JPH01132173A - Solar cell - Google Patents
Solar cellInfo
- Publication number
- JPH01132173A JPH01132173A JP63210358A JP21035888A JPH01132173A JP H01132173 A JPH01132173 A JP H01132173A JP 63210358 A JP63210358 A JP 63210358A JP 21035888 A JP21035888 A JP 21035888A JP H01132173 A JPH01132173 A JP H01132173A
- Authority
- JP
- Japan
- Prior art keywords
- nucleation
- crystal
- type
- single crystal
- solar cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 claims abstract description 95
- 230000006911 nucleation Effects 0.000 claims abstract description 54
- 238000010899 nucleation Methods 0.000 claims abstract description 54
- 239000004065 semiconductor Substances 0.000 claims abstract description 24
- 239000000758 substrate Substances 0.000 abstract description 35
- 238000000034 method Methods 0.000 abstract description 21
- 238000005530 etching Methods 0.000 abstract description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 7
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 4
- 229910052681 coesite Inorganic materials 0.000 abstract description 3
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 3
- 239000000377 silicon dioxide Substances 0.000 abstract description 3
- 229910052682 stishovite Inorganic materials 0.000 abstract description 3
- 229910052905 tridymite Inorganic materials 0.000 abstract description 3
- 239000000463 material Substances 0.000 description 27
- 238000000151 deposition Methods 0.000 description 21
- 239000007789 gas Substances 0.000 description 19
- 239000010408 film Substances 0.000 description 18
- 230000008021 deposition Effects 0.000 description 14
- 238000010586 diagram Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000010409 thin film Substances 0.000 description 7
- 229910052581 Si3N4 Inorganic materials 0.000 description 5
- 239000002019 doping agent Substances 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910005091 Si3N Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、太陽電池に関し、より詳細には、エネルギー
変換効率が良好な集光タイプの太陽電池に係る。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a solar cell, and more particularly to a concentrating type solar cell with good energy conversion efficiency.
方法に関する。Regarding the method.
[従来技術]
太陽電池に関する大きな技術的課題であるエネルギー変
換効率の向上に向けて従来いろいろな方策が試みられて
きた。[Prior Art] Various measures have been attempted in the past to improve energy conversion efficiency, which is a major technical issue regarding solar cells.
ひとつには太陽電池の機能部分をなす半導体の結晶性の
向上がある。即ち非晶質よりは多結晶、多結晶よりは単
結晶たることが望ましい。しかしながら半導体単結晶基
板を用いることは、大面積化及び低コストの点で不利で
ある。One of these is an improvement in the crystallinity of semiconductors, which form the functional parts of solar cells. That is, polycrystalline is preferable to amorphous, and single crystal is preferable to polycrystalline. However, using a semiconductor single crystal substrate is disadvantageous in terms of large area and low cost.
一方、太陽電池受光面の反射率の低減もエネルギー変換
効率の向上に有効である。そこで、受光面表面にMgF
、やTag、からなる反射防止膜を設ける方法が用いら
れている。それでも受光面表面は平坦鏡面なので、幾分
の反射は避は難い。On the other hand, reducing the reflectance of the solar cell light-receiving surface is also effective in improving energy conversion efficiency. Therefore, MgF on the surface of the light-receiving surface.
A method of providing an antireflection film consisting of , or Tag is used. Still, since the light-receiving surface is a flat mirror surface, some reflection is unavoidable.
そのため、textured 5ufaceあるいはb
lacksurfaceと言われる、第1図に示す断面
形状の受光面を有する、いわゆる集光タイプの太陽電池
が提案されている。第1図のような表面構造の受光面に
光が入射した場合、ひとつの面で反射された光は隣接す
る面では反射されないので全体として反射が低減する。Therefore, textured 5uface or b
A so-called concentrating type solar cell has been proposed, which has a light-receiving surface called a rack surface and having a cross-sectional shape shown in FIG. When light is incident on a light-receiving surface having a surface structure as shown in FIG. 1, the light reflected from one surface is not reflected from an adjacent surface, so that the reflection is reduced as a whole.
しかるに、従来、集光タイプの太陽電池としては、基板
としてSii結晶基板を用い、その表面をエツチングし
たものが用いられていた。ところがこのような表面加工
を施すには、たとえば5i(100)面に対して選択エ
ツチングをする必要がある。すなわち、従来の集光タイ
プの太陽電池では、エツチングの工程が増えてしまう為
にこのような表面処理の適用は制限される。さらに、基
板としてSi単結晶基板を用いなければならないため、
基板温度の上昇に伴ない太陽電池の機能が低下してしま
う。そこで、基板として任意の基板を選択しつる集光タ
イプの太陽電池の出現が望まれていた。However, in the past, concentrating type solar cells have used Sii crystal substrates whose surfaces have been etched. However, in order to perform such surface processing, it is necessary to perform selective etching on, for example, the 5i (100) plane. That is, in conventional concentrating type solar cells, the application of such surface treatment is limited because the etching process is increased. Furthermore, since a Si single crystal substrate must be used as the substrate,
As the substrate temperature rises, the functionality of the solar cell deteriorates. Therefore, it has been desired to develop a solar cell of a concentrating type in which an arbitrary substrate can be selected as the substrate.
本発明は上記従来技術に鑑み、単結晶基板を用いること
なく、受光面に上記の如き表面構造をもった高効率の太
陽電池を提供することを目的とする。In view of the above-mentioned prior art, an object of the present invention is to provide a highly efficient solar cell having the above-mentioned surface structure on the light-receiving surface without using a single crystal substrate.
また発明はこの様な太陽電池を製造するに際し、エツチ
ングなどの複雑な工程は必要としない太陽電池を提供す
ることを目的とする。Another object of the invention is to provide a solar cell that does not require complicated processes such as etching when manufacturing such a solar cell.
[問題点を解決するための手段]
上記問題点は、非核形成面に設けられた、該非核形成面
よりも核形成密度が十分大きく、かつ、単一の核だけが
発生する程度に微小な表面積の核形成面に基づき形成さ
れた、表面が山型ファセット状の半導体結晶からなり、
該山型ファセット状の表面が受光面を形成していること
を特徴とする太陽電池によって解決される。[Means for solving the problem] The above problem is caused by the problem that the nucleation density is sufficiently higher than that of the non-nucleation surface and the nucleation density is sufficiently small that only a single nucleus is generated. Consists of a semiconductor crystal with a mountain-shaped facet-like surface formed based on the nucleation surface of the surface area,
The problem is solved by a solar cell characterized in that the chevron-shaped facet-like surface forms a light-receiving surface.
[作用]
本発明の大きな特徴の1つは、選択的堆積法原理を利用
している点である。[Operation] One of the major features of the present invention is that it utilizes the principle of selective deposition.
ここで基体として板状体(即ち基板)を用いた場合の選
択的堆積法の一般的な原理について説明する。Here, the general principle of the selective deposition method when a plate-like body (ie, a substrate) is used as the base will be explained.
選択的堆積法とは、表面エネルギ′−1付着係数、脱離
係数、表面拡散速度等という薄膜形成過程での核形成を
左右する因子の材料間での差を利用して、基板上に選択
的に薄膜を形成する方法である。第2図(A)および(
B)は選択堆積法の説明図である。まず同図(A)に示
すように、基板上に基板1と上記因子の異なる材料から
成る核形成面となる薄膜2を所望部分に形成する。そし
て、適当な堆積条件によって適当な材料から成る薄膜の
堆積を行うと、堆積物3は薄膜2上にのみ成長し、基体
1の非核形成面5上には成長しないという現象が生じさ
せることができる。この現象を利用することで、自己整
合的に成形された堆積物3を成長させることができ、従
来のようなレジストを用いたりソゲラフイエ程の省略が
可能となる。The selective deposition method utilizes the differences between materials in factors that affect nucleation during the thin film formation process, such as surface energy '-1 attachment coefficient, desorption coefficient, and surface diffusion rate. This is a method to form a thin film in a specific manner. Figure 2 (A) and (
B) is an explanatory diagram of the selective deposition method. First, as shown in FIG. 2A, a thin film 2, which becomes a nucleation surface and is made of a material having different factors from that of the substrate 1, is formed on a desired portion of the substrate. When a thin film made of an appropriate material is deposited under appropriate deposition conditions, a phenomenon may occur in which the deposit 3 grows only on the thin film 2 and does not grow on the non-nucleation surface 5 of the substrate 1. can. By utilizing this phenomenon, it is possible to grow a deposit 3 shaped in a self-aligned manner, and it becomes possible to use a conventional resist or to omit the conventional resist.
このような選択的堆積法を行うことができる材料として
は、例えば、基板1としてSio2、薄n’J 2とし
てSi、GaAs、Si3N4、そして堆積させる堆積
物3としてSt、W、GaAs。Examples of materials on which such a selective deposition method can be performed include Sio2 as the substrate 1, Si, GaAs, Si3N4 as the thin n'J2, and St, W, GaAs as the deposit 3.
InP等がある。There are InP etc.
なお、第3図は、5in2の表面とSi3N。In addition, FIG. 3 shows the surface of 5in2 and Si3N.
の表面とを例とし、それらの核形成密度の経時変化を示
すグラフである。3 is a graph showing changes in nucleation density over time, taking the surfaces of .
同グラフが示すように、堆積を開始して間もなく5i0
2上での核形成密度は103cm−2以下で飽和し、2
0分後でもその値はほとんど変化しない。それに対して
Si3N4上では、約4X10’cm−2で一旦飽和し
、それから10分はど変化しないが、それ以降は急激に
増大する。As the graph shows, 5i0
The nucleation density on 2 is saturated below 103 cm-2, and the nucleation density on 2
The value hardly changes even after 0 minutes. On the other hand, on Si3N4, it is saturated once at about 4X10'cm-2, does not change much for 10 minutes, but increases rapidly after that.
なお、この測定例では、S i Cu4ガスをH2ガス
で希釈し、圧力175Torr、温度1000℃の条件
下でCVD法により堆積した場合を示している。他にS
i H4、S i H2CH12゜5iHCJ2.、
SiF、等を反応ガスとして用いて、圧力、温度等を調
整することで同様の作用を得ることができる。また、真
空蒸着でも可能である。Note that this measurement example shows a case in which SiCu4 gas is diluted with H2 gas and deposited by CVD under conditions of a pressure of 175 Torr and a temperature of 1000°C. Other S
i H4, S i H2CH12゜5iHCJ2. ,
A similar effect can be obtained by using SiF, etc. as a reaction gas and adjusting pressure, temperature, etc. Vacuum deposition is also possible.
この場合、5in2膜上の核形成はほとんど問題となら
ないが、反応ガス中にたとえば60℃ガス等のエツチン
グガスを添加することで、5i02膜上での核形成を更
に抑制し、5in2膜上でのSiの堆積を皆無にするこ
とができる。In this case, nucleation on the 5in2 film is hardly a problem, but by adding an etching gas such as 60°C gas to the reaction gas, nucleation on the 5i02 film can be further suppressed. The deposition of Si can be completely eliminated.
このような現象は、5in2およびSi3N4の材料表
面の、たとえばSiに対する吸着係数、脱離係数、表面
拡散係数等の差によるところが大きいが、Si原子自身
によってSiO2が反応し、蒸気圧が高い一酸化シリコ
ンが生成されることで5in2自身がエツチングされ、
Si3N4上ではこのようなエツチング現象は生じない
ということも選択堆積を生じさせる原因となっていると
考えられる( T、Yonehara、S、Yoshi
hara、S、MiyazawaJournal of
Applied Physics 53.6839.
1982)。This phenomenon is largely due to the difference in adsorption coefficient, desorption coefficient, surface diffusion coefficient, etc. for Si on the material surfaces of 5in2 and Si3N4, but Si atoms themselves react with SiO2, causing monoxide with high vapor pressure. As silicon is generated, 5in2 itself is etched,
The fact that such an etching phenomenon does not occur on Si3N4 is also thought to be a cause of selective deposition (T, Yonehara, S, Yoshi
Hara, S, Miyazawa Journal of
Applied Physics 53.6839.
1982).
このように堆積面の材料として例えばSin。In this way, the material of the deposition surface is, for example, Sin.
およびSt、N、を選択し、堆積材料としてStを選択
すれば、同グラフに示すように十分に大きな核形成密度
差を得ることができる。なお、ここでは堆積面の材料と
して5in2が望ましいが、これに限らず、Sin、で
あっても核形成密度差を得ることができる。If St, N, and St are selected as the deposition material, a sufficiently large difference in nucleation density can be obtained as shown in the graph. Although 5 in 2 is preferable as the material of the deposition surface here, the material is not limited to this, and a difference in nucleation density can be obtained even with Sin.
もちろん、これらの材料に限定されるものではなく、核
形成密度の差が同グラフで示すように核の密度で102
倍以上あれば十分であり、後に例示するような材料によ
っても充分な選択堆積を行うことができる。Of course, it is not limited to these materials, and as shown in the same graph, the difference in nucleation density is 102
It is sufficient if it is twice or more, and sufficient selective deposition can be performed even with materials such as those exemplified later.
この核形成密度差を得る他の方法としては、5in2上
に局所的にStやN等をイオン注入して過剰にSiやN
等を有する領域を形成してもよい。又、5i02薄膜か
らSi3N4膜を微小に露出したものでもよい。Another method for obtaining this difference in nucleation density is to locally implant St, N, etc. onto the 5in2 to create an excess of Si, N, etc.
You may also form a region having the following. Alternatively, the Si3N4 film may be slightly exposed from the 5i02 thin film.
以上は選択堆積法の説明であるが、堆積面の材料より核
形成密度の十分大きい異種材料を単一の核だけが成長す
るように十分微細に形成することによって、その微細な
異種材料の存在する箇所だけに単結晶を選択的に形成さ
せる方法(選択核形成法)が本願出願人より提案されて
いる。The above is an explanation of the selective deposition method. By forming a foreign material with a sufficiently higher nucleation density than the material on the deposition surface in a sufficiently fine structure so that only a single nucleus grows, the presence of the fine foreign material The applicant of the present application has proposed a method (selective nucleation method) in which single crystals are selectively formed only at locations where the nucleation occurs.
なお、単結晶の選択的成長は、堆積表面の電子状態、特
にダングリングボンドの状態等にも左右されると考えら
れる。また、核形成密度の低い材料(例えば5i02)
はバルク材料である必要はなく、任意の材料や基板等の
表面のみに形成されて上記堆積面を成していればよい。The selective growth of single crystals is also considered to be influenced by the electronic state of the deposited surface, especially the state of dangling bonds. Also, materials with low nucleation density (e.g. 5i02)
does not need to be a bulk material, and may be formed only on the surface of an arbitrary material or substrate, forming the above-mentioned deposition surface.
第4図はその概念図である。第4図(A)は第2図(A
)と同様に核形成密度の小さな材料よりなる非核形成面
5の上に微細にパターニングされた核形成密度の大きな
材料よりなる種子結晶(seed)6を配したものであ
る。この時前記と同様に5はSiO,,6はSt、N4
でよい。FIG. 4 is a conceptual diagram thereof. Figure 4 (A) is similar to Figure 2 (A).
), finely patterned seeds 6 made of a material with a high nucleation density are arranged on a non-nucleation surface 5 made of a material with a low nucleation density. At this time, as before, 5 is SiO, 6 is St, N4
That's fine.
4は任意基板である。6の5eedは単一の核だけが発
生・成長する程度に微小な表面積、すなわち、径では1
〜2μm程度、面積では1〜4μd程度の大きさである
ことが好ましい。次に、第4図(B)は5eeda上に
単一の核から、島状の単結晶が成長した初期状態の図で
ある。この堆積は通常のエピタキシャル装置を用いて行
われ、ソースガスとしては5iCIL4,5iHCIt
、。4 is an arbitrary board. The 5eed of 6 is a surface area that is small enough to generate and grow only a single nucleus, that is, the diameter is 1
It is preferable that the size is about ~2 μm, and the area is about 1 to 4 μd. Next, FIG. 4(B) is a diagram of an initial state in which an island-shaped single crystal has grown from a single nucleus on 5eeda. This deposition was performed using a normal epitaxial device, and the source gases were 5iCIL4, 5iHCIt.
,.
SiH2Cl12 、SiH4等が可能であることは前
述したとおりである。As mentioned above, SiH2Cl12, SiH4, etc. are possible.
ちなみに、HCJZ添加ガスはSiのエツチングの効果
があり、流量によって核形成密度のコントロールができ
る。5eed6が2μm角のとき、流量比(1/mi
n) S i H2CIt2 : HCj2 :H2
=1.2:1.6:100、温度960℃、圧力150
Torrが適当であった。上の条件で成長させると島状
の単結晶7は全て単結晶となる。Incidentally, the HCJZ additive gas has the effect of etching Si, and the nucleation density can be controlled by adjusting the flow rate. When 5eed6 is 2 μm square, the flow rate ratio (1/mi
n) S i H2CIt2 : HCj2 :H2
=1.2:1.6:100, temperature 960℃, pressure 150
Torr was appropriate. When grown under the above conditions, all the island-shaped single crystals 7 become single crystals.
次に第4図(C)は島状の単結晶7を選択的に成長させ
たものである。すなわち、たとえば、上の条件で堆積を
行えば、非核形成面(S L 02膜)5上には新しい
核が発生せずに島状の単結晶7のみが成長して大きな単
結晶となる。この大きな単結晶を本明細書では以下単結
晶体と称する。Next, FIG. 4(C) shows an island-shaped single crystal 7 grown selectively. That is, for example, if deposition is performed under the above conditions, no new nuclei will be generated on the non-nucleation surface (S L 02 film) 5 and only the island-shaped single crystals 7 will grow to become large single crystals. This large single crystal is hereinafter referred to as a single crystal.
このとき第4図(C)に見られるように単結晶Stは特
有な結晶外形(ファセット)を有する。At this time, as shown in FIG. 4(C), the single crystal St has a unique crystal outer shape (facet).
従って成長した単結晶体7A上に素子を形成する場合に
は第4図(D)のように上部をラッピング等の方法で平
坦化する場合がある。Therefore, when forming an element on the grown single crystal 7A, the upper part may be flattened by lapping or the like as shown in FIG. 4(D).
しかるに、本発明では、このファセットを有効に利用し
ようとするものである。However, the present invention attempts to utilize this facet effectively.
上記の如き方法で任意基板の堆積面上に島状の単結晶を
選択的に成長させた場合、その単結晶は、特定のファセ
ット面で囲まれる。これは表面エネルギーと成長速度の
異方性から生ずるものと考えられる。したがって1つの
単結晶の外形は第13図に示すような山型をなすことに
なる。そこで微細な核形成面を互いに充分な距離だけで
離して2次元マトリクス状に堆積面上に配し、それらか
らそれぞれ成長した山型の単結晶が互いの粒界を接する
ようになるまで成長させるから、表面加工を施すことな
く、第2図に示すような表面構造を自動的に得ることが
できる。When island-shaped single crystals are selectively grown on the deposition surface of an arbitrary substrate by the method described above, the single crystals are surrounded by specific facets. This is thought to result from the anisotropy of surface energy and growth rate. Therefore, the outer shape of one single crystal is mountain-shaped as shown in FIG. Therefore, fine nucleation planes are separated from each other by a sufficient distance and arranged in a two-dimensional matrix on the deposition surface, and the mountain-shaped single crystals grown from these planes are grown until their grain boundaries touch each other. From this, a surface structure as shown in FIG. 2 can be automatically obtained without surface treatment.
[実施態様例]
(第1実施態様例)
第6図から第10図に基き本発明の第1実施態様例を説
明する。[Embodiment Example] (First Embodiment Example) A first embodiment example of the present invention will be described based on FIGS. 6 to 10.
第6図に示すように、任意基板4の上に、金属をスパッ
ター蒸着し、その後パターニングしてn型半導体用の電
極(第1電極)2aとp型半導体用の電極(第2電極)
2bを櫛型に形成する。電極15a、15b間の距離は
所望する半導体結晶の大きさに合せ適宜決定すればよい
。As shown in FIG. 6, metal is sputter-deposited on an arbitrary substrate 4, and then patterned to form an electrode (first electrode) 2a for an n-type semiconductor and an electrode (second electrode) for a p-type semiconductor.
2b is formed into a comb shape. The distance between the electrodes 15a and 15b may be determined as appropriate depending on the desired size of the semiconductor crystal.
なお、任意基板は例えば石英、アルミナ、セラミックス
、ガラス等の絶縁物よりなり、ある程度の耐熱性を有す
るものならばよい。また、電極の材質としては、例えば
、Mo、AX、Cu、W等の核形成密度が高いものを用
いればよい。また、第1電極と第2電極とは同じ材質に
より形成してもよいし、異なる材質により形成してもよ
い。Note that the arbitrary substrate may be made of an insulating material such as quartz, alumina, ceramics, or glass, as long as it has a certain degree of heat resistance. Further, as the material of the electrode, a material having a high nucleation density such as Mo, AX, Cu, and W may be used. Further, the first electrode and the second electrode may be formed of the same material, or may be formed of different materials.
次に、第7図に示すように、例えば5in2よりなる絶
縁膜を基板4及び電極2a、2b上に堆積し、一方の電
極(本例ではn型電極2a)の上にのみコンタクトホー
ルを開は電極2aを露出させる。この時露出した電極2
aが核形成密度の高い核形成面となり、絶縁膜5が核形
成密度の低い面、すなわち非核形成面となる。Next, as shown in FIG. 7, an insulating film of, for example, 5 in 2 is deposited on the substrate 4 and the electrodes 2a, 2b, and a contact hole is opened only on one electrode (the n-type electrode 2a in this example). exposes the electrode 2a. Electrode 2 exposed at this time
A becomes a nucleation surface with a high nucleation density, and the insulating film 5 becomes a surface with a low nucleation density, that is, a non-nucleation surface.
次いで、第8図に示すように選択的核形成法を用いてn
型電極から導電型の第1の半導体結晶であるn0型St
単結晶7aを成長させる。Next, using a selective nucleation method as shown in FIG.
from the type electrode to the n0 type St which is the first semiconductor crystal of conductivity type.
A single crystal 7a is grown.
Si単結晶がある程度大ぎく成長したところで結晶形成
処理を止め(このある程度大きくなった結晶を島状の単
結晶という)、この島状のSi単結晶の各表面を熱酸化
し、その表面に5i02@(この膜は非核形成面となる
)5bを形成する。When the Si single crystal grows to a certain extent, the crystal formation process is stopped (the crystal that has grown to a certain extent is called an island-shaped single crystal), and each surface of this island-shaped Si single crystal is thermally oxidized, and 5i02 is applied to the surface. @ (This film becomes a non-nucleation surface) 5b is formed.
n型車結晶Slの大きさは任意であるが、約5〜6μm
が好ましい。The size of the n-type wheel crystal Sl is arbitrary, but it is approximately 5 to 6 μm.
is preferred.
次に、第9図に示すように、p復電極上のS i O,
膜5に、コンタクトホールを開ける。この時n9型の島
状単結晶Siの表面には核形成密度の低いS i O,
膜5aがあるので、p復電極上のみで核形成が生じる
次いで第2の半導体結晶であるp型Si単結晶7bを成
長させる。Next, as shown in FIG. 9, S i O,
A contact hole is made in the membrane 5. At this time, the surface of the n9-type island-like single crystal Si contains SiO, which has a low nucleation density.
Since the film 5a is present, nucleation occurs only on the p-type electrode.Next, a p-type Si single crystal 7b, which is a second semiconductor crystal, is grown.
次に、第10図に示すように、n0型の島状の単結晶表
面の酸化膜5aを適宜のエツチング液、例えばHF溶液
でエツチングし、再び、島状のSi単結晶面を露出させ
る。それからこのnI型結晶とp型結晶を核形成面とし
てi型半導体結晶を成長させ、Siの単結晶体7A (
i型半導体)を得る。成長を続けると結晶同士が隣接し
たところで結晶粒界が形成され、第10図のようにファ
セットが現れる。Next, as shown in FIG. 10, the oxide film 5a on the surface of the n0 type island-shaped single crystal is etched with a suitable etching solution, for example, an HF solution, to expose the island-shaped Si single crystal surface again. Then, an i-type semiconductor crystal is grown using the nI-type crystal and the p-type crystal as nucleation surfaces, and a Si single crystal 7A (
i-type semiconductor). As the growth continues, grain boundaries are formed where the crystals are adjacent to each other, and facets appear as shown in FIG.
(第2実施態様例)
本発明の第2実施態様例を第11〜13図を用いて説明
する。(Second Embodiment) A second embodiment of the present invention will be described with reference to FIGS. 11 to 13.
まず第11図に示すように例えばアルミナ基板4の全面
に例えばAIL、Mo、Cu、W等の金属材料をスパッ
タ蒸着し、次いでバターニングを行うことにより下部電
極(第2電極)2bを形成する。この上に例えば310
.@5を2μm角のコンタクトホールを2次元マトリク
ス状に設ける。First, as shown in FIG. 11, a metal material such as AIL, Mo, Cu, W, etc. is sputter-deposited on the entire surface of the alumina substrate 4, and then buttering is performed to form the lower electrode (second electrode) 2b. . For example, 310
.. @5 2 μm square contact holes are provided in a two-dimensional matrix.
ここで基板4の材料はアルミナに限定される訳ではなく
、耐熱性の高い材料であれば任意である。Here, the material of the substrate 4 is not limited to alumina, but may be any material as long as it has high heat resistance.
また下部電極2bの材料もAJ!、Moのほか、W、C
u等の核形成密度の高いものであればよい。Also, the material of the lower electrode 2b is AJ! , Mo, W, C
Any material having a high nucleation density such as u may be used.
第11図の構成において5in2膜5上ではSi核形成
密度が小さく、これが非核形成面(NDs)となる。一
方、AIL、Mo等の金属材料はSin、上よりもSi
の核形成密度が大きいのでこれが核形成面(NDL)と
なる。In the configuration shown in FIG. 11, the Si nucleation density is low on the 5in2 film 5, and this becomes a non-nucleation surface (NDs). On the other hand, metal materials such as AIL and Mo are more Si than Si.
Since the nucleation density is large, this becomes the nucleation surface (NDL).
次いで、例えば熱CVD法により、例えばSiの結晶形
成処理を施せは、第12図に示すとおり、下部電極2b
上のみにSi単結晶の核が発生し、その核から島状単結
晶7bが成長する。Next, as shown in FIG. 12, the lower electrode 2b is subjected to, for example, a Si crystal formation treatment by, for example, a thermal CVD method.
A Si single crystal nucleus is generated only on the top, and an island-shaped single crystal 7b grows from the nucleus.
なお、この際適宜の元素をドーピングすれば所望の導電
型の半導体結晶を形成することができる。Note that at this time, by doping with an appropriate element, a semiconductor crystal of a desired conductivity type can be formed.
次に、島状単結晶7bとは反対導電型の結晶を形成する
ためにドーパントを変え、単結晶体7Aを形成する(第
13図参照)。Next, in order to form a crystal of a conductivity type opposite to that of the island-shaped single crystal 7b, the dopant is changed to form a single crystal body 7A (see FIG. 13).
なお、第13図に示される多結晶体の、例えば粒界部分
に櫛型電極8を蒸着し、上部電極(第1電極)2aを形
成すれば太陽電池が形成される。Note that a solar cell is formed by depositing a comb-shaped electrode 8 on, for example, the grain boundary portion of the polycrystalline body shown in FIG. 13 and forming an upper electrode (first electrode) 2a.
[実施例]
(第1実施例)
まず第6図はセラミックガラスからなる基板4の上に、
AJ2金属をスパッタ蒸着し、その後パターニングして
n型半導体用の電極(第1電極)2aとp型半導体用の
電極(第2電極)2bを櫛型に形成した。第6図(A)
は側断面図、第6図(B)は斜視図である。pはp型電
極、nはn型電極を示す。また、電極15a、15b間
の距離は中心間距離で40μmとし、電極の幅は20μ
m1厚さ0.6μmとした。[Example] (First Example) First, in FIG. 6, on a substrate 4 made of ceramic glass,
AJ2 metal was sputter-deposited and then patterned to form an n-type semiconductor electrode (first electrode) 2a and a p-type semiconductor electrode (second electrode) 2b in a comb shape. Figure 6 (A)
is a side sectional view, and FIG. 6(B) is a perspective view. p indicates a p-type electrode, and n indicates an n-type electrode. In addition, the distance between the electrodes 15a and 15b is 40 μm between centers, and the width of the electrodes is 20 μm.
The m1 thickness was set to 0.6 μm.
次に、第7図に示すように、Sin、よりなる絶縁1I
I5をCVD装置を用いて500人厚堆積積し、n型電
極にのみコンタクトホールを開けた。コンタクトホール
はRI E (Reactive IonEtchi
ng)装置を用い2μm角の大きさとした。Next, as shown in FIG.
I5 was deposited to a thickness of 500 using a CVD device, and a contact hole was made only in the n-type electrode. The contact hole is RI E (Reactive IonEtchi)
ng) device to a size of 2 μm square.
次いで、第8図に示すように選択的核形成法を用いてn
型電極上に導電型の第1の半導体結晶であるn′1型S
t単結晶7aを成長させた。ここでn型Si単結晶の形
成は、ソースガスとしてS i H2CJ22 、HC
II、H2の混合ガスを用い、5iHz CJ12:H
Cjl:H2=i、2:1.4:100の流量比(ぶ7
m1n)で流した。ドーパントガスとしてPH3を用い
た。また、温度900℃、圧力150Torrで成長さ
せた。Next, using a selective nucleation method as shown in FIG.
A conductive type first semiconductor crystal, n'1 type S, is placed on the type electrode.
t single crystal 7a was grown. Here, the formation of the n-type Si single crystal uses S i H2CJ22, HC as the source gas.
II, using a mixed gas of H2, 5iHz CJ12:H
Cjl:H2=i, flow rate ratio of 2:1.4:100 (bu7
m1n). PH3 was used as a dopant gas. Further, the growth was performed at a temperature of 900° C. and a pressure of 150 Torr.
St単結晶がある程度大きく成長したところで結晶形成
処理を止め(このある程度大きくなった結晶を島状の単
結晶という)、この島状のSi単結晶の各表面を熱酸化
し、その表面にSin、膜(この膜は非核形成面となる
)5bを形成した。When the St single crystal grows to a certain extent, the crystal formation process is stopped (this crystal that has grown to a certain extent is called an island-like single crystal), and each surface of this island-like Si single crystal is thermally oxidized to coat the surface with Sin, A film 5b (this film serves as a non-nucleation surface) was formed.
Si単結晶の大きさは、本例では約5〜6μmとした。In this example, the size of the Si single crystal was approximately 5 to 6 μm.
次に、第9図に示すように、p型電極上の5i02膜5
に電極2aの場合と同じように2μmのコンタクトホー
ルを開けた。そして、n0型Si単結晶7aを成長させ
たのと同じ条件で、第2の半導体結晶であるp型St単
結晶7bを成長させた。但し、ドーパントガスとしてP
H5の代りにBH3を用いである。この時n0型の島状
Si単結晶の表面には核形成密度の低い5i02膜5a
があるので、n型Si単結晶には形成しない。Next, as shown in FIG. 9, the 5i02 film 5 on the p-type electrode is
A 2 μm contact hole was made in the same way as in the case of electrode 2a. Then, a p-type St single crystal 7b, which is a second semiconductor crystal, was grown under the same conditions as those used for growing the n0-type Si single crystal 7a. However, P as a dopant gas
BH3 was used instead of H5. At this time, the surface of the n0-type island-like Si single crystal has a 5i02 film 5a with a low nucleation density.
Therefore, it is not formed in the n-type Si single crystal.
次に、第10図に示すように、n0型の島状のSi単結
晶表面の酸化膜5aをHF溶液でエツチングして除去し
、再び島状のSi単結晶面を露出させる。それからこの
n1型St単結晶とp型Si単結晶を種としてi型半導
体結晶を形成し、Stの単結晶体7A (i型半導体)
を得た。形成の条件は、ガス流量比S i H2CIL
2 : HCl1:H,=1.2:2.0: 100、
形成温度920℃、圧力150Torrとした。成長を
続けたところ結晶同士が隣接したところで結晶粒界が形
成された。その結果、第10図のようにファセットが現
れた。このようにして形成した太陽電池は、AMIRY
照射時に開放電圧0.62V短絡電流32mA/am”
、フィルファクター0.8の電気特性を有していた。Next, as shown in FIG. 10, the oxide film 5a on the surface of the n0 type island-shaped Si single crystal is removed by etching with an HF solution, and the island-shaped Si single crystal surface is exposed again. Then, an i-type semiconductor crystal is formed using the n1-type St single crystal and p-type Si single crystal as seeds, and the St single crystal 7A (i-type semiconductor)
I got it. The conditions for formation are the gas flow rate ratio S i H2CIL
2: HCl1:H, = 1.2:2.0: 100,
The forming temperature was 920° C. and the pressure was 150 Torr. As the growth continued, grain boundaries were formed where the crystals were adjacent to each other. As a result, facets appeared as shown in FIG. The solar cell formed in this way is AMIRY
Open circuit voltage: 0.62V, short circuit current: 32mA/am during irradiation
, and had electrical properties with a fill factor of 0.8.
本例に係る太陽電池は、入射面の開口率が100%なの
で、光の入射効率が極めて良好であった。Since the solar cell according to this example had an aperture ratio of 100% on the entrance surface, the light incidence efficiency was extremely good.
(第2実施例)
本発明の第2実施例を第11〜13図を用いて説明する
。まず第11図に示すようにアルミナ基板4の全面にM
o膜を1μm厚はどスパッタ蒸着して、これを下部電極
(第2電極)2bとした。(Second Embodiment) A second embodiment of the present invention will be described using FIGS. 11 to 13. First, as shown in FIG. 11, M is applied to the entire surface of the alumina substrate 4.
An o film was sputter-deposited to a thickness of 1 μm, and this was used as the lower electrode (second electrode) 2b.
コノ上に5i02膜5をCVD法により1000人厚に
堆積し、これにリソグラフィーとRIE装置によって5
0μm間隔で2μm角のコンタクトホールを2次元マト
リクス状に設けた。A 5i02 film 5 was deposited on the substrate to a thickness of 1000 mm by CVD, and then 5
Contact holes of 2 μm square were provided in a two-dimensional matrix at 0 μm intervals.
次にこの基板に熱CVD法によりStを堆積したところ
、第12図に示すとおり、Mo上のみに発生したSt単
結晶の核から島状単結晶7bが成長してその粒径が約5
〜6μm程度になったところで成長を終えた。ただし、
結晶成長条件は以下のとおりとした。Next, when St was deposited on this substrate by the thermal CVD method, as shown in FIG.
Growth was completed when the thickness reached approximately 6 μm. however,
The crystal growth conditions were as follows.
使用ガス:5i2HCIL2 (ソースガス)BH3
(ドーパントガス)
HCJI! (エツチングガス)
H2(キャリアガス)
ガス流量比;
S 12 HCl2 : HCl2 : H2=1.
2 : 1. 6 : 100 (J2/mi n)
基板温度:900℃
なお、本例では、Bをドープしであるので、5iJIL
結晶はp型となった。Gas used: 5i2HCIL2 (source gas) BH3
(Dopant gas) HCJI! (Etching gas) H2 (Carrier gas) Gas flow rate ratio; S 12 HCl2 : HCl2 : H2=1.
2:1. 6: 100 (J2/min)
Substrate temperature: 900°C In this example, since B is doped, 5iJIL
The crystal became p-type.
次に、この上にドーパントガスとしてPH3を使用し、
第1の半導体結晶となるn型Si単結晶体7Aを選択的
エピタキシャル成長により形成した(第13図)。する
と、隣接するsi!II−結晶体7Aは互いに接し、結
晶粒界11を形成する一方で、上部にはファセット面1
0が形成された。そして、n 型31単結晶上に電極と
のコンタクト用にPH,ガス濃度を高くしたn0型Si
j$結晶層9を1μm厚に形成した。結晶成長条件は、
ガス流量比5i2H(、Q□ :HCl2:H2=l、
2:1.6: 100 (j2/m1n)、形成温度9
20℃、圧力150Torrとした。Next, use PH3 as a dopant gas on top of this,
An n-type Si single crystal 7A serving as the first semiconductor crystal was formed by selective epitaxial growth (FIG. 13). Then, the adjacent si! II- The crystal bodies 7A are in contact with each other and form grain boundaries 11, while facet planes 1 are formed in the upper part.
0 was formed. Then, on the n-type 31 single crystal, we made n0-type Si with high PH and gas concentration for contact with the electrode.
The j$ crystal layer 9 was formed to have a thickness of 1 μm. The crystal growth conditions are
Gas flow rate ratio 5i2H (, Q□ :HCl2:H2=l,
2:1.6: 100 (j2/m1n), formation temperature 9
The temperature was 20° C. and the pressure was 150 Torr.
最後にSt単結晶体の粒界部分にAfLの櫛型電極8を
蒸着により形成し、上部電Fi(第1電極)2aとした
。このようにして形成された太陽電池のエネルギー変換
効率を測定したところ、約16%であり良好な値が得ら
れた。これは従来の大面積、低コスト太陽電池であるア
モルファスシリコン太陽電池に比べて著しく高い変換効
率になっている。Finally, a comb-shaped electrode 8 of AfL was formed at the grain boundary portion of the St single crystal by vapor deposition to form an upper electrode Fi (first electrode) 2a. When the energy conversion efficiency of the solar cell thus formed was measured, it was found to be about 16%, a good value. This is a significantly higher conversion efficiency than amorphous silicon solar cells, which are conventional large-area, low-cost solar cells.
[発明の効果]
以上説明したように本発明によれば、次のような数々の
効果が得られる。[Effects of the Invention] As explained above, according to the present invention, the following numerous effects can be obtained.
(a)従来の単結晶太陽電池では基板がウェハに限られ
ていたのに対し、本発明に係る太陽電池おいては後工程
のプロセス温度以上の耐熱性があれば任意の基板の使用
が可能であるので、基板としてガラスのような大面積の
基板を使用できるので安価である。(a) Whereas in conventional single-crystal solar cells, the substrate is limited to wafers, in the solar cell according to the present invention, any substrate can be used as long as it has heat resistance higher than the process temperature of the subsequent process. Therefore, a large-area substrate such as glass can be used as a substrate, which is inexpensive.
(b)成長した単結晶体は、特有な外形であるファセッ
ト形をしているため、全反射角で入射する光線も、反射
後、他の結晶面で吸収され、光吸収効率の高く、ひいて
は、変換効率の高い太陽電池が得られる。(b) Since the grown single crystal has a unique facet shape, even light rays incident at the angle of total reflection are absorbed by other crystal planes after reflection, resulting in high light absorption efficiency and , solar cells with high conversion efficiency can be obtained.
(c)従来の集光タイプの太陽電池は、基板温度の上昇
により素子の機能が低下するが、本発明に係る太陽電池
では、下地基板を任意に選択できるので、熱伝導性の良
好な材質で放熱性の良い形状に加工した基板を用いるこ
とにより集光タイプで高変換効率の太陽電池が得られる
。(c) In conventional concentrating type solar cells, the functionality of the element deteriorates due to an increase in substrate temperature, but in the solar cell according to the present invention, the base substrate can be selected arbitrarily, so a material with good thermal conductivity can be used. By using a substrate processed into a shape with good heat dissipation, a solar cell of a concentrating type with high conversion efficiency can be obtained.
第1図は、集光タイプの太陽電池の受光面を示す概念図
である。第2図は遭択的堆積法の概念を示す図である。
第3図は核形成密度の時間依存性を示すグラフである。
第4図は選択核形成法の概念を示す図である。第5図は
ファセット面を有する結晶を示す斜視図である。
第6図乃至第10図は第1実施例を説明するための製造
工程図である。第11図乃至第13図は第2実施例を説
明するための製造工程図である。
1・・・基体、2・・・薄膜、2a・・・第1電極、2
b・・・第2電極(下部電極)、3・・・堆積物、4・
・・基板、5.5a、5b−非核形成面、6 ・−s
e e d(Si、N4)、7・・・島状の単結晶、7
A・・・単結晶体、7a・・・第1の半導体結晶、7b
・・・第2の半導体結晶、11・・・結晶粒界。
入射光
第2図
(A) (B)
時 間 (分)
第4図
(D)
第8図
第9図
第12図FIG. 1 is a conceptual diagram showing a light-receiving surface of a concentrating type solar cell. FIG. 2 is a diagram showing the concept of the selective deposition method. FIG. 3 is a graph showing the time dependence of nucleation density. FIG. 4 is a diagram showing the concept of the selective nucleation method. FIG. 5 is a perspective view showing a crystal with facets. 6 to 10 are manufacturing process diagrams for explaining the first embodiment. 11 to 13 are manufacturing process diagrams for explaining the second embodiment. DESCRIPTION OF SYMBOLS 1... Base body, 2... Thin film, 2a... First electrode, 2
b... Second electrode (lower electrode), 3... Deposit, 4...
・Substrate, 5.5a, 5b-non-nucleation surface, 6 ・-s
e e d (Si, N4), 7... Island-shaped single crystal, 7
A... Single crystal, 7a... First semiconductor crystal, 7b
...Second semiconductor crystal, 11...Crystal grain boundary. Incident light Figure 2 (A) (B) Time (minutes) Figure 4 (D) Figure 8 Figure 9 Figure 12
Claims (2)
形成密度が十分大きく、かつ、単一の核だけが発生する
程度に微小な表面積の核形成面に基づき形成された表面
が山型ファセット状の半導体結晶からなり、該山型ファ
セット状の表面が受光面を形成していることを特徴とす
る太陽電池。(1) A surface formed based on a nucleation surface provided on a non-nucleation surface, which has a sufficiently higher nucleation density than the non-nucleation surface and has a surface area so small that only a single nucleus is generated. 1. A solar cell comprising a semiconductor crystal having a chevron-shaped facet, the surface of the chevron-shaped facet forming a light-receiving surface.
求項1に記載の太陽電池。(2) The solar cell according to claim 1, wherein the upper electrode is provided in the valley of the mountain-shaped facet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63210358A JP2667218B2 (en) | 1987-08-24 | 1988-08-24 | Solar cell and method of manufacturing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20945687 | 1987-08-24 | ||
JP62-209456 | 1987-08-24 | ||
JP63210358A JP2667218B2 (en) | 1987-08-24 | 1988-08-24 | Solar cell and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01132173A true JPH01132173A (en) | 1989-05-24 |
JP2667218B2 JP2667218B2 (en) | 1997-10-27 |
Family
ID=26517459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63210358A Expired - Fee Related JP2667218B2 (en) | 1987-08-24 | 1988-08-24 | Solar cell and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2667218B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8972867B1 (en) | 1998-12-31 | 2015-03-03 | Flashpoint Technology, Inc. | Method and apparatus for editing heterogeneous media objects in a digital imaging device |
US8970761B2 (en) | 1997-07-09 | 2015-03-03 | Flashpoint Technology, Inc. | Method and apparatus for correcting aspect ratio in a camera graphical user interface |
US9224145B1 (en) | 2006-08-30 | 2015-12-29 | Qurio Holdings, Inc. | Venue based digital rights using capture device with digital watermarking capability |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5114282A (en) * | 1974-07-26 | 1976-02-04 | Hitachi Ltd |
-
1988
- 1988-08-24 JP JP63210358A patent/JP2667218B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5114282A (en) * | 1974-07-26 | 1976-02-04 | Hitachi Ltd |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8970761B2 (en) | 1997-07-09 | 2015-03-03 | Flashpoint Technology, Inc. | Method and apparatus for correcting aspect ratio in a camera graphical user interface |
US8972867B1 (en) | 1998-12-31 | 2015-03-03 | Flashpoint Technology, Inc. | Method and apparatus for editing heterogeneous media objects in a digital imaging device |
US9224145B1 (en) | 2006-08-30 | 2015-12-29 | Qurio Holdings, Inc. | Venue based digital rights using capture device with digital watermarking capability |
Also Published As
Publication number | Publication date |
---|---|
JP2667218B2 (en) | 1997-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5130103A (en) | Method for forming semiconductor crystal and semiconductor crystal article obtained by said method | |
US7754600B2 (en) | Methods of forming nanostructures on metal-silicide crystallites, and resulting structures and devices | |
US7705235B2 (en) | Photovoltaic device | |
JP3174486B2 (en) | Solar cell and method of manufacturing the same | |
US7202143B1 (en) | Low temperature production of large-grain polycrystalline semiconductors | |
US7601215B1 (en) | Method for rapid, controllable growth and thickness, of epitaxial silicon films | |
US6683367B1 (en) | Thin-film opto-electronic device and a method of making it | |
EP0500067B1 (en) | Photovoltaic device with layer region containing germanium therein | |
US5340410A (en) | Method for manufacturing polycrystalline silicon thin-film solar cells | |
JPH03181180A (en) | Solar battery and its manufacture | |
JPS63182872A (en) | Solar cell and its manufacture | |
US20180166603A1 (en) | Method of fabricating thin film photovoltaic devices | |
KR100450595B1 (en) | Crystalline silicon semiconductor device and method for fabricating same | |
JP2000058892A (en) | Silicon based thin film photoelectric converter | |
JPH01132173A (en) | Solar cell | |
JP2000252504A (en) | Silicon thin film optoelectric transducer device and manufacture thereof | |
JP3067821B2 (en) | Solar cell and method of manufacturing the same | |
JPH04229664A (en) | Photoelectromotive force device and its manufacture | |
JP2702304B2 (en) | Method for forming polycrystalline semiconductor layer and method for manufacturing photovoltaic device using the same | |
JP2802180B2 (en) | Solar cell manufacturing method | |
JP2833924B2 (en) | Crystal solar cell and method of manufacturing the same | |
JP2001326177A (en) | Crystalline silicon semiconductor device and method of manufacturing | |
JPH07263731A (en) | Polycrystalline silicon device | |
JPH02191321A (en) | Method of forming crystal | |
JP2001223162A (en) | Crysalline silicon semiconductor device and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |