JPH01130054A - Fuel injection valve - Google Patents

Fuel injection valve

Info

Publication number
JPH01130054A
JPH01130054A JP28435387A JP28435387A JPH01130054A JP H01130054 A JPH01130054 A JP H01130054A JP 28435387 A JP28435387 A JP 28435387A JP 28435387 A JP28435387 A JP 28435387A JP H01130054 A JPH01130054 A JP H01130054A
Authority
JP
Japan
Prior art keywords
fuel
flow dividing
wall surface
fuel injection
injection valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28435387A
Other languages
Japanese (ja)
Inventor
Hitoshi Tasaka
田坂 仁志
Yukio Tomiita
幸生 富板
Hideo Kiuchi
英雄 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP28435387A priority Critical patent/JPH01130054A/en
Publication of JPH01130054A publication Critical patent/JPH01130054A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To accelerate fuel atomization as well as to improve combustibility by forming each inner wall surface of plural pieces of flow dividing holes formed as opposed to a fuel injection nozzle, into surface roughness coarser than 5mum. CONSTITUTION:When a needle valve 113 is opened, fuel is discharged out of a nozzle 112 and separated in two directions by flow dividing holes 141, 142, then it is sprayed out of a fuel injection valve 100. Each of these flow dividing holes has a circular section of about 0.8mm in a radius of curvature, and each inner wall surface is processed into matte finish by means of shot blasting or the like, and the surface is coarser then 5mum. Consequently, a fuel flow in these flow dividing holes 141, 142 is disordered, whereby fuel grain size becomes smaller. Since the fuel grain size is minimized when a radius of curvature on an inner wall surface of the flow dividing hole is 0.8mm, such fuel atomization that is small in the grain size is fed to the inside of a combustion chamber. With this constitution, combustion is improved and transient responsiveness in an engine is improved and, what is more, fuel consumption is substantially enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、噴射孔から吐出される燃料を分流孔により複
数方向に分離させて噴射する燃料噴射弁に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel injection valve that separates fuel discharged from an injection hole into a plurality of directions using a flow dividing hole and injects the fuel.

〔従来の技術] 例えば3バルブあるいは4バルブエンジンのように1つ
の気筒に対して2個の吸気弁を有するエンジンにおいて
、1つの気筒に連結される吸気通路は途中で2つに分岐
して各吸気ボートに連通ずる。燃料噴射弁は、吸気通路
の分岐部の上流側に設けられ、分岐部に向けて燃料を噴
射する。そこで、燃料が吸気通路の壁面に付着するのを
防止するため、燃料噴射弁の先端に2つの分流孔を有す
るアダプタを嵌着し、これらの分流孔により燃料噴霧流
を2つに分離して各吸気ボートに供給することが好まし
く、これは実開昭62−105363号公報あるいは日
本電装公開技報31−223号に開示された構成により
達成される。
[Prior Art] For example, in an engine having two intake valves for one cylinder, such as a three-valve or four-valve engine, an intake passage connected to one cylinder branches into two in the middle, and each cylinder has two intake valves. Connects to the intake boat. The fuel injection valve is provided upstream of a branch of the intake passage and injects fuel toward the branch. Therefore, in order to prevent the fuel from adhering to the wall of the intake passage, an adapter with two flow dividing holes is fitted to the tip of the fuel injection valve, and the fuel spray flow is separated into two by these flow dividing holes. It is preferable to supply the air to each intake boat, and this is achieved by the configuration disclosed in Japanese Utility Model Application Publication No. 62-105363 or Nippon Denso Technical Report No. 31-223.

[発明が解決しようとする問題点] しかし上述した従来の燃料噴射弁は、燃料を2方向に分
けることはできるが、燃料の霧化が充分ではなく、この
ため燃焼およびエンジンの過渡応答性は充分には改善さ
れていない。
[Problems to be Solved by the Invention] However, although the conventional fuel injection valve described above can separate the fuel into two directions, the atomization of the fuel is not sufficient, and as a result, the transient response of the combustion and engine is poor. It hasn't been improved enough.

本発明は、燃料を複数方向に分離させるとともに燃料の
霧化を充分に促進することのできる燃料噴射弁を得るこ
とを目的としてなされたものである。
An object of the present invention is to obtain a fuel injection valve that can separate fuel in multiple directions and sufficiently promote atomization of the fuel.

〔問題点を解決するための手段] 本発明に係る燃料噴射弁は、分流孔の内壁面が5μmよ
りも粗い表面粗度を有することを特徴としている。
[Means for Solving the Problems] The fuel injection valve according to the present invention is characterized in that the inner wall surface of the flow dividing hole has a surface roughness rougher than 5 μm.

〔実施例] 以下図示実施例に基いて本発明を説明する。〔Example] The present invention will be explained below based on illustrated embodiments.

第2図は本発明を適用した燃料噴射弁100を示す。こ
の図において、ノズルボディ111の下端部には噴射孔
112が穿設され、ノズルボディ111の内部には噴射
孔112を開閉するニードル弁113が昇降自在に収容
される。ノズルボディ111の上方には環状板114が
設けられ、ノズルボディ111は環状板114とともに
ケーシング115の下端開口部116内に嵌着される。
FIG. 2 shows a fuel injection valve 100 to which the present invention is applied. In this figure, an injection hole 112 is formed in the lower end of a nozzle body 111, and a needle valve 113 for opening and closing the injection hole 112 is housed inside the nozzle body 111 so as to be able to move up and down. An annular plate 114 is provided above the nozzle body 111, and the nozzle body 111 is fitted into the lower end opening 116 of the casing 115 together with the annular plate 114.

一方、燃料供給ライン(図示せず)に連結されろ入口部
材121は、そのフランジ部121aにおいてケーシン
グ115の上端開口部117内に嵌着され、またこのフ
ランジ部121aの下方に延びるパイプ部121bは後
述するソレノイドコイル131の中心に位置する鉄心を
なす。この入口部材121の軸心部に固定された管部材
122には燃料通路123が形成され、また入口部材1
21の供給ラインとの連結部分にはフィルタ124が設
けられる。燃料通路123と絞り孔112はケーシング
115およびノズルボディ111の内部に形成された通
路により連結され、フィルタ124および燃料通路12
3を通過して流入する燃料はニードル弁113が開弁じ
た時噴射孔112から吐出される。この吐出燃料は、後
述する分流孔141,14.2により2方向に分流され
、燃料噴射弁100から噴射される。
On the other hand, the inlet member 121 connected to a fuel supply line (not shown) is fitted into the upper end opening 117 of the casing 115 at its flange portion 121a, and the pipe portion 121b extending below the flange portion 121a is It forms an iron core located at the center of a solenoid coil 131, which will be described later. A fuel passage 123 is formed in a pipe member 122 fixed to the axial center of the inlet member 121.
A filter 124 is provided at the connection portion with the supply line 21. The fuel passage 123 and the throttle hole 112 are connected by a passage formed inside the casing 115 and the nozzle body 111.
The fuel flowing through the fuel injection hole 3 is discharged from the injection hole 112 when the needle valve 113 is opened. This discharged fuel is divided into two directions by flow dividing holes 141 and 14.2, which will be described later, and is injected from the fuel injection valve 100.

ニードル弁113の頭部には環状の可動コア125が嵌
着され、可動コア125と管部材122との間にはばね
126が設けられる。このばね126は、可動コア12
5を介してニードル弁113を常時下方べ付勢し、これ
によりニードル弁113は、非作動時、ノズルボディ1
11の下部に形成されたシート部127に着座し、噴射
孔112を閉塞する。ニードル弁113はソレノイドコ
イル131に通電することにより開弁する。すなわち可
動コア125は磁性体から成形されており、ソレノイド
コイル131への通電により上方へ吸引され、これによ
りニードル弁113はシート部127から離座して噴射
孔112を開放する。この時、ニードル弁113の上昇
位置は、ニードル弁113の略中央に形成されたストッ
パ118が環状板114に干渉することにより規制され
る。ソレノイドコイル131への通電を遮断すると、ニ
ードル弁113はばね126の弾発力により下降し、噴
射孔112を閉塞する。
An annular movable core 125 is fitted into the head of the needle valve 113, and a spring 126 is provided between the movable core 125 and the pipe member 122. This spring 126 is connected to the movable core 12
5, the needle valve 113 is always biased downwardly through the nozzle body 1.
11 and closes the injection hole 112. The needle valve 113 is opened by energizing the solenoid coil 131. That is, the movable core 125 is made of a magnetic material, and is attracted upward by energizing the solenoid coil 131, thereby causing the needle valve 113 to separate from the seat portion 127 and open the injection hole 112. At this time, the raised position of the needle valve 113 is regulated by a stopper 118 formed approximately at the center of the needle valve 113 interfering with the annular plate 114. When the power supply to the solenoid coil 131 is cut off, the needle valve 113 is lowered by the elastic force of the spring 126 and closes the injection hole 112.

ソレノイドコイル131への通電制御は、電子制御回路
(図示せず)により行なわれ、電子制御回路はエンジン
の運転状態に応じて電圧パルスをソレノイドコイル13
1に供給する。電子制御回路とソレノイドコイル131
を電気的に接続するため、ケーシング115の上端には
給電用コネクタ132が固定され、このコネクタ132
に設けられたコネクタピン133はソレノイドコイル1
31に接続される。
Power supply control to the solenoid coil 131 is performed by an electronic control circuit (not shown), and the electronic control circuit applies voltage pulses to the solenoid coil 13 according to the operating state of the engine.
Supply to 1. Electronic control circuit and solenoid coil 131
A power supply connector 132 is fixed to the upper end of the casing 115 in order to electrically connect the
The connector pin 133 provided in the solenoid coil 1
31.

第3図は燃料噴射弁lOOの下端部を拡大して示す。ス
リーブ140はノズルボディ111の下端部に圧入して
固定され、このスリーブ140には、噴射孔112に対
向して形成された2つの分流孔141.142が設けら
れる。分流孔141,142は、第1図(b)に示すよ
うに円形断面を有する。ニードル弁113の下端に形成
されるビントル119は、噴射孔112を貫通して延び
、スリーブ140内において分流孔141.142の上
方に形成される室143内に位置する。
FIG. 3 shows an enlarged view of the lower end of the fuel injection valve lOO. The sleeve 140 is press-fitted and fixed to the lower end of the nozzle body 111, and the sleeve 140 is provided with two flow dividing holes 141 and 142 formed opposite to the injection hole 112. The flow dividing holes 141, 142 have a circular cross section as shown in FIG. 1(b). A bottle 119 formed at the lower end of the needle valve 113 extends through the injection hole 112 and is located in a chamber 143 formed in the sleeve 140 above the flow diverter hole 141 , 142 .

第1図(a)、(b)は第1実施例におけるスリーブ1
40を拡大して示す。各分流孔141,142は、下流
側はど細く、また下流へ向かうに従い相互に離間するよ
うアダプタ140の中心線に対して外方へ傾斜している
。分流孔141.142の内壁面はショットプラスト等
により梨子地状に加工され、その表面粗度は5μmより
も粗い。また分流孔14L142は円形断面を有し、内
壁面の曲率半径R0は約0.8mmに定められる。
FIGS. 1(a) and 1(b) show the sleeve 1 in the first embodiment.
40 is shown enlarged. Each of the branch holes 141 and 142 is narrow on the downstream side, and is inclined outward with respect to the center line of the adapter 140 so as to be spaced apart from each other as it goes downstream. The inner wall surfaces of the flow dividing holes 141 and 142 are processed into a satin-like texture using shotplast or the like, and the surface roughness thereof is rougher than 5 μm. Further, the flow dividing hole 14L142 has a circular cross section, and the radius of curvature R0 of the inner wall surface is set to about 0.8 mm.

このように分流孔141,142の表面粗度を5μm以
上としたことにより分流孔141,142内における燃
料流は乱され、燃料の液膜の分裂が促進されて燃料粒径
が小さくなる。したがって燃料は、分流孔141,14
2によって2方向に分離して噴射されるだけでなく、良
好に霧化され、エンジンの燃焼室内には粒径の小さい燃
料噴霧が供給されることとなる。これにより、燃焼が改
善され、エンジンの過渡応答性が向上するとともに燃費
が改善され、またエミッションが低減する。なお、燃料
に異物が含まれている場合、この異物は分流孔141.
142の内壁面の凹部に入っても、燃料が常に内壁面に
沿って流れているためすぐに洗い流され、内壁面に付着
することはない。
By setting the surface roughness of the flow dividing holes 141, 142 to 5 μm or more in this manner, the fuel flow within the flow dividing holes 141, 142 is disturbed, the splitting of the liquid film of the fuel is promoted, and the fuel particle size is reduced. Therefore, the fuel flows through the branch holes 141 and 14.
2, the fuel is not only injected separately in two directions, but also well atomized, and fuel spray with small particle size is supplied into the combustion chamber of the engine. This improves combustion, improves engine transient response, improves fuel economy, and reduces emissions. Note that if the fuel contains foreign matter, this foreign matter will be removed from the flow dividing hole 141.
Even if the fuel enters the recess on the inner wall surface of 142, since the fuel always flows along the inner wall surface, it is immediately washed away and does not adhere to the inner wall surface.

第4図は、分流孔141,142の内壁面の表面粗度と
燃料のザウタ平均粒径との関係を示す。この図から理解
されるように、燃料の粒径は、分流孔内壁面の表面粗度
が大きくなるぼど小さ(なり、表面粗度が5μm以−ヒ
において著しく小さい値となってほぼ一定となる。しか
し“ζ第1実施例において、分流孔141.142の内
壁面の表面粗度は5μm以上に定められる。
FIG. 4 shows the relationship between the surface roughness of the inner wall surfaces of the flow dividing holes 141 and 142 and the Sauter average particle size of fuel. As can be understood from this figure, the particle size of the fuel becomes smaller as the surface roughness of the inner wall of the flow dividing hole increases, and becomes a significantly smaller value when the surface roughness is 5 μm or less and remains almost constant. However, in the first embodiment, the surface roughness of the inner wall surfaces of the flow dividing holes 141 and 142 is set to be 5 μm or more.

第5図は、分流孔141142の内壁面の曲率半径R0
と燃料のザウタ平均粒径との関係を示す。この図から理
解されるように、燃料の粒径は、曲率半径R0が大きく
なるに従って小さくなり、また曲率半径R0が0.8 
mmを越えるとほぼ一定値をとる。曲率半径R0は、第
1実施例において約0.8mmに定められる。このよう
に分流孔141,142の内壁面の曲率半径R0を大き
くするほど燃料の粒径が小さくなるのは、分流孔141
.142内における燃料と内壁面の接触面積が大きくな
り、これにより燃料流の液膜が薄くなって燃料の霧化が
促進されるからである。
FIG. 5 shows the radius of curvature R0 of the inner wall surface of the flow dividing hole 141142.
and the Sauter average particle size of the fuel. As can be understood from this figure, the particle size of the fuel decreases as the radius of curvature R0 increases, and the radius of curvature R0 becomes 0.8
When it exceeds mm, it takes a nearly constant value. The radius of curvature R0 is determined to be approximately 0.8 mm in the first embodiment. In this way, the larger the radius of curvature R0 of the inner wall surface of the flow dividing holes 141 and 142, the smaller the particle size of the fuel becomes.
.. This is because the contact area between the fuel and the inner wall surface in the inner wall 142 becomes larger, which thins the liquid film of the fuel flow and promotes atomization of the fuel.

第6図は第2実施例におけるアダプタ140を拡大して
示す。この実施例において分流孔141,142の内壁
面の径は下流側へ向かうに従い階段状に小さくなってお
り、すなわち内壁面には階段状の凹凸が形成される。こ
の内壁面の表面粗度も5μm以上である。したがってこ
の第2実施例によっても、上記第1実施例と同様な効果
が得られる。また、この実施例におけるアダプタ140
は合成樹脂から成形されることができ、コストを低く抑
えることができる。
FIG. 6 shows an enlarged view of the adapter 140 in the second embodiment. In this embodiment, the diameter of the inner wall surface of the flow dividing holes 141, 142 decreases stepwise toward the downstream side, that is, step-like unevenness is formed on the inner wall surface. The surface roughness of this inner wall surface is also 5 μm or more. Therefore, this second embodiment also provides the same effects as the first embodiment. In addition, the adapter 140 in this embodiment
can be molded from synthetic resin, keeping costs low.

第7図(a)、(b)は第3実施例のアダプタ140を
示す。この第3実施例は、第1図(a)、(b)に示す
第1実施例と比較し、分流孔141,142の内壁面が
、円弧状部分141a、 142aどおしを相互に近接
させた半円形断面を有する点が異なり、その他の構成は
同様である。この実施例においても分流孔141,14
2の内壁面は5μm以上の表面粗度を有し、また内壁面
の円弧状部分の曲率半径R0は0.8mm以上であり、
上記各実施例と同様な効果が得られる。
FIGS. 7(a) and 7(b) show an adapter 140 of a third embodiment. This third embodiment is different from the first embodiment shown in FIGS. 1(a) and 1(b) in that the inner wall surfaces of the flow dividing holes 141 and 142 have arcuate portions 141a and 142a close to each other. The difference is that it has a semicircular cross section, but the other configurations are the same. Also in this embodiment, the flow dividing holes 141, 14
The inner wall surface of No. 2 has a surface roughness of 5 μm or more, and the radius of curvature R0 of the arc-shaped portion of the inner wall surface is 0.8 mm or more,
The same effects as in each of the above embodiments can be obtained.

第8図(a)、(b)は第4実施例のアダプタ140を
示す。この第4実施例において、分流孔14L142の
内壁面は半円形断面を有するが、第3実施例と異なり、
直線状部分どおしを相互に対向させている。また分流孔
141,142の内壁面の表面粗度は5μm以上である
FIGS. 8(a) and 8(b) show an adapter 140 of a fourth embodiment. In this fourth embodiment, the inner wall surface of the flow dividing hole 14L142 has a semicircular cross section, but unlike the third embodiment,
The straight parts are opposed to each other. Further, the surface roughness of the inner wall surfaces of the flow dividing holes 141 and 142 is 5 μm or more.

第9図(a)、(b)は第5実施例を示す。この実施例
では、分流化141,142の内壁面が矩形断面を有し
、その他の溝或は上記各実施例と同様である。
FIGS. 9(a) and 9(b) show a fifth embodiment. In this embodiment, the inner wall surfaces of the flow dividers 141 and 142 have a rectangular cross section, and the other grooves are similar to those in the above embodiments.

第10図は第6実施例を示す。ビントル119は下方に
広がる円錐面を有し、この円錐角をθ。とすると、噴射
孔112から吐出される燃料は、ビントル119の外周
面に沿って流れ、ビントル119より下流側において円
錐角θ。よりも小さい噴霧角θで噴射される。この燃料
は分流孔141,142の間に形成される分離壁144
により分離され、分流孔141.142から噴射される
。ビントル119の先端に位置する円錐部の外縁部と分
流孔141,142の各外縁部とを結ぶ直線のなす角を
θ、とすると、θ1≧θに定められる。したがって燃料
は分流孔141゜142の外側に位置する内壁面に接触
せず、分離璧144の壁面に接触して噴射される。分離
壁144の壁面の表面粗度は5μm以上に定められ、こ
れにより燃料の霧化が促進される。なおアダプタ140
に形成される分流孔の数は3以上であってもよい。
FIG. 10 shows a sixth embodiment. The bottle 119 has a conical surface that expands downward, and the conical angle is θ. Then, the fuel discharged from the injection hole 112 flows along the outer peripheral surface of the bottle 119 and has a cone angle θ on the downstream side of the bottle 119. is sprayed at a spray angle θ smaller than . This fuel flows through the separation wall 144 formed between the branch holes 141 and 142.
and is injected from branch holes 141 and 142. Letting θ be the angle formed by the straight line connecting the outer edge of the conical portion located at the tip of the bottle 119 and each outer edge of the flow dividing holes 141 and 142, θ1≧θ. Therefore, the fuel does not come into contact with the inner wall surfaces located outside of the flow dividing holes 141 and 142, but comes into contact with the wall surface of the separation wall 144 and is injected. The surface roughness of the wall surface of the separation wall 144 is set to 5 μm or more, thereby promoting atomization of the fuel. Note that the adapter 140
The number of flow dividing holes formed may be three or more.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、燃料を複数方向に分離さ
せて噴射することができ、かつ燃料の霧化を充分に促進
することができる。したがって燃焼が改善され、エンジ
ンの過渡応答性が向上し、燃費が改善されるとともにエ
ミッションが低減する。
As described above, according to the present invention, fuel can be separated and injected in multiple directions, and atomization of the fuel can be sufficiently promoted. Combustion is therefore improved, engine transient response is improved, fuel economy is improved and emissions are reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は第1実施例のアダプタを示す断面図、 第1図(b)は第1図(a)のアダプタの平面図、 第2図は本発明の実施例を適用した燃料噴射弁を示す断
面図、 第3図は第2図の燃料噴射弁の要部を拡大して示す断面
図、 第4図は分流孔内壁面の表面粗度と燃料のザウダ平均粒
径との関係を示すグラフ、 第5図は分流孔内壁面の曲率半径と燃料のザウタ平均粒
径との関係を示すグラフ、 第6図は、第2実施例のアダプタを示す断面図、第7図
(a)は第3実施例のアダプタを示す断面図、 第7図(b)は第7図(a)のアダプタの平面図、 第8図(a)は第4実施例のアダプタを示す断面図、 第8図(b)は第8図(a)のアダプタの平面図、 第9図Ca)は第5実施例のアダプタを示す断面図、 第9図(b)は第9図(a)のアダプタの平面図、 第10図は第6実施例のアダプタを示す断面図である。 100・・・燃料噴射弁、 112・・・噴射孔、 141.142・・・分流孔。
FIG. 1(a) is a sectional view showing the adapter of the first embodiment, FIG. 1(b) is a plan view of the adapter of FIG. 1(a), and FIG. 2 is a fuel to which the embodiment of the present invention is applied. Figure 3 is an enlarged cross-sectional view of the main parts of the fuel injection valve shown in Figure 2. Figure 4 shows the relationship between the surface roughness of the inner wall of the flow dividing hole and the Sauda average particle size of the fuel. FIG. 5 is a graph showing the relationship between the radius of curvature of the inner wall surface of the flow dividing hole and the Sauter average particle diameter of the fuel. FIG. 6 is a sectional view showing the adapter of the second embodiment, and FIG. a) is a sectional view showing the adapter of the third embodiment; FIG. 7(b) is a plan view of the adapter of FIG. 7(a); FIG. 8(a) is a sectional view showing the adapter of the fourth embodiment. , FIG. 8(b) is a plan view of the adapter of FIG. 8(a), FIG. 9(a) is a sectional view showing the adapter of the fifth embodiment, and FIG. 9(b) is a plan view of the adapter of FIG. 8(a). FIG. 10 is a sectional view showing the adapter of the sixth embodiment. 100...Fuel injection valve, 112...Injection hole, 141.142...Diversion hole.

Claims (4)

【特許請求の範囲】[Claims] 1.噴射孔から吐出した燃料を該噴射孔に対向して設け
られた複数の分流孔により複数方向に分離させて噴射す
る燃料噴射弁において、上記分流孔の内壁面が5μmよ
りも粗い表面粗度を有することを特徴とする燃料噴射弁
1. In a fuel injection valve that separates and injects fuel discharged from an injection hole in multiple directions by a plurality of dividing holes provided opposite to the injection hole, the inner wall surface of the dividing hole has a surface roughness of less than 5 μm. A fuel injection valve comprising:
2.上記分流孔の内壁面が円形断面を有し、この円形の
曲率半径が0.8mm以上であることを特徴とする特許
請求の範囲第1項記載の燃料噴射弁。
2. 2. The fuel injection valve according to claim 1, wherein the inner wall surface of the flow dividing hole has a circular cross section, and the radius of curvature of the circle is 0.8 mm or more.
3.上記分流孔の内壁面が、円弧状部分どおしを相互に
近接させた半円形断面を有し、該円弧状部分の曲率半径
が0.8mm以上であることを特徴とする特許請求の範
囲第1項記載の燃料噴射弁。
3. Claims characterized in that the inner wall surface of the flow dividing hole has a semicircular cross section with arcuate portions close to each other, and the radius of curvature of the arcuate portion is 0.8 mm or more. The fuel injection valve according to item 1.
4.上記分流孔の内壁面が矩形断面を有することを特徴
とする特許請求の範囲第1項記載の燃料噴射弁。
4. 2. The fuel injection valve according to claim 1, wherein the inner wall surface of the flow dividing hole has a rectangular cross section.
JP28435387A 1987-11-12 1987-11-12 Fuel injection valve Pending JPH01130054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28435387A JPH01130054A (en) 1987-11-12 1987-11-12 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28435387A JPH01130054A (en) 1987-11-12 1987-11-12 Fuel injection valve

Publications (1)

Publication Number Publication Date
JPH01130054A true JPH01130054A (en) 1989-05-23

Family

ID=17677489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28435387A Pending JPH01130054A (en) 1987-11-12 1987-11-12 Fuel injection valve

Country Status (1)

Country Link
JP (1) JPH01130054A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2437248A (en) * 2006-04-20 2007-10-24 Ahmed Adnani Vehicle freshener to help keep drivers awake
JP2009236048A (en) * 2008-03-27 2009-10-15 Toyota Motor Corp Fuel injection valve for internal combustion engine
CN102661074A (en) * 2012-05-11 2012-09-12 中国电力工程顾问集团华东电力设计院 Chimney

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55119951A (en) * 1979-03-09 1980-09-16 Kioritz Corp Mixed gas through-hole of engine
JPS62206263A (en) * 1986-03-01 1987-09-10 アンドレアス シユテイ−ル Connector for carburetor and combustion chamber for internalcombustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55119951A (en) * 1979-03-09 1980-09-16 Kioritz Corp Mixed gas through-hole of engine
JPS62206263A (en) * 1986-03-01 1987-09-10 アンドレアス シユテイ−ル Connector for carburetor and combustion chamber for internalcombustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2437248A (en) * 2006-04-20 2007-10-24 Ahmed Adnani Vehicle freshener to help keep drivers awake
JP2009236048A (en) * 2008-03-27 2009-10-15 Toyota Motor Corp Fuel injection valve for internal combustion engine
CN102661074A (en) * 2012-05-11 2012-09-12 中国电力工程顾问集团华东电力设计院 Chimney

Similar Documents

Publication Publication Date Title
US4982716A (en) Fuel injection valve with an air assist adapter for an internal combustion engine
US5931391A (en) Fluid injection valve
KR930004967B1 (en) Electronic fuel injector
USRE40199E1 (en) Fuel injection valve for an internal combustion engine
KR960003696B1 (en) Fuel injection valve
JPH01502766A (en) fuel injection valve
US4421278A (en) Injection valve
JPS6154948B2 (en)
JPH0534515B2 (en)
US6769625B2 (en) Spray pattern control with non-angled orifices in fuel injection metering disc
JP7242294B2 (en) liquid injection valve
JPS6350667A (en) Nozzle structure for electromagnetic type fuel injection valve
KR950001335B1 (en) Fuel injection valve
US4487369A (en) Electromagnetic fuel injector with improved discharge structure
EP0584057A1 (en) Electromagnetic fuel injector having split stream flow director
JPH01130054A (en) Fuel injection valve
JPS6159081A (en) Solenoid control valve
JP2002221128A (en) Injection valve
CA2271503A1 (en) A fuel injector for an internal combustion engine
US5012983A (en) Perforated plate for a fuel injection valve
JP2000038974A (en) Fluid injection nozzle
US6983900B2 (en) Fuel injector
EP0787253B1 (en) Fuel injector having reduced stream dispersion, especially of an off-axis injected stream
JPS62107266A (en) Solenoid operated type fuel injection valve
JPH06241147A (en) Fuel feeding device for internal combustion engine