JPH01129967A - Thin film processing device - Google Patents

Thin film processing device

Info

Publication number
JPH01129967A
JPH01129967A JP28668887A JP28668887A JPH01129967A JP H01129967 A JPH01129967 A JP H01129967A JP 28668887 A JP28668887 A JP 28668887A JP 28668887 A JP28668887 A JP 28668887A JP H01129967 A JPH01129967 A JP H01129967A
Authority
JP
Japan
Prior art keywords
target
thin film
plasma
substrate
film processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28668887A
Other languages
Japanese (ja)
Inventor
Yasushi Sakakibara
榊原 康史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP28668887A priority Critical patent/JPH01129967A/en
Publication of JPH01129967A publication Critical patent/JPH01129967A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To control film thickness with high accuracy over a long period of time by detecting the spectra of plasma emitted light with a spectrum detector disposed on the outside of a vacuum vessel and computing the growth speed of film thickness from the intensity thereof. CONSTITUTION:A substrate 3 and a flat plate target 5 are disposed to face each other in parallel in the vacuum vessel 1 and a gaseous plasma raw material of a low gaseous pressure is introduced into the vessel. A DC or high frequency power supply 9 is connected between the substrate 3 and the target 5 to generate plasma on the target surface. Sputter particles are thereby generated from the target 5 and the thin film is formed on the substrate 3. The spectra of the plasma emitted light are detected by a condensing part 17 of the spectrum detector 18 disposed on the outside of the vessel via a view port 12 provided to the wall of the vacuum vessel 1 of the above-mentioned thin film processing device. The numbers of atoms to be generated in the unit time are detected from the intensity of the emission spectra of the target 5 material contained in the plasma emitted light and the growth speed of the deposited thin film is computed. The sputtering time is thereby controlled and the prescribed film thickness is exactly and stably obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、真空容器内に、薄膜が形成される基板と前
記薄膜の物質からなる平板状ターゲットとを間隔をおい
て平行に対向して配置するとともに低気圧のプラズマ原
料ガスを導入し、前記基板とターゲットとの間に直流あ
るいは高周波交流電源を接続してターゲット表面に発生
させたプラズマ中のイオンを前記ターゲットの面に垂直
に生じている電界により加速してターゲットに衝突させ
ることによりスパッタ粒子を発生させて基板上に薄膜形
成をおこなう薄膜加工装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method in which a substrate on which a thin film is formed and a flat target made of the material of the thin film are opposed to each other in parallel with an interval in a vacuum container. At the same time, low pressure plasma source gas is introduced, and a direct current or high frequency alternating current power source is connected between the substrate and the target to generate ions in the plasma generated on the target surface perpendicular to the surface of the target. The present invention relates to a thin film processing device that forms a thin film on a substrate by generating sputtered particles by accelerating them using an electric field and colliding them with a target.

〔従来の技術〕[Conventional technology]

第2図に従来例による薄膜加工装置の構成を示す。9の
装置を構成する真空容器1内には、サセプタ2を介して
この真空容器に取り付けられ表面に薄膜が形成゛さ”れ
る基板3が収容されるとともに、この薄膜の物質からな
る平板状のターゲット5が前記基板3と間隔をおいて平
行に対向して配置さ−れ工いる。この真空容器1内に低
気圧のプラズマ原料ガスを導入するとともに図示されな
い排気装置゛を作動させて真空容器1内のガス圧力を所
定値に保ちつつ基板3とターゲット5との間に高周波電
源9から水冷導体6を介して高周波電圧を供給し、ター
ゲット表面にプラズマを発生させると、このプラズマ中
のイオンが電界方向に加速されてターゲット5に衝突し
、ターゲット表面からスパッタ粒子が発生し、このスパ
ッタ粒子が基板3の表面に付着して薄膜を形成する。な
お、図の符号4は、スパッタリング開始初期において基
板とターゲットとの間に介在し、ターゲット表面が十分
浄化された後開放されて基板への薄膜形成を開始させる
ためのシャッタである。
FIG. 2 shows the configuration of a conventional thin film processing apparatus. A vacuum container 1 constituting the apparatus 9 houses a substrate 3 attached to the vacuum container via a susceptor 2 on which a thin film is formed on the surface, and a flat plate made of the material of this thin film. A target 5 is arranged to face the substrate 3 in parallel with a space therebetween.A low-pressure plasma source gas is introduced into the vacuum vessel 1, and an exhaust device (not shown) is operated to exhaust the vacuum vessel. When a high frequency voltage is supplied between the substrate 3 and the target 5 via the water-cooled conductor 6 from the high frequency power source 9 while maintaining the gas pressure in the target 1 at a predetermined value, and plasma is generated on the target surface, ions in the plasma is accelerated in the direction of the electric field and collides with the target 5, sputter particles are generated from the target surface, and these sputter particles adhere to the surface of the substrate 3 to form a thin film.The reference numeral 4 in the figure indicates the initial stage of sputtering. This is a shutter that is interposed between the substrate and the target and is opened after the target surface has been sufficiently purified to start forming a thin film on the substrate.

従来、このような装置にふける。基板表面に形成された
薄膜の膜厚制御は、真空容器1内に挿入されたセンサヘ
ッド7にクリスタルを用いて行われていた。すなわち、
スパッタされたターゲット材の原子がセンサヘッド7に
付着することにより変化するクリス゛タルの振動周波数
をモ二り8により膜厚に換算してモニタするものである
Traditionally, people indulge in such devices. The thickness of the thin film formed on the substrate surface has been controlled by using a crystal in the sensor head 7 inserted into the vacuum container 1. That is,
The vibration frequency of the crystal, which changes as atoms of the sputtered target material adhere to the sensor head 7, is converted into film thickness and monitored by the monitor 8.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、このような方法は、センサヘッドの寿命
が短く、センサヘッドをたびたび交換しなければならな
いため、装置の運転に煩雑をきたしていた。また、マグ
ネトロンスパッタリングのしてターゲット表面に高密度
プラズマを生成してスパッタ粒子の発生密度を大きくす
るスパッタリングの場合には、真空容器内のガス圧力、
基板とターゲットとの間に印加される電圧、基板とター
ゲットとの間隔など、スパッタ条件の変化によりスパッ
タ粒子の飛散分布が大きく変化し、センサヘッドに到達
するスパッタ粒子数と基板に到達する粒子数との割合が
変わるため、スパッタ条件を変えるつど更正を行う必要
があり、膜厚制御に煩わしさが伴う。さらに、高電力R
Fスパッタ(RFはラジオ周波数であって通常13.5
6 M &を一意味する)などでは、基板とターゲット
との間隔が大きくなり、しかも真空容器内にセンサヘッ
ドが入りこむため、これが基板とターゲットとの間の電
界を乱して異常放電の原因となる。
However, in such a method, the life of the sensor head is short, and the sensor head must be replaced frequently, making the operation of the apparatus complicated. In addition, in the case of sputtering that uses magnetron sputtering to generate high-density plasma on the target surface to increase the density of sputtered particles, the gas pressure in the vacuum chamber,
The scattering distribution of sputtered particles changes greatly due to changes in sputtering conditions, such as the voltage applied between the substrate and the target, the distance between the substrate and the target, and the number of sputtered particles that reach the sensor head and the number of particles that reach the substrate. Since the ratio of the sputtering conditions changes, it is necessary to perform correction each time the sputtering conditions are changed, and film thickness control is troublesome. Furthermore, high power R
F sputter (RF is radio frequency, usually 13.5
6), the distance between the substrate and target becomes large, and the sensor head enters the vacuum chamber, which may disturb the electric field between the substrate and target and cause abnormal discharge. Become.

本発明の目的は、スパッタリングの諸条件の変化の影響
を受けることなく、従って膜厚センサを、交換すること
なく、常に正しい膜厚モニタを可能ならしめる膜厚セン
サを備えた薄膜加工装置を提供することである。
An object of the present invention is to provide a thin film processing apparatus equipped with a film thickness sensor that enables accurate film thickness monitoring at all times without being affected by changes in sputtering conditions and therefore without replacing the film thickness sensor. It is to be.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、この発明によれば、真空容
器内に、薄膜が形成される基板と前記薄膜の物質からな
る平板状ターゲットとを間隔をおいて平行に対向して配
置するとともに低気圧のプラズマ原料ガスを導入し、前
記基板とターゲットとの間に直流あるい°は高周波交流
電源を接続してターゲット表面に発生させたプラズマ中
のイオンを前記ターゲットの面に垂直に生じている電界
により加速してターゲットに衝突させることによりスパ
ッタ粒子を発生させて基板上に薄膜形成をおこなう薄膜
加工装置において、前記真空容器の壁に光を透過させる
ビューポートを設けるとともにこのビューポートを透過
するプラズマ発光のスペクトルを検出するスペクトル検
出器をそのセンサヘッドとともに真空容器の外部に配す
るものとする。
In order to achieve the above object, according to the present invention, a substrate on which a thin film is to be formed and a flat target made of the material of the thin film are disposed in parallel and facing each other with a space between them, and a low Plasma raw material gas at atmospheric pressure is introduced, and a direct current or high frequency alternating current power source is connected between the substrate and the target, and ions in the plasma generated on the target surface are generated perpendicular to the surface of the target. In a thin film processing device that forms a thin film on a substrate by generating sputtered particles by accelerating them with an electric field and colliding them with a target, a view port is provided on the wall of the vacuum container to transmit light, and the light is transmitted through the view port. A spectrum detector for detecting the spectrum of plasma emission is placed outside the vacuum vessel together with its sensor head.

〔作用〕[Effect]

まず、本発明の原理につき説明する。 First, the principle of the present invention will be explained.

プラズマ中のイオンの衝突によりターゲットから叩き出
された原子はプラズマ中で励起されて発光し、ターゲッ
ト材料特有の発光スペクトルを示す。この発光スペク・
トルの強度は、単位時間に叩き出される原子数に比例す
るから、この強度を検出することにより膜厚の成長速度
を知ることができる。従って薄膜形成開始時点からのス
パッタリング時間を監視すること1;より、基板上に形
成された膜厚を知ることができる。従って、このような
スペクトル検出器を真空容器の外部に配することにより
、スパッタリングの諸条件の変化に影響されることなく
、常に正しい膜厚をモニタすることが可能になる。
Atoms ejected from the target by the collision of ions in the plasma are excited in the plasma and emit light, exhibiting an emission spectrum unique to the target material. This luminous spec.
Since the intensity of the torr is proportional to the number of atoms ejected per unit time, the growth rate of the film thickness can be determined by detecting this intensity. Therefore, by monitoring the sputtering time from the start of thin film formation, the thickness of the film formed on the substrate can be known. Therefore, by disposing such a spectrum detector outside the vacuum vessel, it becomes possible to always monitor the correct film thickness without being affected by changes in sputtering conditions.

〔実施例〕〔Example〕

第1図に本発明の一実施例による薄膜加工装置の構成を
示す。装置を構成する真空容器1の壁に光を透過するビ
ューポート12を設け、このビニ−ボー目2の外側にセ
ンサヘッドとしての集光部17を配置し、この集光部1
7を光ケーブル11を介してスペクトル検出器18に接
続する。このスペクトル検出器18は、この検出器によ
り検出された特定波長のスペクトル強度を入力として所
定の演算を行うデータ処理部10に接続されている。
FIG. 1 shows the configuration of a thin film processing apparatus according to an embodiment of the present invention. A view port 12 that transmits light is provided on the wall of the vacuum container 1 constituting the apparatus, and a light condensing section 17 as a sensor head is disposed outside the vinyl-bow eye 2.
7 is connected to a spectrum detector 18 via an optical cable 11. This spectrum detector 18 is connected to a data processing section 10 that performs predetermined calculations using the spectrum intensity of a specific wavelength detected by this detector as input.

このように構成された薄膜加工装置において、高周波電
源9から高周波電圧を供給してスパッタリングが開始さ
れると、真空容器1内へ導入されたプラズマ原料ガスに
よるプラズマの発光とともに、このプラズマ中のイオン
の衝突によりターゲットから叩き出された原子がプラズ
マ中で励起されて発光し、ターゲット材料特有の発光ス
ペクトルを示す。この発光スペクトルの強度は、単位時
間に叩き出寄れる原子の数に比例するから、集光部17
で集光され光ケーブル11を介してスペクトル検出部1
8に導かれた真空容器1内の発光の中からターゲット材
料特有の発光スペクトルの強度を検出してこれをデータ
処理部10に入力することにより基板上の膜厚成長速度
をモニタすることができる。ただし、ターゲット材の発
光スペクトルのみをモニタしていたのでは、スペクトル
強度が投入電力やプラズマ中の測定点などによって変わ
ることから、検出された発光スペクトル強度に対して定
量的な評価を行うことができない。しかし、ターゲット
材の発光スペクトル強度とプラズマ原料ガスの発光スペ
クトル強度との比は、測定点が同じであればいずれの測
定点でもほぼ一定であるから、まず対象とする測定点で
測定されたターゲット材の発光スペクトル強度と膜厚成
長速度との関係をあらかじめ求めるとともに、安定なプ
ラズマ原料ガスであるArの発光スペクトルを同時にモ
ニタしてプラズマ原料ガスの発光スペクトル強度とター
ゲット材の発光スペクトル強度との比較を行ない、この
比に変化のないことを確認しつつ薄膜加工を行うことに
より、ターゲット材からの発光スペクトル強度に対する
信頼性ある定量的評価を可能にしている。
In the thin film processing apparatus configured as described above, when sputtering is started by supplying a high frequency voltage from the high frequency power source 9, the plasma source gas introduced into the vacuum chamber 1 emits plasma and ions in the plasma are emitted. Atoms ejected from the target by the collision are excited in the plasma and emit light, exhibiting an emission spectrum unique to the target material. Since the intensity of this emission spectrum is proportional to the number of atoms that can be ejected per unit time, the light converging section 17
The light is focused by the spectrum detector 1 via the optical cable 11.
The film thickness growth rate on the substrate can be monitored by detecting the intensity of the emission spectrum specific to the target material from the light emission inside the vacuum vessel 1 guided by 8 and inputting this to the data processing unit 10. . However, if only the emission spectrum of the target material is monitored, it is difficult to quantitatively evaluate the detected emission spectrum intensity because the spectral intensity changes depending on the input power, the measurement point in the plasma, etc. Can not. However, the ratio of the emission spectrum intensity of the target material and the emission spectrum intensity of the plasma source gas is almost constant at any measurement point as long as the measurement points are the same. In addition to determining the relationship between the emission spectrum intensity of the material and the film thickness growth rate in advance, the emission spectrum of Ar, which is a stable plasma source gas, is simultaneously monitored to determine the relationship between the emission spectrum intensity of the plasma source gas and the emission spectrum intensity of the target material. By performing thin film processing while making a comparison and confirming that there is no change in this ratio, it is possible to perform reliable quantitative evaluation of the emission spectrum intensity from the target material.

〔尭明の効果〕[Effect of Gyomei]

以上に述べたように、本発明によれば、真空容器内に、
薄膜が形成される基板と前記薄膜の物質からなる平板状
ターゲットとを間隔をおいて平行に対向して配置すると
ともに低気圧のプラズマ原料ガスを導入し、前記基板と
ターゲットとの間に直流あるいは高周波交流電源を接続
してターゲット表面に発生させたプラズマ中のイオンを
前記ターゲットの面に垂直に生じている電界により加速
してターゲットに衝突させることによりスパッタ粒子を
発生させて基板上に薄膜形成をおこなう薄膜加工装置に
おいて、前記真空容器の壁に光を透過させるビューポー
トを設けるとともにこのビューポートを透過するプラズ
マ発光のスペクトルを検出するスペクトル検出器をその
センサヘッドとともに真空容器の外部に配したので、 (1)従来のような、センサヘッドに起因する異常放電
がなくなり、安定な放電が得られるから、質のよい薄膜
が得られる。
As described above, according to the present invention, in the vacuum container,
A substrate on which a thin film is to be formed and a flat target made of the material of the thin film are placed facing each other in parallel with a gap between them, and a low pressure plasma raw material gas is introduced to create a direct current or A high-frequency AC power source is connected to generate ions in plasma on the target surface, which are accelerated by an electric field generated perpendicular to the surface of the target and collided with the target to generate sputtered particles and form a thin film on the substrate. In the thin film processing apparatus for performing this, a view port for transmitting light is provided on the wall of the vacuum container, and a spectrum detector for detecting the spectrum of plasma emission transmitted through this view port is arranged outside the vacuum container together with its sensor head. Therefore, (1) Abnormal discharge caused by the sensor head, as in the conventional case, is eliminated and stable discharge is obtained, so a thin film of good quality can be obtained.

(2)モニタ結果がスパッタ粒子の飛散分布に影響され
ないため、精度のよい膜厚制御が可能になる。
(2) Since the monitoring results are not affected by the scattering distribution of sputtered particles, accurate film thickness control is possible.

(3)センサヘッドは汚損されることがないため半永久
的に使用することができ、従来のようにしばしば交換す
る必要がないから、装置の運転コストが低減される。
(3) Since the sensor head is not contaminated, it can be used semi-permanently and there is no need to replace it as often as in the past, reducing the operating cost of the device.

などの効果が得られる。Effects such as this can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による薄膜加工装置の構成を
示す説明図、第2図は従来例による薄膜加工装置の構成
を示す説明図である。 1 真空容器、3 基板、5− ターゲット、7センサ
ヘツド、9 高周波電源、10・−データ処理部、12
  ビューポート、17.・集光部(センサヘッド)、
18  スペクトル検出器。 第  1  図 第  2  図
FIG. 1 is an explanatory diagram showing the configuration of a thin film processing apparatus according to an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing the configuration of a conventional thin film processing apparatus. 1 Vacuum container, 3 Substrate, 5-Target, 7 Sensor head, 9 High-frequency power supply, 10.-Data processing section, 12
Viewport, 17.・Light condensing part (sensor head),
18 Spectrum detector. Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)真空容器内に、薄膜が形成される基板と前記薄膜
の物質からなる平板状ターゲットとを間隔をおいて平行
に対向して配置するとともに低気圧のプラズマ原料ガス
を導入し、前記基板とターゲットとの間に直流あるいは
高周波交流電源を接続してターゲット表面に発生させた
プラズマ中のイオンを前記ターゲットの面に垂直に生じ
ている電界により加速してターゲットに衝突させること
によりスパッタ粒子を発生させて基板上に薄膜形成をお
こなう薄膜加工装置において、前記真空容器の壁に光を
透過させるビューポートを設けるとともにこのビューポ
ートを透過するプラズマ発光のスペクトルを検出するス
ペクトル検出器をそのセンサヘッドとともに真空容器の
外部に配し、前記プラズマ発光に含まれるターゲット材
料からの発光スペクトル強度を検出して基板上に堆積す
る膜厚成長速度を演算しスパッタリング時間を制御して
所定膜厚を得ることを特徴とする薄膜加工装置。
(1) In a vacuum container, a substrate on which a thin film is to be formed and a flat target made of the material of the thin film are arranged parallel to each other with a space between them, and a low pressure plasma raw material gas is introduced into the substrate. A direct current or high frequency alternating current power source is connected between the target and the target, and ions in the plasma generated on the target surface are accelerated by an electric field generated perpendicular to the surface of the target and collided with the target, thereby removing sputtered particles. In a thin film processing apparatus that forms a thin film on a substrate by generating plasma, a view port is provided on the wall of the vacuum chamber to transmit light, and a spectrum detector for detecting the spectrum of plasma light transmitted through this view port is installed in the sensor head of the thin film processing apparatus. and disposed outside the vacuum container, detecting the intensity of the emission spectrum from the target material included in the plasma emission, calculating the growth rate of the film deposited on the substrate, and controlling the sputtering time to obtain a predetermined film thickness. Thin film processing equipment featuring:
(2)特許請求の範囲第1項記載の薄膜加工装置におい
て、ターゲット材からの発光スペクトル強度の検出は真
空容器内に導入されたプラズマ原料ガスによる発光スペ
クトル強度の検出を伴って行われることを特徴とする薄
膜加工装置。
(2) In the thin film processing apparatus according to claim 1, the detection of the emission spectrum intensity from the target material is performed together with the detection of the emission spectrum intensity by the plasma raw material gas introduced into the vacuum container. Characteristic thin film processing equipment.
JP28668887A 1987-11-13 1987-11-13 Thin film processing device Pending JPH01129967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28668887A JPH01129967A (en) 1987-11-13 1987-11-13 Thin film processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28668887A JPH01129967A (en) 1987-11-13 1987-11-13 Thin film processing device

Publications (1)

Publication Number Publication Date
JPH01129967A true JPH01129967A (en) 1989-05-23

Family

ID=17707686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28668887A Pending JPH01129967A (en) 1987-11-13 1987-11-13 Thin film processing device

Country Status (1)

Country Link
JP (1) JPH01129967A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224322A (en) * 2006-02-21 2007-09-06 Sony Corp Reactive sputtering device and film deposition method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154627A (en) * 1982-03-10 1983-09-14 Hitachi Ltd Monitoring method of sputtering
JPS6058793A (en) * 1983-09-09 1985-04-04 Nec Corp Incoming connection system of private branch exchange

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154627A (en) * 1982-03-10 1983-09-14 Hitachi Ltd Monitoring method of sputtering
JPS6058793A (en) * 1983-09-09 1985-04-04 Nec Corp Incoming connection system of private branch exchange

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224322A (en) * 2006-02-21 2007-09-06 Sony Corp Reactive sputtering device and film deposition method

Similar Documents

Publication Publication Date Title
KR101960826B1 (en) Plasma processing apparatus and driving method thereof
JP6837886B2 (en) Plasma processing equipment and plasma processing method
US4289188A (en) Method and apparatus for monitoring etching
US5406080A (en) Process for monitoring ion-assisted processing procedures on wafers and an apparatus for carrying out the same
KR102212885B1 (en) Plasma treatment device and plasma treatment method, ECR height monitor
JPH01129967A (en) Thin film processing device
US20150194295A1 (en) Assembly for use in a vacuum treatment process
JPH05101805A (en) Plasma ion source ultra micro-quantity element mass spectrometer
US20020162822A1 (en) Method for detecting end point in plasma etching by impedance change
JPH04212414A (en) Plasma process equipment
JPH10242120A (en) Plasma etching method and apparatus therefor
JP2000123996A (en) Atomic radical measuring method and device
JP7378991B2 (en) Reactive sputtering equipment and film formation method
JPS62228482A (en) Low-temperature plasma treating device
JP4575586B2 (en) Deposition equipment
JP2676095B2 (en) Method for determining cleaning time of chamber for semiconductor manufacturing equipment
WO2003065131A3 (en) Method and apparatus for electron density measurement and verifying process status
JPS63213668A (en) Thin film forming device
JPH09306842A (en) In-process film forming monitor device and vacuum monitor device and method
JPH08246169A (en) Plasma-treating device
JPH04136746A (en) Plasma spectroscope and forming apparatus for thin film
JPH04176866A (en) Film forming velocity controlling device for sputtering equipment
JPH08203865A (en) Plasma treating device
TWI486573B (en) Ion concentration monitoring system
JPH08181104A (en) Etching monitoring method