582559B2 (en) Pulse motor drive method
JPS6020795A (en) Driving method of stepping motor
JPS6359793A (en) Control of stepping motor in slot machine
JPH05284769A (en) Controller for spindle motor of magnetic disk device
JPS6225897A (en) Method and apparatus for controlling four-phase stepping motor