JPH01130734A - Production of catalyst containing ruthenium - Google Patents

Production of catalyst containing ruthenium

Info

Publication number
JPH01130734A
JPH01130734A JP29006287A JP29006287A JPH01130734A JP H01130734 A JPH01130734 A JP H01130734A JP 29006287 A JP29006287 A JP 29006287A JP 29006287 A JP29006287 A JP 29006287A JP H01130734 A JPH01130734 A JP H01130734A
Authority
JP
Japan
Prior art keywords
ruthenium
carrier
catalyst
soln
contg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29006287A
Other languages
Japanese (ja)
Other versions
JP2595582B2 (en
Inventor
Ken Shiragami
白神 研
Chikahiko Nakajima
中島 親彦
Toru Koyama
徹 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP62290062A priority Critical patent/JP2595582B2/en
Publication of JPH01130734A publication Critical patent/JPH01130734A/en
Application granted granted Critical
Publication of JP2595582B2 publication Critical patent/JP2595582B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent evaporation of ruthenium from a catalyst contg. ruthenium by impregnating a carrier with a soln. contg. ruthenium, depositing ruthenium in the form of hydroxide on the carrier thereafter by adding alkali to the impregnated soln., then drying the carrier and calcining the dried carrier. CONSTITUTION:A soln. contg. a nitrate together with ruthenium alone or in combination with another metal as catalyst component is prepd. After impregnating a carrier with said soln. contg. the catalyst component, the catalyst component is transformed to hydroxide by adding alkali to the impregnated soln. and the hydroxide is deposited on the surface of the carrier. The nitric acid radical is removed as a soluble salt by filtration or decantation, if necessary by washing. A ruthenium-contg. catalyst is produced by drying and heating such as calcining, etc., after executing the above described treatment. The metal to be used as another metal is Ni, Co, etc., and preferred amt. of the alkali to be added is an equivalent amt. or a little more.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は硝酸あるいは硝酸塩を使用したルテニウム含有
触媒の製造法に関する。ルテニウムは単独で、あるいは
ニッケル、コバルト等の金属と組み合わせて水素化特に
カルボニル化合物あるいは芳香族化合物の水素化あるい
は窒素化合物の還元、フィッシャ・トロプシュ合成等の
触媒として数多く用いられ、高い活性と優れた選択性を
示す。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing a ruthenium-containing catalyst using nitric acid or a nitrate. Ruthenium is used alone or in combination with metals such as nickel and cobalt as a catalyst for hydrogenation, especially hydrogenation of carbonyl compounds or aromatic compounds, reduction of nitrogen compounds, Fischer-Tropsch synthesis, etc., and has high activity and excellent properties. Shows selectivity.

このルテニウム含有触媒の製造に際し、ニッケルあるい
はコバルト等の金属の原料化合物としては経済性、取り
扱いの容易さ更には触媒化時のアニオン除去が容易等の
理由から硝酸塩が最も一般的に用いられる。
In the production of this ruthenium-containing catalyst, nitrates are most commonly used as raw material compounds of metals such as nickel or cobalt due to their economic efficiency, ease of handling, and ease of anion removal during catalysis.

貰た、ルテニウムは入手の容易さ等よシ三塩化ルテニウ
ム硝酸ルテニウムが用いられる。
Since ruthenium is easily available, ruthenium trichloride and ruthenium nitrate are used.

(発明が解決しようとする問題点) 本発明者らはコバルトおよびルテニウムを担体に担持し
てなる触媒の製造において、ルテニウムの担持量が所定
の担持量を大幅に下廻ることをしばしば経験した。ルテ
ニウムの担持量は活性および選択性に大きな影響を及ぼ
すため、触媒製造の工程毎に方法、条件を詳細に検討し
、コバルトおよびルテニウムの原料化合物の水溶、液を
担体に含浸した後、乾燥し次いで空気雰囲気下焼成して
金属塩を熱分解し更に要すれば水素還元する触媒製造法
において、主として乾燥工程および焼成工程でルテニウ
ムが減少していることを見出した。ルテニウム化合物の
内Ru○4が揮発性を有することはよく知られているが
、原料化合物として最も一般的であシ、本発明者らも用
いた3価のルテニウム塩の酸化にょシ生成するのは酸化
物としては最も安定なRung だとされている。従来
Rub、  からRub4  を生成するためには空気
中で強熱するか、強い酸化剤の助けを必要とすると考え
られており、触媒製造時の乾燥あるいは焼成程度の穏や
かな条件でルテニウムが揮散するとは全く予想外であっ
た。
(Problems to be Solved by the Invention) In the production of catalysts in which cobalt and ruthenium are supported on a carrier, the present inventors have often experienced that the amount of ruthenium supported is significantly lower than the predetermined amount. Since the amount of ruthenium supported has a large effect on activity and selectivity, we carefully examined the methods and conditions for each catalyst manufacturing process. It has been found that in a catalyst production method in which the metal salt is then thermally decomposed by firing in an air atmosphere and further reduced with hydrogen if necessary, ruthenium is mainly reduced in the drying step and the firing step. It is well known that among ruthenium compounds, Ru○4 is volatile, but it is the most common raw material compound, and the one produced by the oxidation of the trivalent ruthenium salt used by the present inventors. is said to be the most stable oxide. Conventionally, in order to produce Rub4 from Rub, it is thought that ignition in air or the assistance of a strong oxidizing agent is required. was completely unexpected.

(問題点を解決する為の手段) 本発明者等は、上記の様な問題点を解決し、ルテニウム
揮散の少ない触媒製造法を得る為鋭意検討した結果、次
の様な知見を得た。すなわちルテニウム源が硝酸ルテニ
ウムであるか、硝酸又はコバルト等の硝酸塩と共存して
いる系において、ルテニウムのRub、  への酸化、
揮散は、硝酸又は硝酸塩の熱分解により生成する発生期
の窒素酸化物の強い酸化力により惹起されておシ、揮散
速度は温度及び窒素酸化物濃度に依存するが温度はまた
硝酸又は硝酸塩の分解速度にも影響を及ぼす為、乾燥温
度を低くしても窒素酸化物の生成が長期間持続してしま
うので揮散量は低減せず、また噴霧乾燥のような乾燥時
間即ちルテニウムと窒素酸化物の接触時間が非常に短か
く且つ大量の乾燥用空気により窒素酸化物濃度が希釈さ
れている場合でも、揮散を完全に回避することはできな
いことが明らかになった。
(Means for Solving the Problems) The present inventors have made extensive studies to solve the above-mentioned problems and obtain a catalyst manufacturing method with less ruthenium volatilization, and have obtained the following knowledge. That is, in a system where the ruthenium source is ruthenium nitrate or coexists with nitric acid or a nitrate such as cobalt, oxidation of ruthenium to Rub,
Volatilization is caused by the strong oxidizing power of nascent nitrogen oxides produced by thermal decomposition of nitric acid or nitrates; the rate of volatilization depends on temperature and nitrogen oxide concentration, but temperature also affects the decomposition of nitric acid or nitrates. This also affects the drying speed, so even if the drying temperature is lowered, the production of nitrogen oxides will continue for a long time, so the amount of volatilization will not be reduced. It has become clear that volatilization cannot be completely avoided even when the contact time is very short and the nitrogen oxide concentration is diluted by large amounts of drying air.

かかる知見をもとに鋭意検討の結果、硝酸根が共存する
ルテニウム含有触媒の製造において担持成分を含有する
溶液を担体に含浸させ、次いで該含浸担体にアルカリを
添加することにより担持成分は不溶性の水酸化物として
担体上に析出させ、硝酸根は濾過または傾潟により除去
することによりルテニウムを揮散させることなく所定量
担持し得ることを見出し本発明に到達したものである。
As a result of intensive studies based on this knowledge, we found that in the production of ruthenium-containing catalysts in which nitrate radicals coexist, a carrier is impregnated with a solution containing the supported components, and then an alkali is added to the impregnated carrier to make the supported components insoluble. The present invention was achieved based on the discovery that a predetermined amount of ruthenium can be supported without volatilizing ruthenium by precipitating it as a hydroxide on a carrier and removing the nitrate radicals by filtration or decanting.

本発明の目的はルテニウムの揮散することのないルテニ
ウム含有触媒の製造法を提供することにあり、かかる本
発明の目的は硝酸根を含有し、かつ担持成分としてルテ
ニウム単独又はルテニウムと他の金属成分とを含有する
溶液を担体に含浸させて、該担持成分を担持せしめるル
テニウム含有触媒の製造法において、担体に前記溶液を
含浸せしめ、次いで含浸担体にアルカリを添加して、該
担持成分を水酸化物として担体上に析出させ、硝酸根は
可溶性塩として濾過または傾潟により、更に必要に応じ
て洗浄により除去した後に、焼成等の加熱処理を行うこ
とにより容易に達成される。
An object of the present invention is to provide a method for producing a ruthenium-containing catalyst that does not volatilize ruthenium, and an object of the present invention is to provide a method for producing a ruthenium-containing catalyst that does not volatilize ruthenium. In the method for manufacturing a ruthenium-containing catalyst, the carrier is impregnated with a solution containing the above-mentioned solution to support the supported component. This can be easily achieved by depositing the nitrate radical on a carrier as a soluble salt, removing the nitrate radical as a soluble salt by filtration or decantation, and if necessary by washing, followed by heat treatment such as calcination.

本発明を更に詳細に説明すると、ルテニウムを単独ある
いはニッケル、コバルト等の他の金属とともにアルミナ
、シリカ、活性炭等の担体に担持してなる触媒の製造で
担持成分の原料化合物が硝酸塩であるか硝酸溶液として
用いられる方法において、担持成分含有溶液に担体を浸
漬または含浸させた後、アルカリ水溶液を添加して、担
持成分は水酸化物となし担体上に析出させる。硝酸根は
可溶性の塩として液中に存在するので濾過または傾潟に
より除去する。ここで用いられるアルカリは苛性アルカ
リ、炭酸アを生成する等好ましくない場合もあシ得るの
で担持成分の種類により適宜選ばれる。
To explain the present invention in more detail, in the production of a catalyst in which ruthenium is supported alone or together with other metals such as nickel or cobalt on a carrier such as alumina, silica, or activated carbon, the raw material compound of the supported component is nitrate or nitric acid. In a method using a solution, the carrier is immersed or impregnated in a solution containing the supported component, and then an aqueous alkaline solution is added to cause the supported component to precipitate as a hydroxide on the solid support. Since nitrate radicals are present in the solution as soluble salts, they are removed by filtration or decantation. The alkali used here may be selected as appropriate depending on the type of supported component since it may generate undesirable caustic alkali or alkali carbonate.

アルカリ添加量は当量ないしそれよシ若干多い量が好ま
しい。添加量が少いと担持成分の液側への溶出があシ添
加量が多過ぎると過剰のアルカリ金属が触媒中に残留し
たシあるいはその除去に多くの洗浄水を要すこととなシ
好ましくない。
The amount of alkali added is preferably an equivalent amount or a slightly larger amount. If the amount added is too small, the supported components may elute into the liquid side.If the amount added is too large, excess alkali metal may remain in the catalyst, or a large amount of washing water may be required to remove it, which is undesirable. .

また、アルカリ水溶液の濃度は特に限定されないがl〜
3 o wt%  が好ましい。高濃度過ぎると混合不
充分となり中和が完全に行われ難く、逆に低濃度過ぎる
と液量が多くなり濾過あるいは傾潟に長時間を要す。本
発明においては濾過あるいは傾潟の後水洗を行うことが
好ましく、これは担体中に残存する硝酸根をより完全に
除去することに意味があシ、又触媒の目的によって要求
される程度まで過剰のアルカリも除去するものである。
In addition, the concentration of the alkaline aqueous solution is not particularly limited, but l~
3 o wt% is preferred. If the concentration is too high, mixing will be insufficient and complete neutralization will be difficult to achieve, while if the concentration is too low, the amount of liquid will be large and filtration or sifting will take a long time. In the present invention, it is preferable to carry out washing with water after filtration or decantation, which is significant in more completely removing the nitrate radicals remaining in the carrier, and also in removing excess to the extent required by the purpose of the catalyst. It also removes alkali.

次いで得られた担持成分を含有した担体のケーキを乾燥
する。乾燥方式は触媒の形状、目的に応じ適宜選択でれ
る。例えば粒状触媒の場合気流乾燥機中での静置乾燥等
であり、流動触媒の場合、ケーキを再度水と混合しスラ
リーとなした後、要すれば湿式粉砕し噴霧乾燥する等が
考えられる。かくして得られた乾燥物を焼成し必要なら
還元してルテニウムが所定量担持された触媒を得る。
The obtained carrier cake containing the supported components is then dried. The drying method can be appropriately selected depending on the shape of the catalyst and the purpose. For example, in the case of a granular catalyst, it is possible to dry it still in a flash dryer, and in the case of a fluidized catalyst, the cake may be mixed with water again to form a slurry, and if necessary, it may be wet-pulverized and then spray-dried. The dried product thus obtained is calcined and, if necessary, reduced to obtain a catalyst on which a predetermined amount of ruthenium is supported.

以下実施例にて本発明を具体的に説明するが本発明はそ
の要旨をこえない限り、以下の実施例に限定されるもの
ではない。
The present invention will be specifically described below with reference to Examples, but the present invention is not limited to the following Examples unless the gist of the invention is exceeded.

実施例−/ Ru  としてII/、0?/lの濃度の硝酸ルテニウ
ムの硝酸酸性水溶液100.1を細孔容積0、lA I
 me / 1iIのγ−アルミナ200?にかきまぜ
ながら全量を吸い取らせた。
Example-/Ru as II/, 0? A nitric acidic aqueous solution of ruthenium nitrate with a concentration of
me/1iI γ-alumina 200? The entire amount was absorbed while stirring.

次に330m1の≠wt%水酸化ナトリウム水溶液中に
攪拌下上記含浸品を添加し中和した。
Next, the impregnated product was added to 330 ml of ≠wt% aqueous sodium hydroxide solution with stirring to neutralize it.

30分間撹拌を続けた後濾過し、更に洗浄して硝酸ナト
リウムおよび過剰の水酸化ナトリウムを除去した。この
時P液中にはルテニウムは検出されなかった。次に上記
濾過ケーキを気流乾燥機中で710℃、10時間乾燥し
た後空気雰囲気下SOO°Cで焼成して触媒を得た。乾
燥時および焼成時のガスを吸収液に導きルテニウム分析
を実施しだが検出されなかった。得られた触媒を還元後
分析したところRu = 2.0 / wt%であった
After continued stirring for 30 minutes, the mixture was filtered and washed to remove sodium nitrate and excess sodium hydroxide. At this time, ruthenium was not detected in the P solution. Next, the filter cake was dried in a flash dryer at 710°C for 10 hours, and then calcined at SOO°C in an air atmosphere to obtain a catalyst. Ruthenium analysis was carried out by introducing the gas during drying and firing into an absorption liquid, but no ruthenium was detected. When the obtained catalyst was analyzed after reduction, it was found that Ru = 2.0/wt%.

比較例−/ 実施例−/と同様に硝酸ルテニウム溶液(τγ−アルミ
ナを含浸した後水酸化ナトリウム水溶液で処理すること
なく直ちに/10°c、io時間乾燥し500℃で焼成
した。乾燥時ガス側に仕込に対し1g係相当のルテニウ
ムが検出され、焼成時更にμ係相当のルテニウムが検出
された。
Comparative Example-/Similarly to Example-/, after impregnating ruthenium nitrate solution (τγ-alumina), it was immediately dried at 10°C for io hours without being treated with an aqueous sodium hydroxide solution, and then calcined at 500°C. Ruthenium equivalent to 1 g was detected on the side, and ruthenium equivalent to 1 g was detected during firing.

得られた触媒のルテニウム担持量は還元状態で八j O
wt係であった。
The amount of ruthenium supported on the obtained catalyst was 8j O in the reduced state.
He was in charge of wt.

実施例−2 30°Cに維持されたco  として22o ? / 
l sRu  として≠r t / tの濃度の硝酸コ
バルトおよび塩化ルテニウムの混合水溶液100rnl
を実施例−/で用いたと同じγ−アルミナ2002にか
きまぜながら全量吸い取らせた。
Example-2 22o as co maintained at 30°C? /
100 rnl of a mixed aqueous solution of cobalt nitrate and ruthenium chloride with a concentration of ≠ r t / t as l sRu
The entire amount was absorbed while stirring with the same γ-alumina 2002 used in Example-/.

次に360trtlの10wt% 水酸化ナトリウム水
溶液中に攪拌下上記含浸品を添加し30分間保持した。
Next, the impregnated product was added to 360 trtl of a 10 wt % aqueous sodium hydroxide solution with stirring and maintained for 30 minutes.

この時液のpHは70.2であった。At this time, the pH of the solution was 70.2.

次いで濾過、水洗して硝酸ナトリウムおよび過剰の水酸
化ナトリウムを除去した。コバルトおよびルテニウムの
P液への溶出は全く認められなかった。
Then, sodium nitrate and excess sodium hydroxide were removed by filtration and washing with water. No elution of cobalt or ruthenium into the P solution was observed.

次に上記濾過ケーキを気流乾燥機中で230°C110
時間乾燥した後空気雰囲気下SOO℃で焼成して触媒を
得た。乾燥時及び焼成時ガス側へのルテニウムの揮散は
全く認められなかった0 得られた触媒を還元後組成分析したところ、Co=り、
70 wt%、Ru=/、り、S’ wt% であった
Next, the above filter cake was placed in a flash dryer at 230°C and 110°C.
After drying for a period of time, the catalyst was calcined at SOO° C. in an air atmosphere to obtain a catalyst. No volatilization of ruthenium to the gas side was observed during drying or calcination.0 When the obtained catalyst was analyzed for its composition after reduction, Co=R,
70 wt%, Ru=/, Ri, S' wt%.

比較例−2 30′Cに維持されたCOとして22o S’ / t
 sRuとして≠よ2/lの濃度の硝酸コバルト及び塩
化ルテニウムの混合水溶液100rnlを実施例−/で
用いたと同じγ−アルミナ200?にかきまぜながら全
量吸い取らせた。
Comparative Example-2 22o S'/t as CO maintained at 30'C
As sRu, 100 rnl of a mixed aqueous solution of cobalt nitrate and ruthenium chloride with a concentration of ≠ 2/l was used as γ-alumina 200ml, the same as that used in Example. I stirred it up and sucked it all up.

次に上記含浸品を気流乾燥機中で2tO″C110時間
乾燥した後空気雰囲気下jOO℃で焼成した。乾燥時ガ
ス側に仕込ルテニウムの2弘、夕wt%  に相当する
量のルテニウムが検出された。又窒素酸化物の発生は乾
燥工程中に終結しており、焼成時にはルテニウムのガス
側への揮散は認められなかった。
Next, the impregnated product was dried in a flash dryer at 2 tO"C for 110 hours, and then fired at 100 °C in an air atmosphere. During drying, an amount of ruthenium equivalent to 20% of the charged ruthenium was detected on the gas side. Furthermore, the generation of nitrogen oxides ceased during the drying process, and no volatilization of ruthenium to the gas side was observed during firing.

得られた触媒組成は還元状態でOo=り、 7 jwt
%Ru=/、j j wt%であった。このRu担持量
は仕込に対し74.r %に相当する。
The resulting catalyst composition is Oo = 7 jwt in the reduced state.
%Ru=/, j j wt%. This amount of Ru supported is 74. Corresponds to r%.

実施例−3 擬ベーマイトゲルをtSO℃で焼成して得られた微粒状
のγ−アルミナ3.0kgを水7.Okgと混合し水性
スラリーとした後、硝酸ルテニウムの硝酸々性水溶液へ
30 k!I(Ru=77 ?含有)及び硝酸コバルト
水溶液弘、70 ky (C0=7702含有)を攪拌
下頭次添加した。30分間攪拌を続けた後t o wt
%水酸化ナトリウム水溶液約/3kgをスラリ、−pH
が10.2になるまで添加しルテニウム及びコバルトの
水酸化物の沈澱をγ−アルミナ上に析出させた。
Example-3 3.0 kg of fine-grained γ-alumina obtained by firing pseudo-boehmite gel at tSO°C was mixed with 7.0 kg of water. After mixing with Okg to make an aqueous slurry, it was added to a nitric acid aqueous solution of ruthenium nitrate for 30 k! I (containing Ru = 77?) and an aqueous solution of cobalt nitrate, 70 ky (containing C0 = 7702) were added under stirring. After stirring for 30 minutes,
% sodium hydroxide aqueous solution/3 kg as a slurry, -pH
ruthenium and cobalt hydroxides were deposited on the γ-alumina.

次いで上記スラリーをf過、洗浄して硝酸ナトリウム及
び加剰の水酸化ナトリウムを除去した後再び水を加え水
性スラリーとし湿式粉砕機で粒子の平均粒径が約/、0
μmになるまで微粉砕した。
Next, the above slurry was filtered and washed to remove sodium nitrate and excess sodium hydroxide, and then water was added again to form an aqueous slurry, which was milled in a wet grinder until the average particle size of the particles was about 0.
It was pulverized to a particle size of μm.

次にこのスラリーを回転円盤式噴霧乾燥機にて乾燥空気
温度入口200℃、出口/60°Cの条件で乾燥し、得
られた乾燥品を回転円筒炉にて空気雰囲気下よ♂O℃、
30分焼成して触媒を得た。噴霧乾燥時及び焼成時排ガ
スを吸収液に導びきルテニウム分析を実施したが検出さ
れなかった。
Next, this slurry is dried in a rotary disc type spray dryer under the conditions of drying air temperature of 200 °C at the inlet and 60 °C at the outlet, and the obtained dried product is heated in a rotary cylindrical furnace under an air atmosphere at ♂O °C.
A catalyst was obtained by firing for 30 minutes. Ruthenium analysis was conducted by introducing exhaust gas during spray drying and firing into an absorption liquid, but no ruthenium was detected.

比較例−3 擬ベーマイトゲルをtro℃で焼成して得られた微粒状
のγ−アルミナ≠、2kgを水?、♂に1と混合し水性
スラリーとした後湿式粉砕機にてr−アルミナの平均粒
径が約/、0μm になるまで微粉砕した。
Comparative Example-3 2 kg of fine-grained γ-alumina obtained by firing pseudo-boehmite gel at tro℃ was mixed with water? , and male were mixed with 1 to form an aqueous slurry, which was then finely pulverized using a wet pulverizer until the average particle size of r-alumina was approximately 0.0 μm.

次に微粉砕後のスラリー10.Okgに実施例−3で用
いたと同じ硝酸ルテニウム溶液/、30kgと硝酸コバ
ルト水溶液II、70kgを順次攪拌下添加した。30
分間攪拌を続けた後実施例−3と同様に噴霧乾燥、焼成
を行なった。乾燥時ガス側に仕込に対し6.6%相当の
ルテニウムが、又焼成時乾燥品中ルテニウムに対し/、
0%相当のルテニウムが検出された。還元後の触媒組成
は実施例−1がCo = 20.Owt% Ru = 
2.00yt%  であったのに対し比較例−2では 
0o=20.0wt%、Ru =ハ♂弘wt%であった
Next, the slurry after pulverization 10. 30 kg of the same ruthenium nitrate solution used in Example 3 and 70 kg of cobalt nitrate aqueous solution II were added to the same solution under stirring. 30
After stirring for a minute, spray drying and baking were performed in the same manner as in Example-3. Ruthenium equivalent to 6.6% of the charge in the gas side during drying, and ruthenium in the dry product during firing/
Ruthenium equivalent to 0% was detected. The catalyst composition after reduction in Example-1 was Co = 20. Owt% Ru =
2.00yt%, whereas in Comparative Example-2
0o=20.0wt%, Ru=Ha♂hirowt%.

(発明の効果) 本発明により、ルテニウム含有触媒の製造に際してルテ
ニウムの揮散を妨ぐことかでき、従って目的通シの担持
量を安定的に確保できると共にルテニウムが毒性を有す
ることによる設備の密閉化ないし除害設備も不要となる
(Effects of the Invention) According to the present invention, it is possible to prevent the volatilization of ruthenium during the production of a ruthenium-containing catalyst, and therefore it is possible to stably secure the supported amount for the purpose, and also to prevent the equipment from being sealed due to the toxicity of ruthenium. In addition, there is no need for any abatement equipment.

Claims (1)

【特許請求の範囲】 1)硝酸根を含有し、かつ、担持成分としてルテニウム
単独又はルテニウムと他の金属成分とを含有する溶液を
担体に含浸させて該担持成分を担持せしめるルテニウム
含有触媒の製造法において担体に、前記溶液を含浸せし
め、次いで含浸担体にアルカリを添加して該担持成分を
水酸化物として担体上に析出させ、硝酸根は可溶性塩と
して濾過または傾潟により、更に必要に応じて洗浄によ
り除去した後に、乾燥、焼成等の加熱処理を行うことを
特徴とするルテニウム含有触媒の製造方法。 2)ルテニウムとともに担持される他の金属がコバルト
である特許請求の範囲第1項記載の方法。
[Claims] 1) Production of a ruthenium-containing catalyst that contains a nitrate radical and impregnates a carrier with a solution containing ruthenium alone or ruthenium and other metal components as a supported component to support the supported component. In the method, a carrier is impregnated with the solution, and then an alkali is added to the impregnated carrier to precipitate the supported components as hydroxides on the carrier, and the nitrate radicals are precipitated as soluble salts by filtration or decantation. A method for producing a ruthenium-containing catalyst, which comprises removing the ruthenium by washing and then subjecting it to heat treatment such as drying and calcination. 2) The method according to claim 1, wherein the other metal supported together with ruthenium is cobalt.
JP62290062A 1987-11-17 1987-11-17 Method for producing ruthenium-containing catalyst Expired - Fee Related JP2595582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62290062A JP2595582B2 (en) 1987-11-17 1987-11-17 Method for producing ruthenium-containing catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62290062A JP2595582B2 (en) 1987-11-17 1987-11-17 Method for producing ruthenium-containing catalyst

Publications (2)

Publication Number Publication Date
JPH01130734A true JPH01130734A (en) 1989-05-23
JP2595582B2 JP2595582B2 (en) 1997-04-02

Family

ID=17751295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62290062A Expired - Fee Related JP2595582B2 (en) 1987-11-17 1987-11-17 Method for producing ruthenium-containing catalyst

Country Status (1)

Country Link
JP (1) JP2595582B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003090926A1 (en) * 2002-04-26 2003-11-06 Sumitomo Chemical Company, Limited Method for preparing ruthenium-carrying alumina and method for oxidizing alcohol
WO2012026620A1 (en) * 2010-08-27 2012-03-01 Sumitomo Chemical Company, Limited Process for preparing sulfur-containing 2-ketocarboxylate compound
CN111569873A (en) * 2020-05-01 2020-08-25 赵玉平 High-load Ru-MnOXGraphene denitration catalyst

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5494491A (en) * 1978-01-10 1979-07-26 Kawaken Fine Chem Co Ltd Ruthenium catalyst
JPS54119386A (en) * 1978-03-09 1979-09-17 Nikki Chem Co Ltd Manufacture of ammonia synthesis catalyst
JPS6111145A (en) * 1984-06-28 1986-01-18 Toa Nenryo Kogyo Kk Hydrogenation catalyst of diolefins

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5494491A (en) * 1978-01-10 1979-07-26 Kawaken Fine Chem Co Ltd Ruthenium catalyst
JPS54119386A (en) * 1978-03-09 1979-09-17 Nikki Chem Co Ltd Manufacture of ammonia synthesis catalyst
JPS6111145A (en) * 1984-06-28 1986-01-18 Toa Nenryo Kogyo Kk Hydrogenation catalyst of diolefins

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003090926A1 (en) * 2002-04-26 2003-11-06 Sumitomo Chemical Company, Limited Method for preparing ruthenium-carrying alumina and method for oxidizing alcohol
EP1500432A4 (en) * 2002-04-26 2006-02-08 Sumitomo Chemical Co Method for preparing ruthenium-carrying alumina and method for oxidizing alcohol
US7169954B2 (en) 2002-04-26 2007-01-30 Sumitomo Chemical Company, Limited Method for preparing ruthenium-carrying alumina and method for oxidizing alcohol
CN100548473C (en) 2002-04-26 2009-10-14 住友化学工业株式会社 The preparation method of carrying alumina ruthenium and the method that makes pure oxidation
WO2012026620A1 (en) * 2010-08-27 2012-03-01 Sumitomo Chemical Company, Limited Process for preparing sulfur-containing 2-ketocarboxylate compound
CN103068796A (en) * 2010-08-27 2013-04-24 住友化学株式会社 Process for preparing sulfur-containing 2-ketocarboxylate compound
CN111569873A (en) * 2020-05-01 2020-08-25 赵玉平 High-load Ru-MnOXGraphene denitration catalyst
CN111569873B (en) * 2020-05-01 2023-11-24 赵玉平 Denitration catalyst

Also Published As

Publication number Publication date
JP2595582B2 (en) 1997-04-02

Similar Documents

Publication Publication Date Title
CA2043320C (en) High surface area zirconia
US3060133A (en) Production and regeneration of platinum carrier catalysts for the synthesis of hydroxylamine from nitric oxide and hydrogen
JP5568726B2 (en) Titanium oxide / layered double hydroxide composite and method for producing the same
KR20070100316A (en) Direct amination of hydrocarbons
JP4989889B2 (en) Method for producing nitrogen-containing compound
JPH09502125A (en) Method for improving oxidation and ammoxidation catalysts
JP2001129405A (en) Iron oxide-based catalyst for decomposing organic waste, its manufacturing method and treating method of organic waste
JPH0452275B2 (en)
JPH01130734A (en) Production of catalyst containing ruthenium
CN113600204A (en) Preparation method of Mn-based low-temperature SCR denitration catalyst
CN111054358B (en) Copper-nickel-tin hydrotalcite catalyst and preparation method thereof
US5674796A (en) Processes of regenerating Ni catalysts and of preparing Ni catalysts
JPS61272237A (en) Phenyl group-containing organopolysiloxane and its production
JP2934838B2 (en) Catalyst for decomposing nitrous oxide and method for removing nitrous oxide
US4036785A (en) Catalyst for reduction of nitrogen oxides in presence of ammonia
CN112093824B (en) Method for regulating and controlling crystal form of iron oxide, iron-based composite oxide prepared by method and application of iron-based composite oxide
JPS5874143A (en) Vanadium-hydrogen-phosphorous-oxygen catalyst and production of maleic anhydride by fluidized bed catalyst
JPS62252328A (en) Method for purifying inorganic compound
US2395153A (en) Catalytic cracking
CN115779958B (en) SSZ-13 molecular sieve loaded Cu 0 Catalyst, preparation method and application thereof
US3210266A (en) Process for preparing silica alumina catalyst and catalyst prepared thereby
JP2014105132A (en) Ceria-zirconia composite oxide material and production method thereof
JP3893014B2 (en) Exhaust gas treatment catalyst, its production method and exhaust gas treatment method
RU2738182C2 (en) Method of producing magnesium aluminate
JPS6335298B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees