JPH01129933A - Blowing lance for refining of zinc - Google Patents

Blowing lance for refining of zinc

Info

Publication number
JPH01129933A
JPH01129933A JP28752687A JP28752687A JPH01129933A JP H01129933 A JPH01129933 A JP H01129933A JP 28752687 A JP28752687 A JP 28752687A JP 28752687 A JP28752687 A JP 28752687A JP H01129933 A JPH01129933 A JP H01129933A
Authority
JP
Japan
Prior art keywords
zinc
oxygen
raw material
lance
nozzles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28752687A
Other languages
Japanese (ja)
Inventor
Masateru Nishikawa
昌輝 西川
Mitsuyoshi Fujikawa
充由 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEIREN SHINKIBAN GIJUTSU KENKYU KUMIAI
Original Assignee
SEIREN SHINKIBAN GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEIREN SHINKIBAN GIJUTSU KENKYU KUMIAI filed Critical SEIREN SHINKIBAN GIJUTSU KENKYU KUMIAI
Priority to JP28752687A priority Critical patent/JPH01129933A/en
Publication of JPH01129933A publication Critical patent/JPH01129933A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

PURPOSE:To prevent the clogging of a zinc material discharging nozzle, to eliminate the interruption of operation and to improve the operation rate by depositing the zinc material discharging nozzle to the central part and surrounding it by plural pulverizing coal material-oxygen discharging nozzles. CONSTITUTION:The blowing lance 10 for zinc refining is formed with the zinc material discharging nozzle 12 and the plural pulverized coal material-oxygen discharging nozzles 13. The nozzles 13 discharge the mixture of the pulverized coal material and oxygen or the air enriched oxygen. The nozzle 12 is furthermore surrounded by the jet of high speed pulverized coal material and oxygen from the above-mentioned nozzles 13. By the jet, slag splash or zinc stream having high concentration is interrupted; and sticking material is not therefore formed on the tip of the nozzles 12.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、吹き込み溶錬による亜鉛製錬法に用いるラン
スに関し、亜鉛原料、微粉炭材並びに酸素あるいは酸素
富化空気を同時に同一場所に吹き込むようにして素早く
効率良い反応が得られるように工夫したものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a lance used in a zinc smelting method by blow smelting, in which a zinc raw material, pulverized carbonaceous material, and oxygen or oxygen-enriched air are simultaneously blown into the same location. This method was devised so that a quick and efficient reaction could be obtained.

〈従来の技術〉 吹き込み溶錬による亜鉛製錬法は、亜鉛原料と還元剤と
を、酸素又は酸素富化空気とともに溶錬炉に吹き込み溶
錬し、生成した亜鉛蒸気を溶錬炉と一体に設けた凝縮器
により効率よく凝縮回収するとともに排ガスの燃焼熱量
を高カロリーに維持してこれを再利用するものであり(
特公昭61−28004号参照)、省エネルギー、省コ
スト化をはかる方法として従来より実施されている。そ
して、特開昭62−80233号公報に亜鉛原料の装入
と還元剤、および酸素あるいは酸素富化空気との混合物
の装入とを別系統で行い、炉況に応じて原料、炭材の配
合比を迅速に変更することが有利であることが示されて
いる。
<Conventional technology> In the zinc smelting method using blow smelting, zinc raw materials and a reducing agent are blown into a smelting furnace together with oxygen or oxygen-enriched air, and the generated zinc vapor is integrated with the smelting furnace. The installed condenser efficiently condenses and recovers the exhaust gas, and maintains the combustion heat of exhaust gas at a high calorie level for reuse.
(Refer to Japanese Patent Publication No. 61-28004), this method has been practiced in the past as a method for saving energy and cost. According to Japanese Patent Application Laid-Open No. 62-80233, the charging of the zinc raw material, the charging of the reducing agent, and the mixture with oxygen or oxygen-enriched air are carried out in separate systems, and the charging of the raw material and the carbonaceous material is carried out according to the furnace conditions. It has been shown that it is advantageous to quickly change the blending ratio.

かかる亜鉛製錬法における吹き込み溶錬の一例を第2図
に示す。同図中、1は溶錬室、2は溶融浴、3は°溶錬
室1に連続して設けられた凝縮室であり、溶錬室1には
、ランス4と亜鉛原料装入装置5とが設けられている。
An example of blow smelting in such a zinc smelting method is shown in FIG. In the figure, 1 is a smelting chamber, 2 is a molten bath, and 3 is a condensation chamber provided continuously to the smelting chamber 1. The smelting chamber 1 includes a lance 4 and a zinc raw material charging device 5. and is provided.

そして、溶錬室1内の溶融浴2には、搬送ガスで搬送さ
れる還元剤と酸素富化空気とがうンスより、また亜鉛原
料が亜鉛原料中継ビン6及び切出装置7を介して亜鉛原
料装入装置5より、それぞれ装入されている。
The molten bath 2 in the smelting chamber 1 is supplied with a reducing agent and oxygen-enriched air carried by a carrier gas, and a zinc raw material is passed through a zinc raw material relay bin 6 and a cutting device 7. Each zinc raw material is charged from the zinc raw material charging device 5.

ここで、一般に還元剤としては主に微粉砕されたコーク
ス粉が用いられているが、この微粉炭材と酸素あるいは
酸素富化空気とを装入するランス4としては、第3図に
示すものが提案されている(特開昭62−80234号
公報)。同図に示すようにこのランス40は搬送ガスに
よって搬送される微粉炭材の通路となる導通内管41と
、酸素あるいは酸素富化空気の通路となる導通外管42
との二重管からなるとともに、導通外管42の先端付近
が円錐状にしぼられて上記導通内管41に連通して円錐
状の混合部43が先端部に形成されており、導通内管4
1から導入される微粉炭材と導通外管42から導入され
る酸素あるいは酸素富化空気とは混合部43にて混合さ
れて噴出口44より高速で炉内に噴出されるようになっ
ている。なお、導通外管42の外側には、該ランス40
の本体を冷却するための外部冷却v:45が設けられて
いる。
Generally, pulverized coke powder is mainly used as the reducing agent, but the lance 4 for charging this pulverized carbonaceous material and oxygen or oxygen-enriched air is shown in Fig. 3. has been proposed (Japanese Unexamined Patent Publication No. 80234/1983). As shown in the figure, this lance 40 includes a conductive inner pipe 41 that serves as a passage for pulverized carbonaceous material conveyed by a carrier gas, and a conductive outer pipe 42 that serves as a passage for oxygen or oxygen-enriched air.
The vicinity of the tip of the outer conductive tube 42 is narrowed into a conical shape, and communicates with the inner conductive tube 41 to form a conical mixing section 43 at the tip. 4
The pulverized carbonaceous material introduced from 1 and the oxygen or oxygen-enriched air introduced from the conductive outer tube 42 are mixed in a mixing section 43 and are ejected into the furnace from a jet port 44 at high speed. . Note that the lance 40 is provided on the outside of the conductive outer tube 42.
An external cooling v:45 is provided for cooling the main body of.

一方、亜鉛原料装入装置5は水冷型の装入管であゆ、溶
錬炉内に亜鉛原料を落下装入するものであるが、この他
、亜鉛原料を空気とともに炉内に吹き込む原料用ランス
が用いら゛れろこともある。
On the other hand, the zinc raw material charging device 5 is a water-cooled charging pipe that drops and charges the zinc raw material into the smelting furnace. may not be used.

〈発明が解決しようとする問題点〉 上述したような吹き込み溶錬においては、第3図に示す
ような微粉炭材用ランス40を用いた場合には、微粉炭
材と酸素あるいは酸素富化空気とが音速程度の高速で噴
出口44から吐出されるとともにランス直下で微粉炭′
材の酸素燃焼の火点が形成されるので、ランス先端部近
傍での雰囲気温度が上昇し、ランス先端にて付着物46
が成長してノズルが閉塞されることはなかった。
<Problems to be Solved by the Invention> In blow smelting as described above, when a lance 40 for pulverized carbonaceous material as shown in FIG. 3 is used, pulverized carbonaceous material and oxygen or oxygen-enriched air The pulverized coal'
As a fire point for oxygen combustion of the lance is formed, the ambient temperature near the lance tip increases, causing deposits 46 to form at the lance tip.
The nozzle was not obstructed by growth.

しかしながら、亜鉛原料を装入する原料装入管あるいは
原料用ランスにおいては、その先端で上述したような強
烈な発熱反応が生じないため、炉内の高濃度の亜鉛蒸気
とスラグ飛沫とに起因する付着物が、原料装入管あるい
は原料用ランスの先端にて成長し、その先端のノズルが
閉塞されてしまうことが多く、操業の支障となっていた
。このような閉塞が生じると、原料装入管あるいは原料
用ランスを炉内より引き上げて付着物を除去する必要が
あるが、この作業に労力を要し、また、この作業時間が
ロスとなり、溶錬炉の稼動率が大幅に低下してしまい、
問題となっている。
However, the intense exothermic reaction described above does not occur at the tip of the raw material charging pipe or raw material lance that charges the zinc raw material, and therefore the reaction is caused by the high concentration of zinc vapor and slag droplets in the furnace. Deposits often grow at the tip of the raw material charging pipe or raw material lance, and the nozzle at the tip is often blocked, which is a hindrance to operations. When such a blockage occurs, it is necessary to lift the raw material charging pipe or raw material lance from inside the furnace and remove the deposits, but this work is labor-intensive and results in a loss of working time, which slows down the melting process. The operation rate of the refining furnace has decreased significantly,
This has become a problem.

一方、流動焙焼炉で産出される亜鉛焼鉱には粒径の大き
い焼鉱(オーバーフロー)と粒径の小さい煙灰(キャリ
オーバー)とが含まれるが、上述した従来の亜鉛原料装
入方法では、微粉原料は炉ガスとともにコンデンサーへ
飛散して凝縮に悪影響を及ぼすため、煙灰(キャリオー
バー)の使用比率が制限されるという問題もある。また
、コンデンサーから発生するド党スは繰り返し使用され
ているが、とのドロスは粒径が小さいため、同様な理由
により、この繰り返し比率も制限されてしまう。
On the other hand, zinc burnt ore produced in a fluidized roasting furnace contains burnt ore with a large particle size (overflow) and smoke ash (carryover) with a small particle size, but the conventional zinc raw material charging method described above There is also the problem that the usage ratio of smoke ash (carryover) is limited because the fine powder raw material is scattered into the condenser with the furnace gas and has a negative effect on condensation. Further, the dross generated from the capacitor is used repeatedly, but since the particle size of dross is small, the repetition rate is also limited for the same reason.

さらに上述したような原料装入方法によると、亜鈴原料
の溶解ゾーンが微粉炭材−酸素燃焼ゾーンから離れてい
るため、亜鉛原料と微粉炭材とのスラグ中での接触が悪
く、亜鉛原料の溶解反応及び揮発反応速度が遅く、スラ
グ中の亜鈴濃度が高くなる傾向にあるという不都合も発
生する。
Furthermore, according to the raw material charging method described above, since the melting zone of the dumbbell raw material is far from the pulverized carbonaceous material-oxygen combustion zone, contact between the zinc raw material and the pulverized carbonaceous material in the slag is poor, and the zinc raw material is Dissolution and volatilization reaction rates are slow, and the concentration of dumbbell in the slag tends to be high.

本発明はこのような問題点に鑑み、亜鉛原料の装入を中
断することなく、長期間に亘り安定した操業が可能で、
原料のキャリオーバー比率を減少させて微粉の亜鈴原料
でも供給できるとともに亜鉛の溶解・揮発反応を効率よ
く行い、亜鉛のスラグロスを低下させることができる亜
鉛製錬用吹き込みランスを提供することを目的とする。
In view of these problems, the present invention enables stable operation over a long period of time without interrupting the charging of zinc raw materials.
The purpose of the present invention is to provide a blowing lance for zinc smelting that can reduce the carryover ratio of the raw material, supply even fine powdered dumbbell raw material, efficiently perform the dissolution and volatilization reaction of zinc, and reduce the slag loss of zinc. do.

く問題点を解決するための手段〉 上記目的を達成する本発明にかかる亜鉛製錬用吹き込み
ランスは、亜鈴原料を吐出する亜鉛原料吐出ノズルを中
央部に配し、微粉炭材と酸素あるいは酸素富化空気との
混合物を吐出する微粉炭材−酸素吐出ノズルのvl数個
を上記亜鉛原料吐出ノズルの周囲に配設してなることを
特徴とする。
A blowing lance for zinc smelting according to the present invention that achieves the above object has a zinc raw material discharge nozzle for discharging a dumbbell raw material in the center, and a zinc raw material discharge nozzle for discharging a pulverized carbonaceous material and oxygen or oxygen. It is characterized in that several pulverized carbonaceous material-oxygen discharge nozzles for discharging a mixture with enriched air are arranged around the zinc raw material discharge nozzle.

く作   用〉 上記構成において、亜鉛原料吐出ノズルは微粉炭材−酸
素吐出ノズルからの高速の微粉炭材と酸素との噴流で取
り囲まれた状態となり、スラグスプラッシュあるいは高
濃度の亜鉛蒸気が該噴流により遮断され、該亜鉛原料吐
出ノズルの先端には付着物が形成されない。
In the above configuration, the zinc raw material discharge nozzle is surrounded by a high-speed jet of pulverized carbonaceous material and oxygen from the pulverized carbonaceous material-oxygen discharge nozzle, and slag splash or high-concentration zinc vapor flows into the jet. Therefore, no deposits are formed at the tip of the zinc raw material discharge nozzle.

また、亜鉛原料は微粉炭材と酸素との噴流により加速さ
れるとともに微粉炭材と酸素との燃焼炎によって加熱さ
れる高温スラグゾーンの中心に供給され、亜鉛原料と微
粉炭材との接触が良好となる。さらに亜鉛原料のうち飛
散するya詮は該噴流により遮閉・吸引されてスラグ中
に取り込まれる。
In addition, the zinc raw material is accelerated by a jet of pulverized carbonaceous material and oxygen, and is supplied to the center of a high-temperature slag zone where it is heated by the combustion flame of pulverized carbonaceous material and oxygen, preventing contact between the zinc raw material and pulverized carbonaceous material. Becomes good. Furthermore, the scattered particles of the zinc raw material are blocked and sucked by the jet stream and taken into the slag.

〈実 施 例〉 以下、本発明を実施例に基づいて説明する。<Example> Hereinafter, the present invention will be explained based on examples.

第1図(al、fb)は一実施例にかかる亜鉛製錬用吹
き込みランスの正面図及び縦断面図である。両図に示す
ように、このランス10の中央には亜鉛原料導管11が
貫通しており、この亜鉛原料導管11の先端部は少しし
ぼられた状態で亜鉛原料吐出ノズル12となっている。
FIG. 1 (al, fb) is a front view and a longitudinal sectional view of a blowing lance for zinc smelting according to one embodiment. As shown in both figures, a zinc raw material conduit 11 passes through the center of this lance 10, and the tip of this zinc raw material conduit 11 is slightly constricted to serve as a zinc raw material discharge nozzle 12.

そして、この亜鉛原料吐出ノズル12を中心とした同心
円上に3つの微粉炭材−酸素吐出ノズル13が等間隔に
配置されている。
Three pulverized carbonaceous material-oxygen discharge nozzles 13 are arranged at equal intervals on a concentric circle centered on this zinc raw material discharge nozzle 12.

これら微粉炭材−酸素吐出ノズル13(よ、混合部14
を介して微粉炭材を供給するための導通内t15及び酸
素あるいは酸素富化空気を供給するための導通外管16
に連通している。すなわち、導通内管15と導通外管1
6とは二重管構造となり、それぞれ先端部がしぼられた
状態で円錐状の混合部14に連通しており導通内管15
及び導通外管16でそれぞれ供給されろ微粉炭材と酸素
あるいは酸素富化空気とは混合部14で混合された後、
微粉炭材−酸素吐出ノズル13から高速で吐出される。
These pulverized carbonaceous material-oxygen discharge nozzles 13 (and mixing section 14
A conductive inner pipe t15 for supplying pulverized carbonaceous material and a conductive outer pipe 16 for supplying oxygen or oxygen-enriched air.
is connected to. That is, the conductive inner pipe 15 and the conductive outer pipe 1
6 has a double tube structure, each of which is connected to a conical mixing section 14 with its tip end squeezed, and a conductive inner tube 15.
After the pulverized carbonaceous material and oxygen or oxygen-enriched air supplied through the conductive outer tube 16 are mixed in the mixing section 14,
Fine carbonaceous material is discharged from the oxygen discharge nozzle 13 at high speed.

そして、導通内Ir!:15の先端部及び混合部14及
び微粉炭材−酸素吐出ノズル13の内周面Aと、亜鉛原
料導管11の先端部及び亜鉛原料吐出ノズル12の内周
面Bとには、原料による摩耗を防止するため、セラミッ
クライニングが施されている。なお、図中、17及び1
8は水冷ジャケットである。
And the conduction inside Ir! : The tip of the zinc raw material conduit 11 and the inner circumferential surface A of the mixing part 14 and the pulverized carbonaceous material-oxygen discharge nozzle 13, and the tip of the zinc raw material conduit 11 and the inner circumferential surface B of the zinc raw material discharge nozzle 12 have wear caused by the raw materials. Ceramic lining is applied to prevent this. In addition, in the figure, 17 and 1
8 is a water cooling jacket.

このような構成においては、亜鉛原料吐出ノズル12は
、微粉炭材−酸素吐出ノズル13から吐出される高速噴
流で取り囲まれた状態となるので、かかる噴流がエアカ
ーテンの役目を果tこしてスラグスプラッシュあるい尤
よ高濃度の亜鉛蒸気が入り込めないのでこれらに基因す
る付着物の形成がみられなくなる。また、亜鉛原料吐出
ノズル12から吐出される亜鈴原料はその周りの微粉炭
材−酸素吐出ノズル13からの噴流により加速され、ま
た飛散する微粉は該噴流により遮閉・吸引されてスラグ
中にインジェクションされるので、亜鉛原料中に微粉原
料が入っていても、コンデンサーへのキャリオーバが大
幅に減少されろ。
In such a configuration, the zinc raw material discharge nozzle 12 is surrounded by a high-speed jet discharged from the pulverized carbonaceous material-oxygen discharge nozzle 13, so that the jet serves as an air curtain and removes the slag. Since splashes and especially high-concentration zinc vapors cannot enter, the formation of deposits caused by these is not observed. In addition, the dumbbell raw material discharged from the zinc raw material discharge nozzle 12 is accelerated by the jet from the pulverized carbonaceous material-oxygen discharge nozzle 13 surrounding it, and the scattered fine powder is blocked and sucked by the jet and injected into the slag. Therefore, even if the zinc raw material contains fine powder, carryover to the condenser will be significantly reduced.

さらに、亜鉛原料は微粉炭材−酸素吐出ノズル13から
吐出される微粉炭材と酸素との燃焼炎によって加熱され
るとともに炭素濃度が高い高温スラグゾーンの中心に供
給されるので、供給された亜鉛原料とスラグ中の炭素材
との接触が良好となり、亜鉛原料の溶解反応及び揮発反
応速度が速くなり、スラグ中の亜鉛濃度が低下する。
Furthermore, the zinc raw material is heated by the combustion flame of the pulverized carbonaceous material and oxygen discharged from the pulverized carbonaceous material-oxygen discharge nozzle 13 and is supplied to the center of the high-temperature slag zone where the carbon concentration is high. The contact between the raw material and the carbon material in the slag becomes good, the dissolution reaction and volatilization reaction rate of the zinc raw material become faster, and the zinc concentration in the slag decreases.

本実施例のランスは、微粉炭材と亜鉛原料とを別系統の
装置から供給することができるので、炉況に応じて亜鉛
原料、微粉炭材の配合を迅速に変更することができる。
In the lance of this embodiment, the pulverized carbonaceous material and the zinc raw material can be supplied from separate systems, so that the combination of the zinc raw material and the pulverized carbonaceous material can be quickly changed depending on the furnace conditions.

なお、上記実施例では、微粉炭材−酸素吐出ノズル13
の数を3としたが、勿論4以上にすることもできる。ま
た亜鉛原料吐出ノズル12を複数にすることも可能であ
るが、原料の分配等、供給装置が複雑となるためあまり
好ましくない。
In the above embodiment, the pulverized carbonaceous material-oxygen discharge nozzle 13
Although the number is set to 3, it is of course possible to set the number to 4 or more. It is also possible to have a plurality of zinc raw material discharge nozzles 12, but this is not so preferred because the supply device for distributing the raw material and the like becomes complicated.

さらに、本発明のランスは亜鉛製錬用だけでなく、例え
ば硫化鉱製錬やフェ四り四ムの溶融還元製錬などにおけ
る粉体供給ランスとしても広く応用することができる。
Furthermore, the lance of the present invention can be widely applied not only to zinc smelting, but also as a powder supply lance in, for example, sulfide ore smelting and smelting reduction smelting of ferrite.

以下、上記実施例のランス10を用いて亜鉛製錬を行っ
た例を示す。
An example in which zinc smelting was performed using the lance 10 of the above embodiment will be shown below.

内径3mφで内寸高さ3mのマグクロれんが内張り溶錬
炉に約8tの初期スラグを保持し、上記実施例の4孔の
ランスをセットした。
Approximately 8 tons of initial slag was held in a Maguro brick lined smelting furnace with an inner diameter of 3 mφ and a height of 3 m, and the 4-hole lance of the above example was set.

このランスの微粉炭材−酸素吐出ノズルの径は14mφ
、亜鉛原料吐出ノズルの径は3−OLllllであり、
このランス10を、ランス先端とスラグ表面の距離が4
0011Illとなる高さにセットした。
The diameter of the pulverized carbon material-oxygen discharge nozzle of this lance is 14 mφ
, the diameter of the zinc raw material discharge nozzle is 3-OLllll,
This lance 10 has a distance of 4 between the lance tip and the slag surface.
The height was set to 0011Ill.

微粉炭材としては206メツシ:L (74m)篩下9
0%の粒度のコークス粉を用い、加圧式の流動化切出し
装置により650 kg/ hの割合でランスまで搬送
した。なお、搬送ガスとしては34Nm’/hの窒素ガ
スと54 Nm/hの空気との混合ガスを用いた。また
酸素ガスとしては99.5%の純度のものを500〜6
0ONrn’/hの割合で供給した。
As pulverized carbonaceous material, 206 meters: L (74m) sieve size 9
Coke powder with a particle size of 0% was used and was transported to the lance at a rate of 650 kg/h using a pressurized fluidization cutting device. Note that a mixed gas of 34 Nm'/h of nitrogen gas and 54 Nm/h of air was used as the carrier gas. In addition, oxygen gas with a purity of 99.5% is 500 to 6
It was supplied at a rate of 0ONrn'/h.

亜鈴原料としては、焼鉱(オーバーフロー)と煙灰(キ
ャリオーバー)をほぼ半量ずつ混合した亜鉛焼鉱100
重量部をペースとし、これにコンデンサドロスを30重
量部、溶剤としての生石灰を3.3重量部を混合したも
のを用い、加圧式のテーブルフィーダーにより970 
kg/hの割合で供給した。なお、搬送ガスとしては1
5ONm’/hの空気を用いた。
As a raw material for zinc, zinc sintered ore 100 is a mixture of about half of sintered ore (overflow) and half of smoke ash (carryover).
Using a mixture of 30 parts by weight of condenser dross and 3.3 parts by weight of quicklime as a solvent, 970 parts by weight was prepared using a pressurized table feeder.
It was supplied at a rate of kg/h. Note that the carrier gas is 1
Air of 5ONm'/h was used.

以上の原料を用い、溶錬炉の炉頂温度が1400℃とな
るように酸素量を調節し、60時間の連続運転を実施し
た。なお、凝縮装置としては、幅1.35m、長さ5.
0mの鉛スプラッシュコンデンサーを用いた。
Using the above raw materials, the amount of oxygen was adjusted so that the top temperature of the smelting furnace was 1400° C., and continuous operation was performed for 60 hours. The condensation device has a width of 1.35m and a length of 5.5m.
A 0m lead splash capacitor was used.

なお、表−1には初期スラグと各原料の組成を、表−2
にはコークス粉の組成を、表−3には原料の粒度分布を
示す。
Table 1 shows the composition of the initial slag and each raw material, and Table 2 shows the composition of the initial slag and each raw material.
Table 3 shows the composition of the coke powder, and Table 3 shows the particle size distribution of the raw materials.

比較のため、上記実施例と同様の溶錬炉を用い、微粉炭
材用ランスと亜鉛原料用ランスとを別々に設けて、同様
の原料で57時間操業した。なお、微粉炭材用ランスと
しては第3図に示したものを用いた。
For comparison, a smelting furnace similar to that of the above example was used, a lance for pulverized carbonaceous material and a lance for zinc raw material were provided separately, and the furnace was operated for 57 hours using the same raw material. The lance shown in FIG. 3 was used as the lance for pulverized carbonaceous material.

以上、実施例と比較例の操業結果を表−4に示す。The operational results of the Examples and Comparative Examples are shown in Table 4.

表−2 表−4 bJ鉦ヒ16メ2馴6司玉”ηl庄Lri日V乙配ぜヒ
シrハ宗不斗日2’lnシ東シナX100  (96)
表−4に示すように、比較例においては操業途中で4回
の亜鉛原料用ノズルの閉塞が生じ、稼動率が93.0%
と低かったが、実施例においては原料供給中断が生じて
おらず、稼動率も98.2%と高い値を示した。
Table-2 Table-4 bJ gonghi 16 me 2 6 ji ball” ηl sho Lri day V Otsu distribution hishi r ha sou futo day 2'ln shi East China X100 (96)
As shown in Table 4, in the comparative example, the zinc raw material nozzle was clogged four times during operation, resulting in an operating rate of 93.0%.
However, in the example, there was no interruption in the supply of raw materials, and the operating rate was as high as 98.2%.

また比較例では、原料キャリオーバー比率が10%近く
に達し、亜鉛凝縮率が66.2%であったが、実施例で
は原料キャリオーバー比率が4%以下と減少し、亜鉛凝
縮率が74.9%に増加した。
In the comparative example, the raw material carryover ratio reached nearly 10% and the zinc condensation rate was 66.2%, but in the example, the raw material carryover ratio decreased to 4% or less and the zinc condensation rate was 74.2%. It increased to 9%.

スラグ中の亜鉛濃度は、比較例では8〜10%であっt
こが、実施例では7〜8%と低下していた。乙の結果、
亜鉛の揮発率は94.4%から95.5%に増加した。
The zinc concentration in the slag was 8 to 10% in the comparative example.
However, in the examples, it decreased to 7 to 8%. As a result of
Zinc volatility increased from 94.4% to 95.5%.

さらに、総合的な亜鉛メタル化率は、比較例では62.
5%であったが、実施例では71.5%と10%近く改
善されていた。
Furthermore, the overall zinc metalization rate was 62.
5%, but in the example it was 71.5%, an improvement of nearly 10%.

〈発明の効果〉 以上、実施例とともに具体的に説明したように、本発明
の亜鉛精錬用吹き込みランスを用いれば、原料供給ノズ
ル閉塞による操業中断がほとんどなくなり、稼動率を大
幅に向上させることができろとともに亜鉛原料中に煙灰
(キャリオーバー)の供用が可能になり、また、亜鉛の
溶解揮発反応を高効率化して亜鉛のスラグロスを減少さ
せ、亜鉛揮発率を高めることができろ。
<Effects of the Invention> As specifically explained above in conjunction with the examples, by using the zinc smelting blowing lance of the present invention, there will be almost no interruptions in operation due to clogging of the raw material supply nozzle, and the operating rate can be significantly improved. Along with this, it becomes possible to use smoke ash (carryover) in the zinc raw material, and it also becomes possible to improve the efficiency of the zinc dissolution and volatilization reaction, reduce zinc slag loss, and increase the zinc volatilization rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al、(b)は本発明の実施例にかかる亜鉛精
錬用吹き込みランスの正面図及び縦断面図、第2図は従
来の吹き込み精錬の概要を示す説明図、第3図は従来技
術にかかる微粉炭材用ランスの縦断面図である。 図  面  中、 12は亜鉛原料吐出ノズル、 13は微粉炭材−酸素吐出ノズル、 14は混合部、 15は導通内管、 16は導通外管である。 第2図 と 第3図
Figures 1 (al and b) are a front view and a longitudinal sectional view of a blowing lance for zinc refining according to an embodiment of the present invention, Figure 2 is an explanatory diagram showing an overview of conventional blowing refining, and Figure 3 is a conventional It is a vertical cross-sectional view of a lance for pulverized carbonaceous material according to the technology.In the drawing, 12 is a zinc raw material discharge nozzle, 13 is a pulverized carbonaceous material-oxygen discharge nozzle, 14 is a mixing section, 15 is a conductive inner pipe, and 16 is a conductive tube. This is the outer tube. Figures 2 and 3

Claims (1)

【特許請求の範囲】[Claims] 亜鉛原料を吐出する亜鉛原料吐出ノズルを中央部に配し
、微粉炭材と酸素あるいは酸素富化空気との混合物を吐
出する微粉炭材−酸素吐出ノズルの複数個を上記亜鉛原
料吐出ノズルの周囲に配設してなることを特徴とする亜
鉛製錬用吹き込みランス。
A zinc raw material discharge nozzle for discharging a zinc raw material is arranged in the center, and a plurality of pulverized carbonaceous material-oxygen discharge nozzles for discharging a mixture of pulverized carbonaceous material and oxygen or oxygen-enriched air are arranged around the zinc raw material discharge nozzle. A blowing lance for zinc smelting, characterized in that it is arranged in a.
JP28752687A 1987-11-16 1987-11-16 Blowing lance for refining of zinc Pending JPH01129933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28752687A JPH01129933A (en) 1987-11-16 1987-11-16 Blowing lance for refining of zinc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28752687A JPH01129933A (en) 1987-11-16 1987-11-16 Blowing lance for refining of zinc

Publications (1)

Publication Number Publication Date
JPH01129933A true JPH01129933A (en) 1989-05-23

Family

ID=17718482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28752687A Pending JPH01129933A (en) 1987-11-16 1987-11-16 Blowing lance for refining of zinc

Country Status (1)

Country Link
JP (1) JPH01129933A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4301911A1 (en) * 1992-01-24 1993-07-29 Sumitomo Metal Mining Co

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4301911A1 (en) * 1992-01-24 1993-07-29 Sumitomo Metal Mining Co
US5355814A (en) * 1992-01-24 1994-10-18 Sumitomo Metal Mining Company Limited Gasifier burner for powdered solid fuels and method for using the same
DE4301911C2 (en) * 1992-01-24 1998-01-29 Sumitomo Metal Mining Co Gasification burner for powdered solid fuel and combustion processes

Similar Documents

Publication Publication Date Title
US4827486A (en) Process for increasing the energy input in electric arc furnaces
KR900007783B1 (en) Method for producing iron
US4525208A (en) Method for recovery of Zn and Pb from iron and steel dust
US3556773A (en) Refining of metals
US4986847A (en) Process and apparatus for at least temporarily simultaneously subjecting a molten metal to the action of a gas and fine-grain solid materials
KR100515280B1 (en) Process for obtaining metal from metal oxide
CN85107375A (en) Produce the device of flammable solid particle-gas suspension stream
JP2010500279A (en) Mineral fiber manufacturing method and manufacturing apparatus
JP5033302B2 (en) Direct smelting method and equipment
US3599949A (en) Manufacture of steel
JPH01129933A (en) Blowing lance for refining of zinc
SK6998A3 (en) Process for producing liquid pig iron or intermediate steel products and installation for implementing it
US5282883A (en) Method and apparatus for the high-temperature treatment of fine-grained solids in a melting cyclone
ES2934857T3 (en) Method for refining molten metal using a converter
CA2349060A1 (en) Process for melting sponge iron and electric-arc furnace for carrying out the process
AU2009225023B2 (en) Metallurgical process and plant herefor
JP2861500B2 (en) Melt desulfurization of zinc concentrate
JP4630031B2 (en) Methods for reducing and dissolving iron raw materials containing iron oxide
JPS6280234A (en) Blowing lance for zinc smelting
JP2594594B2 (en) Method of carburizing molten iron
JPS6296624A (en) Copper making method
JP2629108B2 (en) Waste melting furnace
JPH1121610A (en) Lance for blowing gas and operation of converter type refining furnace
CN117647107A (en) Mineral powder suspension melting and reduction integrated furnace and mineral powder treatment method thereof
JPH1171607A (en) Operation of shaft furnace