JPH01132962A - Electromagnetic ultrasonic wave flaw detecting method - Google Patents

Electromagnetic ultrasonic wave flaw detecting method

Info

Publication number
JPH01132962A
JPH01132962A JP62289619A JP28961987A JPH01132962A JP H01132962 A JPH01132962 A JP H01132962A JP 62289619 A JP62289619 A JP 62289619A JP 28961987 A JP28961987 A JP 28961987A JP H01132962 A JPH01132962 A JP H01132962A
Authority
JP
Japan
Prior art keywords
emat
defect
welding
wave
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62289619A
Other languages
Japanese (ja)
Inventor
Yoshimichi Yoshida
吉田 好道
Iwao Takeuchi
竹内 五輪男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62289619A priority Critical patent/JPH01132962A/en
Publication of JPH01132962A publication Critical patent/JPH01132962A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to detect initial defects in welding at an early period, by arranging electromagnetic ultrasonic wave probes (EMAT) with a welded part in-between, transmitting a surface wave from one side, receiving the wave on the other side, and measuring the change in sound pressure of the received surface wave from the absence or presence of the defect. CONSTITUTION:A backing material 16 is arranged on one surface of a part between base materials 13. A transmitting EMAT 11 is provided on the surface of the base material 13 on one side of a groove 12. A receiving EMAT 15 is provided on the surface of the base material 13 on the opposite side. At the initial period of welding, an ultrasonic surface wave 6, which is transmitted from the EMAT 11, reaches the EMAT 15 through the base material 13, welded metal 14 and the base material 13. When there is no defect, the sound pressure which is received in the EMAT 15 is high. When a defect is present, the surface wave 6, which is transmitted from the EMAT 11, is instructed with the defect and cannot make progress. Therefore, the surface wave 6 is not received with the EMAT 15. Thus, the sound pressure of the ultrasonic wave is strikingly decreased because of the defect, which has been yielded at the initial period of the welding. The received signal is processed in a processor 20, and the presence or absence of the defect is displayed.

Description

【発明の詳細な説明】 〔産業上の利用分野J 本発明は水力発電所の水圧鉄管等の鋼構造物の浴接時に
発生する欠陥検出に適用される電磁超音波探傷方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application J] The present invention relates to an electromagnetic ultrasonic flaw detection method that is applied to detecting defects that occur during bath welding of steel structures such as penstocks in hydroelectric power plants.

〔従来の技術) 水圧鉄管、lW檜、橋梁等の鋼構造物の溶接は第6図に
示すような裏当材16付浴接が行われる場合がある。
[Prior Art] When welding steel structures such as penstocks, IW cypress, and bridges, bath welding with a backing material 16 as shown in FIG. 6 is sometimes performed.

裏当材溶接は第6図のように水圧鉄管7投置用トンネル
9と水圧鉄管との間のスペースlOが狭く(最近は60
0m→300m程度となってきている)作業員(浴接作
業員、溶接部検査員)の接近か困難な場合に水圧鉄管の
内部20からのみ実施される溶接法である。
When welding the backing material, as shown in Figure 6, the space lO between the tunnel 9 for placing the penstock 7 and the penstock is narrow (recently 60
This is a welding method that is only carried out from the inside 20 of the penstock when it is difficult for workers (such as bath workers and welding area inspectors) to approach the welding area (the distance is increasing from 0 m to about 300 m).

この場合第7図に示すように、初めの数層の浴接金属1
4は欠陥17がはいシやすい。その溶接初期欠陥は全厚
浴接完了時に検出するよりも、#接と同時検出されるこ
とが望まれていた。
In this case, as shown in FIG.
4, the defect 17 is easily removed. It was desired that the initial welding defects be detected at the same time as # welding, rather than being detected at the completion of full thickness bath welding.

しかし従来のピエゾ効果等による振動素子を便り接触形
の超音波探傷法では探触子の耐熱性等の問題で、溶接時
での適用が困難なため、溶接時に初期欠陥の検出が可能
な非破壊試験法の出現が望まれていた。
However, with conventional contact-type ultrasonic flaw detection methods that use vibrating elements such as piezoelectric elements, it is difficult to apply them during welding due to problems such as the heat resistance of the probe. It was hoped that a destructive testing method would emerge.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の裂尚材溶接法において1発生し易い初期欠陥の非
破壊試験として超音波探傷法を採用する場合、試験体が
高温となるため、ピエゾ効果等による振動子を使う接触
形の従来の方法では、超音波探触子の耐熱性および耐熱
接触媒質などの問題から通用が困難であった。
When using ultrasonic flaw detection as a non-destructive test for initial defects that are likely to occur in the above-mentioned cracked material welding method, the test specimen becomes high temperature, so conventional contact-type methods using vibrators using piezo effect etc. However, it has been difficult to use this method due to problems such as the heat resistance of the ultrasonic probe and the heat-resistant couplant.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するため次の方法を用いる。 The following method is used to solve the above problems.

すなわち水圧鉄管等の@4M4溶接部の非破壊検査にお
いて1表面波を発信する!@超音波探触子(EMAT 
)を溶接部の片側に同溶接部をはさんで他方の側に表面
波を受信する電磁超音波探触子(EMAT )を配置し
、受信した表面波の音圧の欠陥有無による変化を測定す
ることにょ夛、初期の溶接欠陥の検出を行うようにした
In other words, one surface wave is transmitted during non-destructive inspection of @4M4 welds of penstocks, etc.! @Ultrasonic probe (EMAT)
) is placed on one side of the weld, and an electromagnetic ultrasound probe (EMAT) that receives surface waves is placed on the other side of the weld, and changes in the sound pressure of the received surface waves due to the presence or absence of defects are measured. In addition, the initial welding defects were detected.

〔作用) 上記方法によシ溶接中任意のときに超音波表面波が片方
から発信されるとともに他方で受信処理され、欠陥があ
れば表示される。これは電磁超音波探触子によ勺、非接
触で溶接時の高温時にも超音波の送受が可能となるから
である。
[Operation] According to the above method, at any time during welding, ultrasonic surface waves are transmitted from one side and received and processed by the other side, and any defects are displayed. This is because the electromagnetic ultrasonic probe can transmit and receive ultrasonic waves without contact even at high temperatures during welding.

また1通常(以下通常とはピエゾ効果等による振m素子
使゛用の接触形を称す)探傷法のような接触媒質が不要
となるため1通常探触子の場合の耐熱構造や採湯終了後
の接触媒質の処理などが不要となる。
In addition, 1) Normal (hereinafter "normal" refers to a contact type using a vibrating element using a piezo effect, etc.) does not require a couplant like in the flaw detection method. There is no need for subsequent treatment of the couplant.

このようにして発生しやすい初期の欠陥が容易に検出で
きるようになる。
In this way, early defects that are likely to occur can be easily detected.

〔実施例」 水力発電所水圧鉄管の片面自動溶接部の非破壊試験への
本発明の電凪超音波探傷方法を適用した一実施例を第1
図ないし第5図により説明する。
[Example] A first example in which the electric calm ultrasonic flaw detection method of the present invention is applied to a non-destructive test of a one-sided automatic welding part of a penstock pipe in a hydroelectric power plant is described below.
This will be explained with reference to FIGS.

第1図は本来流側の構成図及び説明図で欠陥のない場合
を示す。第2図は同じく欠陥のめる場合を示す。第3図
は第1図の開先々端部の拡大図、第4図は電磁超音波探
触子(EMAT)の説明図、第5図は第4図のコイル部
の拡大図である。
FIG. 1 is a structural diagram and an explanatory diagram of the flow side, and shows the case where there are no defects. FIG. 2 also shows the case where defects are covered. 3 is an enlarged view of each end of the groove shown in FIG. 1, FIG. 4 is an explanatory view of an electromagnetic ultrasound probe (EMAT), and FIG. 5 is an enlarged view of the coil portion of FIG. 4.

第1図にて、母材13間の片面には過当材16が配設さ
れる。開先12の片側の母材13の表面に発信用OEM
AT 11と、同EMAT11と対向した反対片側の表
面に受信用EMAT15が配設される。受信用EMAT
15の出力は処理装置20に接続される。
In FIG. 1, an overweight member 16 is disposed on one side between the base materials 13. OEM for sending on the surface of the base material 13 on one side of the groove 12
A reception EMAT 15 is disposed on the surface of the AT 11 and the opposite side facing the EMAT 11. EMAT for reception
The output of 15 is connected to a processing device 20.

以上の構成において、溶接初期に発信用のEMATII
よ〕送信された超音波表面波6は第1図に示すように母
材13.!接金域14゜母材13を経て受信用EMAT
 15に到達する。
In the above configuration, EMAT II for transmitting at the initial stage of welding.
] The transmitted ultrasonic surface waves 6 are transmitted to the base material 13 as shown in FIG. ! Welding area 14゜ Receiving EMAT via base metal 13
Reach 15.

この場合表面波は裏当材16中を伝播しないので減衰の
恐れはない。
In this case, the surface waves do not propagate through the backing material 16, so there is no risk of attenuation.

第1図に示すよりに無欠陥の場合は受信用EMAT15
で受信される音圧は高いが、第2図に示すような欠陥が
存在すると、発信用gMAT11から発信された表面波
6は欠、陥17に妨げられて進行が不可能となり、受信
用EMAT15で受信できなくなる。従ってR接の初期
に発生する欠陥による超音波音圧の著しい低下を生ずる
。この受イg信号が処理装置20で処理され欠陥の有無
が表示される。
If there is no defect as shown in Figure 1, the receiving EMAT15
Although the sound pressure received by the transmitting gMAT 11 is high, if there is a defect as shown in FIG. You will not be able to receive data. Therefore, the ultrasonic sound pressure is significantly lowered due to the defects that occur at the beginning of R contact. This reception signal is processed by the processing device 20, and the presence or absence of a defect is displayed.

なお表面波6が開先12面に沿って進行するため、第1
図の開先々端コーナ一部18は表面波の伝播の妨害とな
る。従って第3図に示すよりに、少し丸味をおびる程度
の加工19を行うと伝播が容易となる。
Note that since the surface wave 6 travels along the groove 12 surface, the first
The beveled corner portions 18 in the figure impede the propagation of surface waves. Therefore, as shown in FIG. 3, if the processing 19 is performed to give a slightly rounder shape, the propagation will be easier.

前記阪表面波用電低超音波探触子(EMAT)の構成例
と作用を第4図、第5図により説明する。
An example of the structure and operation of the electromagnetic ultrasonic probe for surface waves (EMAT) will be explained with reference to FIGS. 4 and 5.

電磁石1は励磁コイル2により低化され試験体3中では
その表面4に平行な方向に磁界が発生している。一方電
磁石1の磁極間に配設さnるコイル5は上から見ると第
5図のよりな形tしておシ、被検体表面近く即ち非接触
におかれる。
The electromagnet 1 is lowered by the excitation coil 2, and a magnetic field is generated in the test specimen 3 in a direction parallel to its surface 4. On the other hand, the coil 5 disposed between the magnetic poles of the electromagnet 1 has a twisted shape as shown in FIG. 5 when viewed from above, and is placed close to the surface of the subject, that is, without contact.

このコイル5のピッチPをコイル5に加える嶋周波電流
の波長の%とすることによって1表面波6が得られる。
One surface wave 6 can be obtained by setting the pitch P of the coil 5 to % of the wavelength of the island frequency current applied to the coil 5.

なお図中Jは上記コイル5による渦電流、Fはそれに働
くローレンツ力を示す。
In the figure, J indicates the eddy current caused by the coil 5, and F indicates the Lorentz force acting on it.

なお1本実施例に表面波EMATt−適用する理由は、
第1表のEMAT法と通常超音波法との比較表に示すよ
うにEMAT法は一般的に低周波であるため試験体への
透入深さが大きく通常の超音波表面波法に比べて、溶接
の初期欠陥の検出性が良好なためである。
The reason for applying the surface wave EMATt to this example is as follows.
As shown in the comparison table between the EMAT method and the conventional ultrasonic method in Table 1, the EMAT method generally uses low frequency waves, so it has a greater penetration depth into the specimen than the regular ultrasonic surface wave method. This is because the detectability of initial defects in welding is good.

第  1  表 またこの場仕EMATは耐熱性があl)、非接触形であ
るだめ接M媒質が不要となり、適用が容易であることは
言うまでもない。
Table 1 In addition, it goes without saying that the in-situ EMAT has good heat resistance and is easy to apply since it is a non-contact type and does not require a contact medium.

さらに接触媒IX′c使用する通常の場合は探触子の押
え方が大変むずかしいが、EMATは容易なため、自動
化にも有利である。
Furthermore, in the normal case of using the contact catalyst IX'c, it is very difficult to hold the probe, but since EMAT is easy, it is also advantageous for automation.

以上のよ、うにして初期溶接部の欠陥が容易に検出でき
る。
As described above, defects in the initial weld can be easily detected.

〔発明の効果」 本発明の方法を採用することにより1片側自動浴接で発
生し易い、溶接の初期欠陥を早期に検出できるようにな
り、欠陥部の早期発見・修理が可能となり、コスト的、
工程的1品質的に優れる。
[Effects of the Invention] By adopting the method of the present invention, initial defects in welding that are likely to occur in one-sided automatic bath welding can be detected at an early stage, and defects can be detected and repaired at an early stage, reducing costs. ,
Excellent in terms of process and quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例としての表面波′亀昌超音波
探湯方法のgt成と溶接初期人前の検出原理図(無欠陥
時)、第2図は同上図(欠陥存在時)、第3図は第1図
の開先々端の拡大図。 第4図は弐面狡用E M A ’l’の構成例と発生原
理図、第5図は同上コイル部分を示す図、第6図は従来
例又は実施例の水力発電所水圧鉄管の溶接部断面図、第
7図は第6図の溶接部拡大図である。 図中。 1・・・tff1石、      2・・・励磁コイル
、3・・・試験体、      4・・・試験体の表面
。 5・・・コイル、      6・・・表面波、F・・
・ローレンツ力、J・・・渦電流、P・・・コイル(5
)間ピッチ。 7・・・水圧鉄管、     8・・・片面浴接部、9
・・・トンネル、     10・・・スペース。 11・・・EMAT(送信用) 12・・・開先、      13・・・母材。 14・・・溶接金属、 15・・・EMAT(受信用)。 16・・1j材、     17・・・欠陥。 18・・・開先々端部、    19・・・丸味加工。 20・・・水圧鉄管内部、 21・・・表面波の進行方向。 代理人 弁理士  坂 間   暁  外2名躬3閃 す 第5図 86局 毛q図 /4=
Fig. 1 is a diagram of the gt formation and early welding detection principle of the surface wave 'Kamesho ultrasonic metal exploration method as an embodiment of the present invention (when there are no defects), Fig. 2 is the same as above (when defects exist), FIG. 3 is an enlarged view of each end of the groove in FIG. 1. Fig. 4 shows an example of the configuration of Nimen Kogyo EM A 'l' and a diagram of its generation principle, Fig. 5 shows the coil part of the same as above, and Fig. 6 shows a welded part of a penstock pipe in a conventional or working example of a hydroelectric power plant. The sectional view, FIG. 7, is an enlarged view of the welded portion in FIG. 6. In the figure. 1... TFF1 stone, 2... Excitation coil, 3... Test object, 4... Surface of test object. 5...Coil, 6...Surface wave, F...
・Lorentz force, J... eddy current, P... coil (5
) interval pitch. 7... Penstock, 8... Single side bath connection, 9
...tunnel, 10...space. 11... EMAT (for transmission) 12... Bevel, 13... Base material. 14...Welding metal, 15...EMAT (for reception). 16...1j material, 17...defect. 18... Grooved ends, 19... Rounding. 20... Inside the penstock, 21... Direction of movement of surface waves. Agent Patent Attorney Akatsuki Sakama Figure 5 86 Figure 4 =

Claims (1)

【特許請求の範囲】[Claims] 水圧鉄管等の鋼構溶接部の非破壊検査において、表面波
を発信する電磁超音波探触子を溶接部の片側に同溶接部
をはさんで他方の側に表面波を受信する電磁超音波探触
子を配置し、受信した表面波の音圧の欠陥有無による変
化を測定することにより、初期の溶接欠陥の検出を行う
ことを特徴とする電磁超音波探傷方法。
In non-destructive testing of welded steel structures such as penstocks, an electromagnetic ultrasonic probe that emits surface waves is placed on one side of the weld, and the other side receives the surface waves. An electromagnetic ultrasonic flaw detection method characterized by detecting initial welding defects by arranging a probe and measuring changes in the sound pressure of received surface waves depending on the presence or absence of defects.
JP62289619A 1987-11-18 1987-11-18 Electromagnetic ultrasonic wave flaw detecting method Pending JPH01132962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62289619A JPH01132962A (en) 1987-11-18 1987-11-18 Electromagnetic ultrasonic wave flaw detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62289619A JPH01132962A (en) 1987-11-18 1987-11-18 Electromagnetic ultrasonic wave flaw detecting method

Publications (1)

Publication Number Publication Date
JPH01132962A true JPH01132962A (en) 1989-05-25

Family

ID=17745580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62289619A Pending JPH01132962A (en) 1987-11-18 1987-11-18 Electromagnetic ultrasonic wave flaw detecting method

Country Status (1)

Country Link
JP (1) JPH01132962A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109844517A (en) * 2016-10-19 2019-06-04 塞佩姆股份公司 The method for automaticly inspecting the welding bead in the slot for being deposited on and being formed between two sheet metals to be assembled

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109844517A (en) * 2016-10-19 2019-06-04 塞佩姆股份公司 The method for automaticly inspecting the welding bead in the slot for being deposited on and being formed between two sheet metals to be assembled
US11585788B2 (en) * 2016-10-19 2023-02-21 Saipem S.A Method for automatically inspecting a weld bead deposited in a chamfer formed between two metal pieces to be assembled

Similar Documents

Publication Publication Date Title
Thring et al. Focused Rayleigh wave EMAT for characterisation of surface-breaking defects
Alleyne et al. Optimization of Lamb wave inspection techniques
KR101134431B1 (en) Ultrasonic scanning device and method
Nakamura et al. Inspection of stress corrosion cracking in welded stainless steel pipe using point-focusing electromagnetic-acoustic transducer
US3895685A (en) Method and apparatus for ultrasonic inspection of weldments
Yamamoto et al. Defect detection in thick weld structure using welding in-process laser ultrasonic testing system
Nakamura et al. Mode conversion and total reflection of torsional waves for pipe inspection
US20110296922A1 (en) Emat for inspecting thick-section welds and weld overlays during the welding process
JP2011163814A (en) Ultrasonic flaw detection testing method
JP2002062281A (en) Flaw depth measuring method and its device
Shankar et al. Characterizing Halbach EMAT configurations for SH0 ultrasonic waves
JPH0210261A (en) Measurement of intercrystalline corrosion
JPWO2020039850A1 (en) Bonding interface evaluation method and bonding interface evaluation device
US4586381A (en) Nondestructive ultrasonic transducer
JPH01132962A (en) Electromagnetic ultrasonic wave flaw detecting method
KR101351315B1 (en) Line-contact surface wave guide wedge apparatus
JP2016050811A (en) Ultrasonic flaw detector and ultrasonic flaw detection method based on tofd flaw detection technique
JP2004077292A (en) Method and device for inspecting stress corrosion cracking
JP2881658B2 (en) Ultrasonic testing equipment for pipe structures
AU2017345361B2 (en) Method for automatically inspecting a weld bead deposited in a chamfer formed between two metal pieces to be assembled
RU2644438C1 (en) Method of ultrasonic controlling surface and subsurface defects of metal products and device for its implementation
Gao et al. Ultrasonic inspection of partially completed welds using EMAT-generated surface wave technology
Li et al. Weld defect detection using high frequency SH guided wave transducers based on magnetostrictive mechanism
Takatsubo et al. Generation laser scanning method for visualizing ultrasonic waves propagating on 3-D objects
JP2605352B2 (en) Ultrasonic flaw detector