JPH01130710A - Powder separation device and powder treating unit - Google Patents
Powder separation device and powder treating unitInfo
- Publication number
- JPH01130710A JPH01130710A JP28958987A JP28958987A JPH01130710A JP H01130710 A JPH01130710 A JP H01130710A JP 28958987 A JP28958987 A JP 28958987A JP 28958987 A JP28958987 A JP 28958987A JP H01130710 A JPH01130710 A JP H01130710A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- opening
- gas
- separation chamber
- inflow pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 316
- 238000000926 separation method Methods 0.000 title claims abstract description 77
- 238000000605 extraction Methods 0.000 claims abstract description 13
- 238000002156 mixing Methods 0.000 claims abstract description 10
- 238000007599 discharging Methods 0.000 claims abstract 5
- 239000000203 mixture Substances 0.000 claims description 12
- 238000009700 powder processing Methods 0.000 claims description 12
- 230000002265 prevention Effects 0.000 claims description 10
- 230000002093 peripheral effect Effects 0.000 claims description 7
- 238000006073 displacement reaction Methods 0.000 claims description 6
- 239000011812 mixed powder Substances 0.000 claims description 5
- 238000005086 pumping Methods 0.000 claims description 5
- 238000004062 sedimentation Methods 0.000 claims description 5
- 230000005484 gravity Effects 0.000 abstract description 3
- 238000007664 blowing Methods 0.000 abstract 1
- 238000001556 precipitation Methods 0.000 abstract 1
- 235000019197 fats Nutrition 0.000 description 23
- 235000013336 milk Nutrition 0.000 description 23
- 210000004080 milk Anatomy 0.000 description 23
- 239000008267 milk Substances 0.000 description 22
- 238000002474 experimental method Methods 0.000 description 14
- 239000002245 particle Substances 0.000 description 13
- 235000008476 powdered milk Nutrition 0.000 description 13
- 239000000428 dust Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 230000006378 damage Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 235000020183 skimmed milk Nutrition 0.000 description 5
- 235000008939 whole milk Nutrition 0.000 description 5
- 239000010419 fine particle Substances 0.000 description 4
- 238000005304 joining Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 235000021539 instant coffee Nutrition 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 230000000740 bleeding effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229960000907 methylthioninium chloride Drugs 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 235000020185 raw untreated milk Nutrition 0.000 description 2
- 235000014347 soups Nutrition 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000013350 formula milk Nutrition 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- OEBIHOVSAMBXIB-SJKOYZFVSA-N selitrectinib Chemical compound C[C@@H]1CCC2=NC=C(F)C=C2[C@H]2CCCN2C2=NC3=C(C=NN3C=C2)C(=O)N1 OEBIHOVSAMBXIB-SJKOYZFVSA-N 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 235000019871 vegetable fat Nutrition 0.000 description 1
Landscapes
- Tea And Coffee (AREA)
- Separating Particles In Gases By Inertia (AREA)
- Air Transport Of Granular Materials (AREA)
- Dairy Products (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は空気等の気体を含む粉体特に食用粉体から直進
慣性力を利用して粉体と気体を分離し、安定状態の粉体
集合物を得るための粉体分離装置であって、粉体が装置
内壁と摩擦することを防止し、また内壁に衝突して粉粒
の有する多孔性を破壊することなく気体を排除するため
の装置に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention separates powder and gas from powder containing gas such as air, especially edible powder, by utilizing linear inertia force, and produces powder in a stable state. A powder separation device for obtaining aggregates, which prevents the powder from rubbing against the inner wall of the device and eliminates gas without colliding with the inner wall and destroying the porosity of the powder particles. It is related to the device.
更に、本発明は粉体と気体との分離を行う粉体分離装置
を空気混合粉体圧送装置或いは粉体製造機の後工程に配
置し、送られた粉体の大部分を捕集した後、次の工程に
捕集率の高い捕集装置例えばサイクロンコレクター等を
連設する粉体処理ユニットに関する。Furthermore, the present invention arranges a powder separator that separates powder and gas in the downstream process of an air-mixing powder pumping device or a powder manufacturing machine, and collects most of the sent powder. This invention relates to a powder processing unit in which a collection device with a high collection rate, such as a cyclone collector, is connected to the next step.
粉乳、インスタントコーヒー等の食用粉体の捕集装置と
して既に実用化されているものは遠心力を利用したサイ
クロンコレクターや濾過分離するバッグフィルター等が
知られている。Cyclone collectors that utilize centrifugal force and bag filters that perform filtration and separation are known as devices that have already been put into practical use as collection devices for edible powders such as powdered milk and instant coffee.
液状原料から粉体を製造する工程においては、濃縮した
原料を霧化し、乾燥熱風と混合しつつ乾燥する噴霧乾燥
機等の粉体製造機が使用され、その乾燥した粉体を使用
した空気と分離して捕集するために、従来前記粉体製造
機から空気排出口までの間には前記サイクロンコレクタ
ー或いはバックフィルターを組み込んだユニットが採用
されている。In the process of manufacturing powder from liquid raw materials, a powder manufacturing machine such as a spray dryer is used, which atomizes the concentrated raw material and dries it while mixing it with dry hot air. In order to separate and collect the powder, a unit incorporating the cyclone collector or back filter has conventionally been used between the powder manufacturing machine and the air outlet.
また、得られた粉体を他所へ連続的に搬送する空気混合
粉体圧送装置(pneumatic conveyer
)における気体分離においても同様である。In addition, an air mixed powder conveying device (pneumatic conveyor) is used to continuously convey the obtained powder to another location.
The same applies to gas separation in ).
他方食用粉体以外の分野において特に微細な無機物粉体
の輸送9分線或いは集塵の目的で慣性力を利用し、衝突
式1反転式、ルーパー弐等各種の装置が開発され、実用
化されている。On the other hand, in fields other than edible powders, various devices have been developed and put into practical use, such as the collision type 1 reversal type and the looper 2, which utilize inertia for the purpose of transporting fine inorganic powders or collecting dust. ing.
ここで、これらの中で、本願発明に近接すると考えられ
る論文を提示し概要を説明すると、「バーチュアル・イ
ンバクター(Virtual Impactor)の
分級性能」 (化学工学論文集(化学工学協会)第4S
、第4号(197B))の内容の主要部分は、従来公知
の分級実験器であるバーチュアル・インバクターの分級
性能に及ぼす直進流量、スリット間隔、流体粘度9分級
管肉厚の影響を理論的に検討した結果の報告である。そ
の実験装置は第4図に示す構造のものであって、チャン
バー101の内部に内径16wmの2本の円管102,
103を上下対向して設置し、対向する両円管切断面に
円周状のスリット部104を設け、上方からエアロゾル
化したメチレンブルー・ウラニン微粒子を供給し、直進
流量比を1/lO程度にしたときの分級効率を求めたも
のである。Here, among these papers, I would like to present and explain the outline of a paper that is considered to be close to the present invention.
, No. 4 (197B)) is a theoretical study of the influence of straight flow rate, slit interval, fluid viscosity, and classification tube wall thickness on the classification performance of the virtual invactor, which is a conventionally known classification experimental device. This is a report on the results of the study. The experimental apparatus has the structure shown in FIG.
103 were installed vertically facing each other, circumferential slits 104 were provided on the cut surfaces of both opposing circular tubes, and aerosolized methylene blue/uranine fine particles were supplied from above, with a straight flow rate ratio of approximately 1/1O. This is the result of determining the classification efficiency at the time.
この実験装置では、上方円管102から上記エアロゾル
を噴出させ下方円管103へ吸弓’Iしたとき、慣性力
の強い粗大粒子は下方円管103に吸引移行し1、慣性
力の弱い微細粒子はスリット部104から側方へ流出し
てチャンバー下部105に移行し、両粒子群を分級させ
ることができる。なお、この実験装置では、上記エアロ
ゾル化したメチレンブルー・ウラニン微粒子はエアロゾ
ルジェネレーター106と混合器107を用いて供給さ
れ、下方円管103はフィルター108.メーター10
9を介して真空ポンプ110に接続され、チャンバー下
部105にはフィルター111を介して流量メーター1
12及びプローワー113が接続している。In this experimental device, when the aerosol is ejected from the upper circular pipe 102 and sucked into the lower circular pipe 103, coarse particles with a strong inertial force are suctioned into the lower circular pipe 103, and fine particles with a weak inertial force are transferred to the lower circular pipe 103. The particles flow out laterally from the slit portion 104 and move to the chamber lower part 105, allowing both particle groups to be classified. In this experimental apparatus, the aerosolized methylene blue/uranine fine particles are supplied using an aerosol generator 106 and a mixer 107, and the lower circular tube 103 is supplied with a filter 108. meter 10
9 to a vacuum pump 110, and a flow meter 1 is connected to the chamber lower part 105 via a filter 111.
12 and a prower 113 are connected.
また、その他の類似先行技術を提示すると、実公昭56
−21493号公報に記載されるように衝突板の進退に
より分離率を調整可能とした粉粒体分離器の技術、′特
開昭58−74118号公報に記載されるように連通ず
る膨張部と収縮部からなる空間により形成されるユニッ
トからなる装置を構成し被分離粒子の凝集を防止して有
効な分離を行う分離装置の技術、特公昭60−3680
8号公報に記載されるところの板状パンフルの気流に対
する投影面積の大きさを変えるようにバッフルを回動可
能に配置し簡単な構造でガスの状態に応じた最適の集塵
を行うルーバ型集塵装置の技術等がある。In addition, if we present other similar prior art,
- Technology for a powder separator in which the separation rate can be adjusted by advancing and retracting the collision plate as described in Japanese Patent Publication No. 21493; Technology for a separation device that prevents agglomeration of particles to be separated and performs effective separation by configuring a device consisting of a unit formed by a space made up of a contraction part, Japanese Patent Publication No. 60-3680
The louver type described in Publication No. 8 has a baffle that is rotatably arranged so as to change the projected area of the plate-shaped panful with respect to the airflow, and has a simple structure that performs optimal dust collection according to the gas condition. There are technologies for dust collectors, etc.
食用粉体である粉乳は、−船釣なダスト等の粉体と異な
って次のような性質を有している。すなわち、粉乳は、
タンパク質、脂肪、乳糖、無機成分等の多くの成分を有
し、また、粒子として見れば単一粒子ではなく略20〜
30μ程度の単粒が数個結合した状態で存在している。Milk powder, which is an edible powder, has the following properties unlike powder such as boat dust. In other words, milk powder is
It contains many components such as protein, fat, lactose, and inorganic components, and when viewed as a particle, it is not a single particle but approximately 20~
Several single grains of about 30μ exist in a bonded state.
そして、粒子間には多くの空隙を有し、比較的外力に弱
い性質を有している。従って、前記処理装置内壁等への
衝突、摩擦によって破砕されやす(、微粒化されるにと
もなって水との親和性(とけやすさ)を低下させる原因
となる。The particles have many voids between them, making them relatively susceptible to external forces. Therefore, it is likely to be crushed by collision with the inner wall of the processing device or by friction (and as it becomes atomized, it becomes a cause of a decrease in its affinity with water (easiness to dissolve).
特に含有する脂肪は、粉乳粒子の中でタンパク保護膜に
包まれて1〜3μの球状をなし、略均−に分散した状態
になっており、その脂肪球の保護膜が装置内壁との衝突
或いは摩擦等の外力によって破壊されると個々の脂肪球
は凝集し、裸状の遊離脂肪(free faυに変形し
て行く傾向がある。In particular, the fat contained in the powdered milk particles is wrapped in a protein protective film, forming a spherical shape of 1 to 3 microns, and is almost evenly dispersed, and the protective film of the fat globules collides with the inner wall of the device. Alternatively, when individual fat globules are destroyed by an external force such as friction, they tend to aggregate and transform into naked fat (free faυ).
そして、この遊離脂肪は酸化されやすく、このことが粉
乳の風味劣化の原因ともなり、粉乳の粉体としての流動
性を低下させる原因ともなっている。This free fat is easily oxidized, which causes deterioration in the flavor of milk powder and also causes a decrease in the fluidity of milk powder as a powder.
このような性質を有する粉体は粉乳のみではなく、粉末
スープなどについて製造装置設計上解決を求められる問
題点である。そして、脂肪をほとんど含有しない脱脂粉
乳、インスタントコーヒー粉末などについても団粒子の
破壊による微粒化が水との親和性低下をもたらしている
。Powders having such properties are not only powdered milk, but also powdered soups and the like, which are problems that need to be solved in the design of manufacturing equipment. In addition, skim milk powder, instant coffee powder, and the like, which contain almost no fat, become fine particles due to the destruction of agglomerates, resulting in a decrease in affinity with water.
他面、製造された食用粉体を効率良<1M集するという
命題のために上記問題点を残しながら遠心力利用のサイ
クロンコレクター或いは「目詰まり」という難点を有し
ながら濾過方式によるバッグフィルターなどが採用され
ていたのである。On the other hand, in order to efficiently collect <1M of manufactured edible powder, there are cyclone collectors that utilize centrifugal force while still having the above-mentioned problems, and bag filters that use filtration methods but have the drawback of "clogging". had been adopted.
一般に上記サイクロンコレクターを通過させて粉乳を捕
集する場合、26%脂肪含有粉乳において含有脂肪量の
1/4〜1/3が遊離脂肪の形態に変化するといわれる
。さらに壁面に付着しやすい粉体においてはダクトの閉
塞やファンの羽根、周辺への付着による問題が発生して
いる。また、上記バッグフィルターでは、粉体の混合濃
度が高い場合、或いは吸湿性、付着性の強い粉乳を処理
する場合には、目詰まりが生じて捕集の能率が低下し、
長時間の41続使用が困難となる。Generally, when milk powder is collected by passing through the cyclone collector, it is said that 1/4 to 1/3 of the fat content in 26% fat-containing powdered milk changes to the form of free fat. Furthermore, powder that tends to adhere to walls causes problems due to blockage of ducts and adhesion to fan blades and surrounding areas. In addition, when the above-mentioned bag filter has a high mixed concentration of powder, or when processing milk powder that is highly hygroscopic and adhesive, it becomes clogged and the collection efficiency decreases.
It becomes difficult to use 41 consecutive times for a long time.
さらに種々の衝突式の分離装置や反転式或いはルーバー
式の集塵装置においても再飛散による捕集効率の低下や
、衝突による流路閉塞や圧迫による遊離脂肪の発生並び
に粉状劣化をともなうという問題点のため食用粉体の分
離には従来から利用されていなかった。Furthermore, various types of collision-type separators, inversion-type, or louver-type dust collectors also have problems such as a decrease in collection efficiency due to re-scattering, and the generation of free fat and powdery deterioration due to channel blockage and compression caused by collisions. Because of this, it has not been used to separate edible powders.
そこで、本発明においては、上述の問題点に鑑み、まず
粉体の破砕を防止しつつ食用粉体を空気から分離捕集し
、さらにその捕集効率を可及的高度に維持するような粉
体分離装置を開発すること、並びにこの装置を利用して
粉体製造機、粉体輸送機、サイクロンコレクター等と組
み合わせることにより粉体の品質維持と十分な捕集ので
きるユニットを構成することを技術的課題とするもので
ある。Therefore, in view of the above-mentioned problems, the present invention has developed a powder that first separates and collects edible powder from the air while preventing the powder from being crushed, and further maintains the collection efficiency as high as possible. By developing a powder separation device and using this device in combination with a powder production machine, powder transportation machine, cyclone collector, etc., we aim to construct a unit that can maintain the quality of powder and collect it sufficiently. This is a technical issue.
本発明の粉体分N装置を実施例に対応する第1図を引用
しながら説明すると、本発明の粉体分離装置は、上述の
問題点を解決するために、所定の排気量を排気する排気
口4が設けられ中空とされた分離室lと、該分離室1の
上面部11から内部に向かって突出すると共に逆円錐状
であって底部12に開口部13が形成された円筒状の粉
体混合ガス流入管2と、上記分離室1の内部で上記粉体
混合ガス流入管2の底部12の開口部13と所定距離だ
け離間されて該開口部13と略同径な粉体取込み口14
が対向するように設けられると共に所定の抽気量を抽気
する抽気口5が配設される管状の粉体捕集部3を有して
いる。そして、上記開口部13と粉体取込み口14の間
の空隙部15より粉体混合ガスの気体分が上記粉体混合
ガス流入管の中心線方向より角度を以て上記分離室へ取
り出され、上記空隙部15で分離された粉体が粉体捕集
部3に突入した後上記排気量と上記抽気量の調整より略
終末沈降速度を以て沈降することを特徴としている。The powder separation device of the present invention will be explained with reference to FIG. A separation chamber 1 is provided with an exhaust port 4 and is hollow, and a cylindrical chamber 1 that protrudes inward from the upper surface 11 of the separation chamber 1 and has an inverted conical shape and an opening 13 formed in the bottom 12. The powder mixed gas inflow pipe 2 is spaced apart from the opening 13 of the bottom part 12 of the powder mixed gas inflow pipe 2 by a predetermined distance inside the separation chamber 1 and has a diameter substantially the same as that of the opening 13 for taking in the powder. Mouth 14
It has a tubular powder collecting part 3 which is provided so as to face each other and has an air extraction port 5 for extracting a predetermined amount of air. Then, the gas component of the powder mixed gas is taken out from the gap 15 between the opening 13 and the powder intake port 14 to the separation chamber at an angle from the center line direction of the powder mixed gas inflow pipe, and It is characterized in that after the powder separated in the section 15 enters the powder collecting section 3, it settles at approximately the final settling velocity by adjusting the above-mentioned displacement amount and the above-mentioned bleed air amount.
また、本発明の粉体処理ユニットは、上記粉体分離装置
を空気混合粉体圧送装置若しくは熱風混合式粉体乾燥装
置の粉体混合ガス取り出し側に連設したことを特徴とし
ている。Further, the powder processing unit of the present invention is characterized in that the powder separation device is connected to the powder mixed gas extraction side of the air mixed powder pumping device or the hot air mixing type powder drying device.
上記開口部13を有する粉体混合ガス流入管2が所定距
離だけ離間された空隙部15を介して粉体捕集部3と対
向させ、上記分離室1の排気口4より排気を行うことで
、その排気により混合ガス中の気体は上記粉体混合ガス
流入管2の中心線方向より角度を以て上記分離室1へ取
り出されて行き、一方、粉体の方は、慣性力によって、
上記粉体捕集部3の粉体取込み口14へ向かって突入す
る。By arranging the powder mixed gas inflow pipe 2 having the opening 13 to face the powder collecting section 3 through a gap 15 separated by a predetermined distance, and performing exhaust through the exhaust port 4 of the separation chamber 1. Due to the exhaust, the gas in the mixed gas is taken out to the separation chamber 1 at an angle from the center line direction of the powder mixed gas inflow pipe 2, while the powder is removed by inertia.
It rushes toward the powder intake port 14 of the powder collecting section 3.
そして、突入した粉体を壁面や底面に強く押しつけるこ
となく捕集することが望ましいが、本発明の粉体分離装
置では、これを排気量と抽気量の調整から実現する。す
なわち、粉体捕集部3に突入した粉体は、抽気口から抽
気される粉体捕集部3内で略終末沈降速度で沈んで行き
、従って粉体捕集部3内では粉体の破砕等が生じない捕
集が行われることになる。ここで、仮に排気量に対して
抽気量が少ない場合では、粉体捕集部3内での気流の乱
れなどから、捕集すべき粉体が捕集部から飛散して行く
度合が増大し、効率良く粉体を捕集することができない
、一方、逆に排気量に対して抽気量が多い場合には、粉
体捕集部3に突入した後の粉体は、その多くが抽気口よ
り流出してしまい、その捕集効率を下げることとなる。It is desirable to collect the injected powder without strongly pressing it against the wall or bottom surface, but in the powder separator of the present invention, this is achieved by adjusting the exhaust volume and the bleed volume. That is, the powder that has entered the powder collecting section 3 sinks at approximately the final settling velocity within the powder collecting section 3 where air is extracted from the air extraction port, and therefore, the powder in the powder collecting section 3 sinks at approximately the final settling velocity. Collection will be performed without causing any crushing or the like. Here, if the amount of extracted air is small compared to the amount of exhaust air, the degree to which the powder to be collected will scatter from the collection section will increase due to turbulence in the airflow within the powder collection section 3. On the other hand, if the amount of bleed air is large compared to the amount of exhaust air, most of the powder that has entered the powder collection section 3 will be trapped in the bleed port. This results in more leakage and lowers the collection efficiency.
そこで、排気量と抽気量の調整を以て、終末沈降速度に
近い速度で粉体を落下させ、粉体を破砕させることなく
有効に捕集することが実現される。Therefore, by adjusting the exhaust volume and the bleed volume, it is possible to drop the powder at a speed close to the final sedimentation velocity and effectively collect the powder without crushing it.
本発明の好適な実施例を図面を参照しながら説明する。 Preferred embodiments of the present invention will be described with reference to the drawings.
まず本実施例の粉体分離装置の構造について、第1図を
参照しながら、具体的に説明する。First, the structure of the powder separator of this embodiment will be specifically explained with reference to FIG.
本実施例の粉体分離装置は、第1図に示すように、分離
装置の本体としての分離室lを有し、その分離室1の内
部で鉛直方向に対向するように粉体混合ガス流入管2と
粉体捕集部3とが設けられている。As shown in FIG. 1, the powder separator of this embodiment has a separation chamber 1 as the main body of the separation device, and a powder mixture gas flows into the separation chamber 1 so as to face each other in the vertical direction. A tube 2 and a powder collection section 3 are provided.
上記分離室1は、略円筒状の形状を有し、その内部は中
空とされている。この分離室1の外郭は、上下に分けら
れる構造をもち、上部分離室部材21と下部分離室部材
22に分離できる。上記上部分離室部材21には、分離
室1の上面部11を貫通するように円筒状の上記粉体混
合ガス流入管2が配設され、この粉体混合ガス流入管2
と当該上部分離室部材21とは、上記粉体混合ガス流入
管2の外壁と上部分離室部材21の内壁との間が十分な
余裕を持つように同心状に固定されている。The separation chamber 1 has a substantially cylindrical shape and is hollow inside. The outer shell of the separation chamber 1 has a structure that is divided into upper and lower parts, and can be separated into an upper separation chamber member 21 and a lower separation chamber member 22. The cylindrical powder mixed gas inflow pipe 2 is disposed in the upper separation chamber member 21 so as to penetrate through the upper surface 11 of the separation chamber 1.
and the upper separation chamber member 21 are fixed concentrically so that there is sufficient space between the outer wall of the powder mixed gas inflow pipe 2 and the inner wall of the upper separation chamber member 21.
上記下部分離室部材22には、同様にその底面部23を
貫通するように粉体捕集部3が同心状に固定されている
。これら上部分離室部材21と下部分離室部材22のそ
れぞれ接合部分には、フランジ部24.25が形成され
ている。これら各フランジ部24.25の間にはスペー
サーとしての接合部材26が介在され、上下の各分離室
部材21゜22が接合して分離室1となって機能する。Similarly, the powder collecting section 3 is fixed concentrically to the lower separation chamber member 22 so as to pass through the bottom surface 23 thereof. Flange portions 24 and 25 are formed at the joint portions of the upper separation chamber member 21 and the lower separation chamber member 22, respectively. A joining member 26 as a spacer is interposed between each of these flange portions 24 and 25, and the upper and lower separation chamber members 21 and 22 are joined to function as the separation chamber 1.
上記接合部材26は、上下に分離可能な上部分離室部材
21と下部分離室部材22の各フランジ部24゜25を
連結させる機能を有する。そして本実施例の粉体分1i
i1装置では、上記接合部材26は後述する空隙部15
の離間した距離を決める部材となっている。このような
分離室lの外周面下部側には、上記粉体混合ガス流入管
2からの気体分を取り出すための排気口4が上記下部分
離室部材22の外周面から垂直に設けられている。この
排気口4は、所要の排気ファンに接続され、所定の排気
NlOの気体を分離室lの内部から外部に出すことがで
きる。The joining member 26 has a function of connecting the flange portions 24 and 25 of the upper separation chamber member 21 and the lower separation chamber member 22, which are vertically separable. And the powder content 1i of this example
In the i1 device, the joining member 26 is connected to the gap 15 described later.
It is a member that determines the distance between the two. An exhaust port 4 for taking out the gas from the powder mixed gas inflow pipe 2 is provided perpendicularly from the outer circumferential surface of the lower separation chamber member 22 on the lower side of the outer circumferential surface of the separation chamber l. . This exhaust port 4 is connected to a required exhaust fan, and can exhaust a specified amount of exhaust NlO gas from the inside of the separation chamber 1 to the outside.
上記粉体混合ガス流入管2は、径D1の円筒状の部材で
ある。この粉体混合ガス流入管2は、上記分離室lの上
面部11の面から垂直方向に該分離室1の内部に向かっ
て突出されている。その管の中心線は装置の鉛直方向で
あり、さらに当該粉体混合ガス流入管2の内部の気流の
方向と一部する。この粉体混合ガス流入管2の底部12
は、逆円錐形状とされ、その底部側では先細り形状とな
っている。この先細りとされた傾斜角αは本実施例でお
よそ60度であるが、粉体の種類に応じて適宜選択でき
る。そして、このように先細りとされた底部には、管の
中心線と垂直な開口面を有する開口部13が形成されて
いる。この開口部13の径dは、径D1よりも小さい。The powder mixed gas inflow pipe 2 is a cylindrical member with a diameter D1. The powder mixed gas inflow pipe 2 projects vertically from the top surface 11 of the separation chamber 1 toward the interior of the separation chamber 1. The center line of the tube is in the vertical direction of the device, and also partially coincides with the direction of the air flow inside the powder mixed gas inflow tube 2. The bottom part 12 of this powder mixed gas inflow pipe 2
has an inverted conical shape, and its bottom side is tapered. This tapered angle of inclination α is about 60 degrees in this embodiment, but can be selected as appropriate depending on the type of powder. An opening 13 having an opening surface perpendicular to the center line of the tube is formed in the tapered bottom. The diameter d of this opening 13 is smaller than the diameter D1.
この開口部13の径dと粉体混合ガス流入管2の円筒部
の径D1との比が先端での流速を決める1つの要素とな
る。The ratio between the diameter d of this opening 13 and the diameter D1 of the cylindrical portion of the powder mixed gas inflow pipe 2 is one factor that determines the flow velocity at the tip.
また、開口部13の径dはそのまま粉体捕集部3の粉体
取込み口14の径dとなる。Further, the diameter d of the opening 13 directly becomes the diameter d of the powder intake port 14 of the powder collecting section 3.
上記粉体捕集部3は、上記分離室1の内部で、上記粉体
混合ガス流入管2に対向して設けられる該粉体混合ガス
流入管2の径D + ’と同じ若しくはより大きな径り
、(図示の例では同径)の円筒状の収容部である。この
粉体捕集部3は、上記下部分離室部材22の底面部23
から同心状に鉛直方向に貫通するように設けられている
。この粉体捕集部3の上記粉体混合ガス流入管2と対向
する対向面側には、周壁28と連続且つ軸線と垂直な面
を有する再飛散防止板27が設けられている。その再飛
散防止板27の中央には、上記粉体混合ガス流入管2の
底部の開口部13に対向して粉体取込み口14が設けら
れている。ここで、この粉体取込み口14と上記開口部
13との間は、所定路klSだけ離間している。その所
定路5sだけ離間した空隙部15は、粉体混合ガス流入
管2の中心線の延長方向ではなく円筒物の周側部側を環
状に開口している。従って、上記開口部13から吹き出
した気体は、当該空隙部15で排気口4からの排気によ
って分離室1内部に急激な角度を以て取り出されること
になる。なお、この上記空隙部15の距離Sは、上述の
接合部材26の厚みや粉体混合ガス流入管2.扮体捕集
部3の上下操作等により調整することができる。The powder collecting section 3 has a diameter that is the same as or larger than the diameter D+' of the powder mixed gas inflow pipe 2 provided opposite to the powder mixed gas inflow pipe 2 inside the separation chamber 1. It is a cylindrical housing portion (with the same diameter in the illustrated example). This powder collecting section 3 includes a bottom section 23 of the lower separation chamber member 22.
It is provided so as to penetrate concentrically in the vertical direction. A re-scattering prevention plate 27 having a surface that is continuous with the peripheral wall 28 and perpendicular to the axis is provided on the opposite surface side of the powder collecting section 3 that faces the powder mixed gas inflow pipe 2 . A powder intake port 14 is provided in the center of the re-scattering prevention plate 27, facing the opening 13 at the bottom of the powder mixed gas inflow pipe 2. Here, the powder intake port 14 and the opening 13 are separated by a predetermined distance klS. The void portion 15 spaced apart by a predetermined distance 5s is annularly opened not in the extending direction of the center line of the powder mixed gas inflow pipe 2 but on the circumferential side of the cylinder. Therefore, the gas blown out from the opening 13 is taken out at a sharp angle into the separation chamber 1 by being exhausted from the exhaust port 4 in the gap 15 . The distance S of the gap 15 depends on the thickness of the joining member 26 and the powder mixed gas inlet pipe 2. It can be adjusted by vertically operating the disguise body collecting section 3, etc.
このような粉体捕集部3の上記粉体混合ガス流入管2と
対向する対向面の下部すなわち上記再飛散防止板27の
下部では、円筒状の周壁28が続いている。その周壁2
8は分離室1の外部で可とう性部材29と連続する。そ
して、その可とう性部材29は粉体捕集部3の底部に位
置し、粉体を積もらせて収納する底部収容部30に連続
している。そして、上記周壁28の一部には、上記粉体
捕集部3に送り込まれた気体の一部を抽気するための抽
気口5が該周壁28の周面を垂直に貫通するように設け
られいる。この抽気口5の先端部31は、上記粉体捕集
部3の中心線の近傍で底面側を向いて開口しており、そ
こから所定量の抽気量ILを抽気する構成とされている
。また、抽気口5は、装置外部で所要の抽気装置に接続
し、後述するように、上記所定量の抽気量aLと所定量
の排気TJ 1 oのバランスから破砕のなく且つ効率
の良い粉体の捕集を実現する。なお、このような粉体捕
集部3の外周部には、当該粉体捕集部3を振動させて粉
体の付着等を未然に防止するための振動器32が設けら
れている。A cylindrical peripheral wall 28 continues at the lower part of the surface of the powder collecting section 3 facing the powder mixed gas inflow pipe 2, that is, at the lower part of the re-scattering prevention plate 27. Its surrounding wall 2
8 is continuous with the flexible member 29 outside the separation chamber 1. The flexible member 29 is located at the bottom of the powder collecting section 3 and is continuous with a bottom storage section 30 in which powder is accumulated and stored. An air bleed port 5 for bleeding a part of the gas sent into the powder collecting section 3 is provided in a part of the peripheral wall 28 so as to perpendicularly penetrate the peripheral surface of the peripheral wall 28. There is. The tip 31 of the air bleed port 5 opens toward the bottom near the center line of the powder collecting section 3, and is configured to bleed a predetermined amount of air IL from there. In addition, the air bleed port 5 is connected to a required air bleed device outside the device, and as described later, from the balance between the predetermined amount of bleed air aL and the predetermined amount of exhaust TJ 1 o, it is possible to generate powder without crushing and with high efficiency. Achieve the collection of A vibrator 32 is provided on the outer periphery of the powder collecting section 3 to vibrate the powder collecting section 3 to prevent powder from adhering to the vibrator 32 .
ここで、第1図を参照しながら、その粉体分離装置の作
動状態について説明すると、まず、上記導入管46から
上記粉体混合ガス流入管2へ粉体を混合してなる粉体混
合ガスが鉛直方向下向きを流れ方向として導入される。Here, the operating state of the powder separator will be explained with reference to FIG. is introduced with the flow direction being vertically downward.
そして、この粉体混合ガスは上記粉体混合ガス流入管2
の内部を上記流れ方向に沿って流れて行(。続いて逆円
錐形状の粉体混合ガス流入管2の底部12で、開口部1
3の径dと粉体混合ガス流入管2の径D1の比に従って
その流速が加速される。Then, this powder mixed gas is transferred to the powder mixed gas inflow pipe 2.
The mixture flows through the inside of the powder mixture gas along the flow direction (.Subsequently, at the bottom 12 of the inverted conical powder mixed gas inlet pipe 2, the opening 1
3 and the diameter D1 of the powder mixed gas inflow pipe 2, the flow rate is accelerated.
次に、上記粉体混合ガス流入管2の底部の開口部13よ
り吹き出された粉体混合ガスの中、まず気体分は上記空
隙部15で鉛直方向から角度を以てすなわち本実施例で
は鉛直方向から略90度の角度で分離室1の内部に取り
出されて行く。この取り出された粉体混合ガスは、分離
室1に設けられた排気口4から所定のFJ)気量j!o
を以て排気されることになる。一方、粉体は、上記粉体
混合ガス流入管2の開口部13までは気体と共に流され
るが、その慣性力作用と重力の作用によって分離室1内
部には取り出されず、そのまま直進して粉体捕集部3の
粉体取込み口14から粉体捕集部3内部に突入する。Next, in the powder mixed gas blown out from the opening 13 at the bottom of the powder mixed gas inflow pipe 2, the gas component first flows in the void 15 at an angle from the vertical direction, that is, from the vertical direction in this embodiment. It is taken out into the separation chamber 1 at an angle of about 90 degrees. This extracted powder mixed gas is discharged from the exhaust port 4 provided in the separation chamber 1 to a predetermined air volume FJ). o
It will be exhausted by this. On the other hand, the powder is flowed together with the gas up to the opening 13 of the powder mixed gas inflow pipe 2, but due to the action of inertia and gravity, it is not taken out into the separation chamber 1, and it continues straight ahead to form the powder. It enters the inside of the powder collecting section 3 through the powder intake port 14 of the collecting section 3 .
このように気体と粉体の分離が上記粉体混合ガス流入管
2と粉体捕集部3の間の空隙部15で行われ、この粉体
捕集部3では突入した粉体を捕集するが、本実施例の粉
体分離装置においては、破砕等を防止しながら捕集する
ことができる。すなわち、粉体捕集部3に突入した粉体
は、気体分が抽気口5から排出されるだけの風量である
ために流速が抑えられ、重力と流体の砥抗力の釣り合っ
た条件に近い略終末沈降速度を以て沈降して行く。In this way, separation of gas and powder is performed in the gap 15 between the powder mixed gas inflow pipe 2 and the powder collecting section 3, and this powder collecting section 3 collects the powder that has entered. However, in the powder separator of this embodiment, it is possible to collect the powder while preventing crushing and the like. In other words, the flow velocity of the powder that has entered the powder collecting section 3 is suppressed because the air volume is large enough for the gas to be discharged from the bleed port 5, and the flow rate is approximately equal to the condition where gravity and the abrasive force of the fluid are balanced. It continues to settle at the terminal sedimentation velocity.
従って、衝突板等に衝撃を伴って衝突することや壁等に
押しつけられるような摩擦を回避でき、粉体を粉乳とし
た場合では粉体の破壊や遊離脂肪の増大を防止できる。Therefore, it is possible to avoid collision with an impact plate or the like or friction such as being pressed against a wall or the like, and when the powder is used as milk powder, destruction of the powder and increase in free fat can be prevented.
ここで、抽気口5からの抽気Lt ILは、上記排気量
1゜と一定の関係にあり、その調整によって、捕集の能
力が低下することもない。これは、仮に排気量!。に対
して抽気量!、が過少な場合では、粉体捕集部3内での
気流の乱れなどから、粉体が捕集部から飛散して行(度
合が増大する。また排気量10に対して抽気量l、が過
大な場合では、粉体捕集部3内から粉体が抽気口5より
取り出され、底部収納部30に粉体が捕集されずその捕
集の能率が低下する。そこで、本実施例の粉体分離装置
では、例えばlL/l。Here, the air bleed LtIL from the air bleed port 5 has a constant relationship with the above-mentioned displacement amount of 1°, and its adjustment does not reduce the collection ability. This is the displacement! . Compared to the amount of bleed air! If , is too small, the powder will scatter from the collection part due to turbulence of air flow in the powder collection part 3 (the degree will increase. Also, the amount of extracted air l, If is too large, the powder will be taken out from the powder collecting section 3 through the air bleed port 5, and the powder will not be collected in the bottom storage section 30, reducing the efficiency of collection. For example, in a powder separator of
(抽気率)を略5〜25%、より好ましくは7〜20%
としている。これによって捕集効率を向上させている。(bleeding rate) approximately 5 to 25%, more preferably 7 to 20%
It is said that This improves collection efficiency.
また、上記粉体捕集部3の上記粉体混合ガス流入管2へ
の対向面側に設けられている再飛散防止板27によって
、粉体捕集部3内から粉体が分離室1内へ巻き上げられ
て行くことが防止される。In addition, a re-scattering prevention plate 27 provided on the side of the powder collecting section 3 facing the powder mixed gas inflow pipe 2 prevents powder from entering the separation chamber 1 from inside the powder collecting section 3. This prevents it from being rolled up.
また、排気IA、と抽気量lLの調整がうまく行われて
いない場合、粉体捕集部3内での気流の乱れ等が生ずる
が、その場合の再飛散の防止も可能である。Further, if the exhaust IA and the amount of extracted air 1L are not properly adjusted, turbulence of the airflow within the powder collecting section 3 will occur, but re-scattering can also be prevented in this case.
また、上記粉体捕集部3の外周部に設けられている振動
器32によって粉体の当該粉体捕集部3への付着を未然
に防止することができる。Furthermore, the vibrator 32 provided on the outer periphery of the powder collecting section 3 can prevent powder from adhering to the powder collecting section 3.
次に、本実施例の粉体分離装置を用いて構成した粉体処
理ユニットについて第2図および第3図を参照しながら
説明する。Next, a powder processing unit constructed using the powder separator of this embodiment will be explained with reference to FIGS. 2 and 3.
まず、粉体を搬送するための粉体処理ユニットは、例え
ば第2図に示す構成となる。第2図は空気混合粉体圧送
装置を含む粉体処理ユニットを示しており、第2図中、
破線内に示す装置40が上述の構成を有する粉体分離装
置である。また、本実施例で空気混合粉体圧送装置は、
粉体供給部41、送風器42、送風管44、導入管45
.46から構成される。当初、粉体は粉体供給部41に
蓄積され、この粉体供給部41には、圧送空気が供給さ
れる。送風器42には輸送空気が採り込まれる。上記粉
体供給部41に蓄積された粉体は、粉体供給部41から
、上記送風器42より送風管44を介して送られる空気
と混合されて鉛直方向に直立する導入管45を通る。そ
の粉体は、その導入管45よりも径が太く且つ略し字状
とされる導入管46を通って、粉体分離装置40の上記
粉体混合ガス流入管2に供給される。そして、この粉体
分離装置40では、排気量と抽気量のバランスによって
、粉体と気体の有効な分離がなされ破砕等の抑えられた
捕集が実現されることになる。First, a powder processing unit for conveying powder has a configuration shown in FIG. 2, for example. Figure 2 shows a powder processing unit including an air-mixed powder pumping device, and in Figure 2,
The device 40 shown within the broken line is a powder separation device having the above-described configuration. In addition, in this example, the air mixed powder pumping device is
Powder supply section 41, blower 42, blow pipe 44, introduction pipe 45
.. It consists of 46 pieces. Initially, powder is accumulated in the powder supply section 41, which is supplied with pressurized air. The blower 42 draws transport air. The powder accumulated in the powder supply section 41 is mixed with air sent from the powder supply section 41 through the blow pipe 44 from the blower 42, and passes through the introduction pipe 45 standing vertically. The powder is supplied to the powder mixed gas inflow pipe 2 of the powder separator 40 through an introduction pipe 46 having a diameter larger than that of the introduction pipe 45 and having an oval shape. In the powder separator 40, the powder and gas are effectively separated by a balance between the exhaust volume and the bleed volume, thereby achieving collection with suppressed crushing and the like.
また、さらに捕集効率の向上を図るための粉体処理ユニ
ットとして、第3図に示す構成のものを利用することが
できる。Further, as a powder processing unit for further improving the collection efficiency, a structure shown in FIG. 3 can be used.
第3図の構成は、上述の構成の粉体分離装置50を熱風
混合式粉体乾燥装置51の粉体混合ガス取り出し側に連
設している。この粉体分離装置50では、上述のように
排気量と抽気量のバランスによって、粉体と気体の有効
な分離がなされ破砕等の抑えられた捕集が実現される。In the configuration shown in FIG. 3, the powder separation device 50 having the above-described configuration is connected to the powder mixed gas extraction side of the hot air mixing type powder drying device 51. In this powder separator 50, the powder and gas are effectively separated by the balance between the exhaust volume and the bleed volume as described above, and collection with suppressed crushing and the like is realized.
その粉体分離装置50には、排気口4と抽気口5が有り
、その排気口4及び抽気口5はサイクロンコレクター5
2に接続される。上記排気口4と抽気口5からは、上記
粉体分離装置50に捕集されない粉体が排出されるが、
このように排気口4及び抽気口5にサイクロンコレクタ
ー52を接続することで、さらに捕集効率を向上させる
ことが可能となる。The powder separator 50 has an exhaust port 4 and an air bleed port 5, and the exhaust port 4 and the air bleed port 5 are connected to a cyclone collector 5.
Connected to 2. Powder that is not collected by the powder separator 50 is discharged from the exhaust port 4 and the air bleed port 5,
By connecting the cyclone collector 52 to the exhaust port 4 and the air extraction port 5 in this manner, it is possible to further improve the collection efficiency.
また、本実施例の粉体分離装置については、第5図に示
すような変形例とすることができる。この粉体分離装置
60は、上述の粉体分離装置と略同様の構成を有し、逆
円錐形状とされた粉体混合ガス流入管2の底部12には
、開口部13が設けられ、この開口部13に対向として
粉体捕集部3側には再飛散防止板27に粉体取込み口1
4が設けられている。そして、この粉体分離装置60に
は、上記粉体混合ガス流入管2の底部12の外周側に補
助板61が形成されている。この補助板61は、上記再
飛散防止板27と対向するように開口部13の周縁に沿
って設けられている。このような補助板61を設けるこ
とで、さらに捕集効率の向上を図ることができる。Further, the powder separator of this embodiment can be modified as shown in FIG. This powder separator 60 has substantially the same configuration as the powder separator described above, and an opening 13 is provided at the bottom 12 of the powder mixed gas inlet pipe 2 which is shaped like an inverted cone. A powder intake port 1 is provided on the re-scattering prevention plate 27 on the powder collecting section 3 side opposite to the opening 13.
4 is provided. In this powder separation device 60, an auxiliary plate 61 is formed on the outer peripheral side of the bottom portion 12 of the powder mixed gas inflow pipe 2. This auxiliary plate 61 is provided along the periphery of the opening 13 so as to face the re-scattering prevention plate 27 . By providing such an auxiliary plate 61, the collection efficiency can be further improved.
次に、本実施例の粉体分離装置について行った実験結果
について説明する。実験は、本実施例の粉体分離装置を
用いて、捕集効率に関する実験■と遊離脂肪の増加に関
する実験■とを行った。Next, the results of experiments conducted on the powder separator of this example will be explained. Experiments (2) regarding collection efficiency and (2) experiment regarding increase in free fat were conducted using the powder separator of this example.
実験■
まず、実験Iは、粉体捕集効率に関する実験であって、
開口部13の形状、開口部の離間距離S及び抽気率との
関係を第1表に示す。Experiment■ First, Experiment I is an experiment regarding powder collection efficiency.
Table 1 shows the relationship between the shape of the openings 13, the distance S between the openings, and the bleed rate.
この実験■に関し、第1表中の記号および数字は、次の
ような意味を有する。Regarding this experiment (2), the symbols and numbers in Table 1 have the following meanings.
・使用した原料粉体の種類
SM:脱脂粉乳(skim m1lk)、平均粒径約1
00μの顆粒花粉
WM:全脂粉乳(whole m1lk)、平均粒径約
80μの複数集合花粉
・開口部の形状(※)
■:粉粉体混合ガス大入管200 muφ)をそのまま
円筒状としたもの
■::体混合ガス流入管の下半分を100 *mφの円
筒状としたもの
■::1図に示すように粉体混合ガス流入管の出口を約
60°の逆円錐形状(出口径100 s*φ)としたも
の
なお、再飛散防止板27は、開口部径と同じ径を有する
ようにリング状のものを使用した。また、抽気率を(−
)で示したものは、抽気を省いたことを示す。・Type of raw material powder used SM: Skim milk powder (skim mlk), average particle size approximately 1
00μ granular pollen WM: whole milk powder (whole m1lk), multiple aggregated pollen with an average particle size of about 80μ, opening shape (*) ■: Powder/powder mixed gas large inlet tube 200 muφ) made into a cylindrical shape as it is ■:: The lower half of the powder mixed gas inflow pipe is cylindrical with a diameter of 100*m. ■::1 As shown in the figure, the outlet of the powder mixed gas inflow pipe is shaped like an inverted cone of approximately 60° (exit diameter: 100 mφ). Note that the re-scattering prevention plate 27 was ring-shaped so as to have the same diameter as the opening diameter. Also, the bleed rate is (−
) indicates that air bleed is omitted.
(以下、余白)
第1表
第1表の続き
この実1rの目的′は、使用する装置の最適条件を設定
することにあり、第1表に示すデータから次のような結
果が得られた。(The following is a margin) Table 1 Continuation of Table 1 The purpose of this experiment 1r was to set the optimal conditions for the equipment to be used, and the following results were obtained from the data shown in Table 1. .
第1に、実験例A−Bにおいては、粉体混合ガス流入管
は、その開口部において、d/DI=1とした(円筒状
のまま)場合であって、結果として捕集すべき粉乳の8
0%以上が排気口に移行して甚だしい低捕集効率であっ
たことを示している。First, in Experimental Examples A-B, the powder mixed gas inflow pipe is set to d/DI=1 at its opening (remains cylindrical), and as a result, the powdered mixed gas inflow pipe to be collected is No. 8
This shows that more than 0% was transferred to the exhaust port, resulting in extremely low collection efficiency.
第2に、実施例Cにおいては、開口部を狭め、その先端
に円筒状の誘導管を設けた漏斗状の開口部とした場合で
あって、当然のように開口部の空気速度が上昇し、捕集
部内で粉乳の再飛散が発生して舞い上がり捕集効率が低
いことを示している。Second, in Example C, the opening is narrowed to have a funnel-shaped opening with a cylindrical guide tube at the tip, and as a matter of course, the air velocity at the opening increases. , indicating that the milk powder is re-splattered and blown up in the collection section, and the collection efficiency is low.
第3に、実験例D−Vにおいては、上記結果を参考にし
て上記開口部を逆円錐形状にしぼり(第1図α−60
’、 d/D+ =%) 、再飛散防止板の開放部(
粉体取込み口)の径を100nとした。Thirdly, in Experimental Example D-V, the opening was narrowed down to an inverted conical shape (Fig. 1 α-60
', d/D+ = %), the open part of the re-scattering prevention plate (
The diameter of the powder intake port was 100n.
また、粉乳捕集部の下方には下向きに開口した抽気口を
設けた。Further, a downwardly opened air bleed port was provided below the powdered milk collecting section.
第4に、実験例D−Pでは、粉乳材料として顆粒伏脱脂
粉乳を使用し開口部の離間距離(空隙面積)を一定にし
た3群の実験データを得た。これらのデータから抽気率
と捕集効率には比較的強い相関関係があり、しかも捕集
効率を向上させるには抽気率を7〜20%程度に設定す
る必要があることがわかった。Fourth, in Experimental Examples D-P, experimental data was obtained for three groups using granulated skimmed milk powder as the milk powder material and keeping the distance between the openings (void area) constant. From these data, it was found that there is a relatively strong correlation between the extraction rate and the collection efficiency, and that it is necessary to set the extraction rate to about 7 to 20% in order to improve the collection efficiency.
第5に、実験例Q−Vでは、粉乳材料として全脂粉乳を
使用し、本願発明の目的の1つである脱脂含有粉体の遊
離脂肪発生防止への適用を試みたものであり、結果とし
て本実験は全脂粉乳に適合することと、実用可能な捕集
効率が期待し得ることを確認できた。Fifth, in Experimental Example Q-V, whole milk powder was used as the milk powder material, and an attempt was made to apply it to the prevention of free fat generation in skim-containing powder, which is one of the objectives of the present invention. This experiment confirmed that it is compatible with whole milk powder and that a practical collection efficiency can be expected.
実験■
本装置を用いて粉体混合ガスから粉体を分離捕集した場
合の遊離脂肪増加の有無を調べる実験であって、設定条
件としては実験■における実験例Sを採用した。Experiment (2) This was an experiment to determine whether or not there was an increase in free fat when the present apparatus was used to separate and collect powder from a powder mixed gas, and Experimental Example S in Experiment (2) was adopted as the setting conditions.
その結果を第2表に示す。The results are shown in Table 2.
ここで、当該実験■で使用した原料粉体は、例−1:全
脂肪粉乳−生乳を濃縮し、噴霧乾燥室に自然落下した部
分の粉乳(含有脂肪26.2%)
例−28合成扮乳=脱脂乳を?層線し、植物脂肪を添加
均質化し、噴霧乾燥し、乾燥室に自然落下した部分の粉
乳(含有脂肪28゜5%)
である。Here, the raw material powder used in the experiment ① is: Example-1: Full-fat milk powder - milk powder from the part of concentrated raw milk that naturally falls into the spray drying chamber (fat content 26.2%) Example-28 Synthetic milk powder Milk = skimmed milk? This is milk powder (fat content: 28.5%) that is layered, homogenized with the addition of vegetable fat, spray-dried, and allowed to fall naturally into a drying room.
また、例−1および例−2の条件設定については、
(例−1)
原料粉乳120kgを秤取し、軽く混合均一化して2分
割し、
(A) その60kgを、通常の空気混合粉体圧送装
置(pneumatic conveyer)を用いて
全量を本実施例の粉体分離装置に供給し、粉乳を捕集し
た。In addition, regarding the condition settings for Example-1 and Example-2, (Example-1) Weigh out 120 kg of raw milk powder, lightly mix it to make it homogeneous, and divide it into two parts. The entire amount was supplied to the powder separator of this example using a pneumatic conveyor, and the milk powder was collected.
(B)更に本装置で捕集できなかった粉乳を含む排気と
抽気を合流してサイクロンコレクターへ送り、略完全に
捕集した。(B) Further, the exhaust gas containing milk powder that could not be collected by this device and the extracted air were combined and sent to a cyclone collector, where they were almost completely collected.
(C)上記(A)と(B)を合わせ、緩い力で均一に混
合した。(C) The above (A) and (B) were combined and mixed uniformly with gentle force.
(D)比較例として前記の残量60kgを(A)と同じ
空気混合粉体圧送装置を用いてその全量を(B)と同じ
サイクロンコレクターへ送り粉体を分離し、略完全に捕
集した。(D) As a comparative example, the remaining amount of 60 kg was sent to the same cyclone collector as in (B) using the same air mixing powder feeding device as in (A), and the powder was separated and almost completely collected. .
(例−2)
原料粉体を合成粉乳とした以外は、例−1と全く同じ条
件として実験を繰り返したものである。(Example 2) The experiment was repeated under the same conditions as Example 1 except that synthetic milk powder was used as the raw material powder.
(以下、余白)
第2表
(なお、第2表中のFF値*は、遊離脂肪含量を示すも
ので、粉乳に四塩化炭素を加え、振とう抽出した脂肪重
量を使用粉乳総重量に対する%で示すものである。(通
常採用される遊離脂肪測定法に準じている。))
このような第2表の実験結果から、(A)。(Hereinafter, blank space) Table 2 (The FF value * in Table 2 indicates the free fat content. Carbon tetrachloride is added to powdered milk, and the fat weight extracted by shaking is used as a percentage of the total weight of powdered milk.) (According to the commonly used free fat measurement method.) Based on the experimental results shown in Table 2, (A).
(Ao)において遊離脂肪の増加が抑えられていること
がわかる。(なお、上記(A)、 (A’ )におけ
るFF値が原料粉より低い値となっているのは、分離捕
集した粉乳はサイクロンコレクターへ移行した粉乳とは
粉の平均粒径が異なるためと思われる。)
つまり、従来のサイクロンコレクターでは、その周壁面
等に粉乳が押しつけられて摩擦し、′f1離脂肪の増加
が現れている。しかし、本実施例の粉体分離装置では、
遠心力による押しつけ、I2擦がなく、粉体捕集部3に
突入した粉乳は直ちに減速されて、略終末沈降速度で集
積するので、遊離脂肪の増加防止、粉粒の衝突破壊防止
によって粉乳品質を良好に維持できることがわかった。It can be seen that the increase in free fat is suppressed in (Ao). (The reason why the FF values in (A) and (A') above are lower than the raw material powder is because the average particle size of the separated and collected milk powder is different from that of the milk powder transferred to the cyclone collector. ) In other words, in the conventional cyclone collector, powdered milk is pressed against the surrounding wall surface and causes friction, resulting in an increase in 'f1 fat separation. However, in the powder separator of this embodiment,
There is no pressing due to centrifugal force or I2 friction, and the milk powder that enters the powder collecting section 3 is immediately decelerated and accumulated at approximately the terminal sedimentation velocity, which improves the quality of the milk powder by preventing the increase of free fat and preventing the collision and destruction of powder particles. was found to be able to be maintained well.
以上、説明したように本実施例の粉体分離装置は、慣性
力を利用して気体と粉体を分離することができ、従来の
装置のように遠心力等によって壁等に押しつけられて破
砕が生じたり、長時間連続した処理ができない等の問題
が解決される。特に、排気量と抽気量の調整から、粉体
の破砕等を防止した捕集が実現される。従って、本実施
例の粉体分離装置を用いて粉乳を分離する場合では、脂
肪球の破壊を防止してa離脂肪の増大を抑えることがで
き、粒子の破壊を防止し、粉乳の溶解性1分散性の向上
ができる。また、付着性を有する粉体の処理に好適であ
る。As explained above, the powder separation device of this embodiment can separate gas and powder using inertial force, and unlike conventional devices, it is pressed against a wall etc. by centrifugal force and crushed. This solves problems such as problems such as the occurrence of problems and the inability to perform continuous processing for a long period of time. In particular, by adjusting the exhaust volume and bleed volume, collection that prevents powder from being crushed or the like can be achieved. Therefore, when separating milk powder using the powder separator of this embodiment, it is possible to prevent the destruction of fat globules and suppress the increase in a fat separation, prevent the destruction of particles, and improve the solubility of milk powder. 1 Dispersibility can be improved. Moreover, it is suitable for treating powder that has adhesive properties.
なお、本装置は一般の集塵器としても使用できることは
言うまでもない。また、粉体としては、特に粉乳等の取
り扱いが容易でない粉体に適用することができ、例えば
育児用調整粉乳、全脂粉乳。It goes without saying that this device can also be used as a general dust collector. Further, as a powder, it can be applied particularly to powders that are difficult to handle, such as powdered milk, such as infant formula powdered milk and whole milk powder.
脱脂粉乳、粉末クリーム等の種々のj5)乳に適用でき
る。また゛、粉乳に限定されず他の食用粉体、例えば粉
末スープ、インスタントコーヒー等の顆粒状粉末食品等
に用いることもできる。It can be applied to various j5) milks such as skim milk powder and powdered cream. Moreover, it is not limited to powdered milk, but can also be used for other edible powders, such as powdered soups, granular powdered foods such as instant coffee, etc.
また、本発明の粉体分離装置および粉体処理ユニットは
、本発明の要旨を逸脱しない範囲での種々の変更が可能
である。Further, the powder separator and powder processing unit of the present invention can be modified in various ways without departing from the gist of the present invention.
[発明の効果]
本発明の粉体分離装置を粉体分離工程に適用することで
、粉体の破砕や摩擦等を防止でき、特に脂肪を含む粉乳
においては遊離脂肪の発生を防止することができ、品質
の安定性を確保することができる。また、付着性のある
粉体を取り扱うことができ、長時間の連続処理が可能で
ある。さらに、上記粉体分離装置を粉体処理ユニットに
用いることで、好適な粉体分離の効果をあげることがで
きる。[Effects of the Invention] By applying the powder separation device of the present invention to the powder separation process, it is possible to prevent powder crushing, friction, etc., and especially in milk powder containing fat, generation of free fat can be prevented. and ensure quality stability. In addition, it is possible to handle adhesive powders, and continuous processing for long periods of time is possible. Furthermore, by using the above-mentioned powder separation device in a powder processing unit, a suitable powder separation effect can be achieved.
第1図は本発明の粉体分離装置の一例の断面図、第2図
は本発明の粉体処理ユニットの一例を説明するための部
分破断側面図、第3図は本発明の粉体処理ユニットの他
の一例を説明するための模式図、第4図は本発明の粉体
分離装置に先行する技術の一例を説明するための模式図
である。また、第5図は本発明の粉体分離装置の変形例
を説明するための要部断面図である。
1・・・分離室
2・・・粉体混合ガス流入管
3・・・粉体捕集部
4・・・排気口
5・・・抽気口
13・・・開口部
14・・・粉体取込み口
15・・・空隙部
特許出願人 明治乳業株式会社
代理人弁理士 小池 晃(他2名)
第1図
第3図
第4図
第5図FIG. 1 is a sectional view of an example of a powder separation device of the present invention, FIG. 2 is a partially cutaway side view for explaining an example of a powder processing unit of the present invention, and FIG. 3 is a powder processing unit of the present invention. FIG. 4 is a schematic diagram for explaining another example of the unit, and FIG. 4 is a schematic diagram for explaining an example of the technology preceding the powder separator of the present invention. Moreover, FIG. 5 is a sectional view of a main part for explaining a modification of the powder separator of the present invention. 1... Separation chamber 2... Powder mixed gas inflow pipe 3... Powder collection section 4... Exhaust port 5... Air bleed port 13... Opening 14... Powder intake Portion 15: Gap patent applicant: Meiji Dairy Co., Ltd. Patent attorney Akira Koike (and 2 others) Figure 1 Figure 3 Figure 4 Figure 5
Claims (1)
室と、該分離室の上面部から内部に突出すると共に逆円
錐形状であって底部に開口部が形成された円筒状の粉体
混合ガス流入管と、上記分離室の内部で上記粉体混合ガ
ス流入管の開口部から離間され且つ該開口部と略同径な
粉体取込み口が対向するように設けられると共に、所定
の抽気量を抽気する抽気口が配設される管状の粉体捕集
部を有し、上記開口部と上記粉体取込み口の間の空隙部
で粉体混合ガスの気体分が上記粉体混合ガス流入管の中
心線方向から角度を以て上記分離室へ取り出され、上記
空隙部で分離された粉体が粉体捕集部に突入した後上記
排気量と上記抽気量の調整によって略終末沈降速度を以
て沈降することを特徴とする粉体分離装置。(2)粉体
混合ガス流入管はその軸線が鉛直方向であることを特徴
とする特許請求の範囲第1項記載の粉体分離装置。 (3)抽気口の開口端部が下方側に向かって開口されて
なることを特徴とする特許請求の範囲第1項記載の粉体
分離装置。 (4)粉体捕集部の上端に再飛散防止板を設置したこと
を特徴とする特許請求の範囲第1項記載の粉体分離装置
。 (5)粉体混合ガス流入管の開口部と粉体捕集部の粉体
取込み口の間の空隙部の離間した距離が調整可能とされ
ることを特徴とする特許請求の範囲第1項記載の粉体分
離装置。 (6)粉体混合ガス流入管の底部の外周側には、補助板
が設けられることを特徴とする特許請求の範囲第1項記
載の粉体分離装置。 (7)排気口から排気されるガスと、抽気口から抽気さ
れるガスとが合流してサイクロンコレクターへ連結され
てなることを特徴とする特許請求の範囲第1項記載の粉
体分離装置。 (8)所定の排気量を排気する排気口が設けられた分離
室と、該分離室の上面部から内部に突出すると共に逆円
錐形状であって底部に開口部が形成された円筒状の粉体
混合ガス流入管と、上記分離室の内部で上記粉体混合ガ
ス流入管の開口部から離間され且つ該開口部と略同径な
粉体取込み口が対向するように設けられると共に、所定
の抽気量を抽気する抽気口が配設される管状の粉体捕集
部を有し、上記開口部と上記粉体取込み口の間の空隙部
で粉体混合ガスの気体分が上記粉体混合ガス流入管の中
心線方向から角度を以て上記分離室へ取り出され、上記
空隙部で分離された粉体が粉体捕集部に突入した後上記
排気量と上記抽気量の調整によって略終末沈降速度を以
て沈降する粉体分離装置を有し、その粉体分離装置を空
気混合粉体圧送装置の粉体混合ガス取り出し側に連設し
、粉体の搬送を行う粉体処理ユニット。 (9)所定の排気量を排気する排気口が設けられた分離
室と、該分離室の上面部から内部に突出すると共に逆円
錐形状であって底部に開口部が形成された円筒状の粉体
混合ガス流入管と、上記分離室の内部で上記粉体混合ガ
ス流入管の開口部から離間され且つ該開口部と略同径な
粉体取込み口が対向するように設けられると共に、所定
の抽気量を抽気する抽気口が配設される管状の粉体捕集
部を有し、上記開口部と上記粉体取込み口の間の空隙部
で粉体混合ガスの気体分が上記粉体混合ガス流入管の中
心線方向から角度を以て上記分離室へ取り出され、上記
空隙部で分離された粉体が粉体捕集部に突入した後上記
排気量と上記抽気量の調整によって略終末沈降速度を以
て沈降する粉体分離装置を有し、その粉体分離装置を熱
風混合式粉体乾燥装置の粉体混合ガス取り出し側に連設
し、粉体の分離を行う粉体処理ユニット。[Scope of Claims] (1) A separation chamber provided with an exhaust port for discharging a predetermined amount of exhaust gas, and an inverted conical shape that protrudes inward from the upper surface of the separation chamber and has an opening formed at the bottom. The cylindrical powder mixed gas inflow pipe and the powder intake port, which is spaced apart from the opening of the powder mixed gas inflow pipe and has approximately the same diameter as the opening, face each other inside the separation chamber. It has a tubular powder collection part provided with an air extraction port for extracting a predetermined amount of air, and the powder mixture gas is collected in the gap between the opening and the powder intake port. After the powder mixture gas is taken out into the separation chamber at an angle from the center line direction of the powder mixed gas inflow pipe, and the powder separated in the gap enters the powder collection section, the above displacement amount and the above bleed air amount are A powder separator characterized in that it settles at a substantially terminal settling velocity by adjustment. (2) The powder separation device according to claim 1, wherein the axis of the powder mixed gas inflow pipe is vertical. (3) The powder separator according to claim 1, wherein the opening end of the bleed port is opened downward. (4) The powder separator according to claim 1, further comprising a re-scattering prevention plate installed at the upper end of the powder collecting section. (5) Claim 1, characterized in that the distance between the gap between the opening of the powder mixed gas inflow pipe and the powder intake port of the powder collecting section is adjustable. Powder separation device as described. (6) The powder separator according to claim 1, wherein an auxiliary plate is provided on the outer peripheral side of the bottom of the powder mixed gas inflow pipe. (7) The powder separation device according to claim 1, wherein the gas exhausted from the exhaust port and the gas extracted from the bleed port are combined and connected to a cyclone collector. (8) A separation chamber provided with an exhaust port for discharging a predetermined amount of exhaust gas, and a cylindrical powder projecting inward from the upper surface of the separation chamber and having an inverted conical shape and an opening at the bottom. A powder mixture gas inflow pipe and a powder intake port which is spaced apart from the opening of the powder mixture gas inflow pipe and has approximately the same diameter as the opening in the separation chamber are provided so as to face each other, and have a predetermined diameter. It has a tubular powder collection part in which an air bleed port for extracting the amount of air is disposed, and the gas content of the powder mixture gas is mixed with the powder in the gap between the opening and the powder intake port. After the powder is taken out to the separation chamber at an angle from the center line direction of the gas inflow pipe and separated in the gap, it enters the powder collection section, and then the final sedimentation velocity is adjusted by adjusting the displacement amount and the extraction amount. This is a powder processing unit that has a powder separator that settles with a 100°C, and the powder separator is connected to the powder mixed gas take-out side of an air-mixed powder pumping device to transport the powder. (9) A separation chamber provided with an exhaust port for discharging a predetermined amount of exhaust gas, and a cylindrical powder that protrudes inward from the upper surface of the separation chamber and has an inverted conical shape and an opening at the bottom. A powder mixture gas inflow pipe and a powder intake port which is spaced apart from the opening of the powder mixture gas inflow pipe and has approximately the same diameter as the opening in the separation chamber are provided so as to face each other, and have a predetermined diameter. It has a tubular powder collection part in which an air bleed port for extracting the amount of air is disposed, and the gas content of the powder mixture gas is mixed with the powder in the gap between the opening and the powder intake port. After the powder is taken out to the separation chamber at an angle from the center line direction of the gas inflow pipe and separated in the gap, it enters the powder collection section, and then the final sedimentation velocity is adjusted by adjusting the displacement amount and the extraction amount. This is a powder processing unit that has a powder separator that settles with a 100-degree drop, and the powder separator is connected to the powder mixed gas extraction side of a hot air mixing type powder dryer to separate the powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62289589A JP2559775B2 (en) | 1987-11-18 | 1987-11-18 | Powder separation device and powder processing unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62289589A JP2559775B2 (en) | 1987-11-18 | 1987-11-18 | Powder separation device and powder processing unit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01130710A true JPH01130710A (en) | 1989-05-23 |
JP2559775B2 JP2559775B2 (en) | 1996-12-04 |
Family
ID=17745189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62289589A Expired - Lifetime JP2559775B2 (en) | 1987-11-18 | 1987-11-18 | Powder separation device and powder processing unit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2559775B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01152712U (en) * | 1988-04-14 | 1989-10-20 | ||
JP2010227802A (en) * | 2009-03-26 | 2010-10-14 | Fulta Electric Machinery Co Ltd | Oil mist collector |
JP2013000648A (en) * | 2011-06-15 | 2013-01-07 | Kaneda Kosakusho:Kk | Flue gas treatment apparatus |
-
1987
- 1987-11-18 JP JP62289589A patent/JP2559775B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01152712U (en) * | 1988-04-14 | 1989-10-20 | ||
JP2010227802A (en) * | 2009-03-26 | 2010-10-14 | Fulta Electric Machinery Co Ltd | Oil mist collector |
JP2013000648A (en) * | 2011-06-15 | 2013-01-07 | Kaneda Kosakusho:Kk | Flue gas treatment apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2559775B2 (en) | 1996-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1534436B1 (en) | Apparatus and method for separating particles | |
US3720314A (en) | Classifier for fine solids | |
US4211641A (en) | Circulating air classifier or separator | |
JPS626634A (en) | Method and apparatus for treating water soluble fine particulate material | |
JPS5859914A (en) | Inhalation drug | |
JPH1066897A (en) | Cyclone, especially cyclone dust collector and cyclone classifier | |
EP1250188B1 (en) | Process and apparatus for agglomeration of powders | |
US4743363A (en) | Classifying cyclone | |
UA119913C2 (en) | Molding sand cooler | |
US4715951A (en) | Apparatus for separating granulate material | |
US20050139523A1 (en) | Apparatus and method for air classification and drying of particulate matter | |
JPH01130710A (en) | Powder separation device and powder treating unit | |
RU2407601C1 (en) | Method of air-centrifugal classification of powders and device to this end | |
JP2003190838A (en) | Cyclone type fine powder catcher | |
JP3518751B2 (en) | Airflow classifier | |
JP2002539943A (en) | Particle size sorter | |
JP2522360Y2 (en) | Separation device | |
JP3501421B2 (en) | Air flow classification device | |
JPS60161721A (en) | Method and apparatus for mixing powders by air stream | |
JPH0380556B2 (en) | ||
JP3091289B2 (en) | Collision type air crusher | |
JPH0127879Y2 (en) | ||
JPH04141251A (en) | Method and device for centrifugal separation | |
JPH0468972B2 (en) | ||
KR900004732Y1 (en) | Separator |