JPH01129835A - Ultrasonic eye axial length meter - Google Patents

Ultrasonic eye axial length meter

Info

Publication number
JPH01129835A
JPH01129835A JP62287036A JP28703687A JPH01129835A JP H01129835 A JPH01129835 A JP H01129835A JP 62287036 A JP62287036 A JP 62287036A JP 28703687 A JP28703687 A JP 28703687A JP H01129835 A JPH01129835 A JP H01129835A
Authority
JP
Japan
Prior art keywords
ultrasonic
display
waveform
signal
axial length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62287036A
Other languages
Japanese (ja)
Inventor
Shigeo Maruyama
茂男 丸山
Yukitsugu Nakamura
中村 行告
Yoshimasa Hamano
好正 濱野
Takashi Masuda
増田 高
Kazunobu Kobayashi
小林 萬伸
Isao Matsumura
勲 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62287036A priority Critical patent/JPH01129835A/en
Publication of JPH01129835A publication Critical patent/JPH01129835A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/10Eye inspection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/1005Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring distances inside the eye, e.g. thickness of the cornea

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Eye Examination Apparatus (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To allow an examiner to observe the change state of a reflection signal simultaneously with the execution of operation for bringing an ultrasonic probe into contact with the cornea of an eye to be examined, by providing a display means to an ultrasonic probe and displaying the state of an ultrasonic reflection signal on said display means. CONSTITUTION:When an ultrasonic probe 1 is brought into contact with the cornea E1 of an eye E to be examined to perform predetermined alignment operation, the signal waveform of the receiving signal S1 obtained by an ultrasonic transmitting- receiving circuit 11 usually becomes the intensity distribution of ultrasonic echos successively arranged in the order of the cornea E1, the front surface E2 of a lens, the rear surface E3 of the lens and the retina E4 in a time series manner. Herein, when the timing on the time series of the preliminarily extracted waveform is given by a waveform selection switch 7, the voltage level held by a sample holding circuit 14 can be set to the repeated voltage data of the reflection waveform of an arbitrary interface. By the voltage data as mentioned above, the display of a probe display device 2 lighting through a display driving circuit 16 becomes the level display of a real time relating to the arbitrary waveform of the receiving signal 51 quantized corresponding to the number of constitutional display segments.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、被検眼の角膜に超音波プローブを接触させて
、被検眼の眼軸長を測定する超音波比軸長針に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an ultrasonic axial length needle for measuring the axial length of an eye to be examined by bringing an ultrasonic probe into contact with the cornea of the eye to be examined.

[従来の技術] 従来、超音波眼軸長計は特開昭59−95031号公報
に記載されているように、被検眼の角膜に接触させる超
音波プローブ部と、信号を処理する本体部とはケーブル
で接続されており、測定中に反射信号のレベルを読み取
るには、検者は本体部パネル上の表示器の出力を見て確
認するように構成されている。
[Prior Art] Conventionally, as described in Japanese Patent Laid-Open No. 59-95031, an ultrasonic axial length meter consists of an ultrasonic probe section that contacts the cornea of the eye to be examined, and a main body section that processes signals. It is connected by a cable, and the examiner is configured to check the output of the display on the main body panel in order to read the level of the reflected signal during measurement.

[発明が解決しようとする問題点] しかしながら、従来例においては反射信号の波形を表示
する表示手段が本体部に設けられているため、実際に超
音波プローブを被検眼の角膜に接触させて測定を実施す
る場合に、次のような問題がある。
[Problems to be Solved by the Invention] However, in the conventional example, since a display means for displaying the waveform of the reflected signal is provided in the main body, it is difficult to actually make measurements by bringing the ultrasound probe into contact with the cornea of the eye to be examined. When implementing this, there are the following problems.

(1)被検眼の角膜に良好にプローブが接触するように
操作している間は、検者の視線はプローブに集中し、反
射信号の波形観測ができない。
(1) While operating the probe so that it makes good contact with the cornea of the eye to be examined, the examiner's line of sight is focused on the probe, making it impossible to observe the waveform of the reflected signal.

(2)反射信号の波形確認のために、視線を本体表示手
段上に移すと正確なプローブ操作が妨げられる。
(2) If the line of sight is shifted onto the display means of the main body in order to check the waveform of the reflected signal, accurate probe operation will be hindered.

(3)測定が糾了した時点のフリーズ波形を確認しただ
けでは、最良の反射波形の状態で測定が実行されている
かを判断をすることができない。
(3) Just by checking the frozen waveform at the time the measurement is completed, it is not possible to determine whether the measurement is being performed with the best reflected waveform.

[発明の目的] 本発明の目的は、被検眼の角膜に超音波プローブを接触
させる操作の実行と同時に、検者は反射信号の変化の様
子を観察可能とした操作性の良好な超音波眼軸良計を提
供することにある。
[Object of the Invention] The object of the present invention is to provide an ultrasonic eye with good operability, which allows the examiner to observe changes in reflected signals at the same time as the operation of bringing an ultrasound probe into contact with the cornea of the eye to be examined. Our goal is to provide a quality measurement.

[発明の概要] 上述の目的を達成するための本発明の要旨は、被検眼の
角膜に超音波プローブを接触させて眼軸長を計測する比
軸長針において、前記超音波プローブに表示手段を設け
、超音波反射信号の状態を該表示手段に表示することを
特徴とする超音波眼軸良計である。
[Summary of the Invention] The gist of the present invention for achieving the above-mentioned object is to provide a specific axial long needle for measuring the axial length by bringing an ultrasound probe into contact with the cornea of the eye to be examined, in which a display means is provided on the ultrasound probe. The ultrasonic ophthalmoscope is characterized in that the state of the ultrasonic reflected signal is displayed on the display means.

[発明の実施例] 本発明を図示の実施例に基づいて詳細に説明する。[Embodiments of the invention] The present invention will be explained in detail based on illustrated embodiments.

第1図において、Eは被検眼であり、この角膜Elに超
音波プローブ1を接触し得るようになっている。この超
音波プローブ1の側面にはプローブ表示器2が付設され
、更に超音波プローブlはケーブル3を介して計測器本
体4に接続されている。計測器本体4には、超音波反射
信号の波形表示を行うモニタ5、演算結果を印字するプ
リンタ6、波形選択スイッチ7、眼軸長計測値の表示を
行うデータ表示器8が設けられている。
In FIG. 1, E is the eye to be examined, and the ultrasound probe 1 can be brought into contact with the cornea El. A probe display 2 is attached to the side surface of the ultrasonic probe 1, and the ultrasonic probe 1 is further connected to a measuring instrument main body 4 via a cable 3. The measuring instrument main body 4 is provided with a monitor 5 for displaying the waveform of the ultrasound reflected signal, a printer 6 for printing the calculation results, a waveform selection switch 7, and a data display 8 for displaying the measured value of the axial length. .

第2図は信号処理系のブロック回路構成図を示し、超音
波プローブ1は超音波送受信回路11に接続゛され、超
音波送受信回路11の出力は超音波信号処理回路12、
波形選択回路13、サンプルホールド回路14に接続さ
れている。サンプルホールド回路14の出力はA/D変
換回路15、表示駆動回路16を経てプローブ表示器2
に接続されている。また、超音波信号処理回路12の出
力はデータ表示器8に接続され、波形選択回路13の出
力はサンプルホールド回路14に接続されている。
FIG. 2 shows a block circuit diagram of the signal processing system, in which the ultrasonic probe 1 is connected to the ultrasonic transceiver circuit 11, and the output of the ultrasonic transceiver circuit 11 is transmitted to the ultrasonic signal processing circuit 12,
It is connected to a waveform selection circuit 13 and a sample hold circuit 14. The output of the sample hold circuit 14 is sent to the probe display 2 via the A/D conversion circuit 15 and the display drive circuit 16.
It is connected to the. Further, the output of the ultrasonic signal processing circuit 12 is connected to the data display 8, and the output of the waveform selection circuit 13 is connected to the sample hold circuit 14.

超音波送受信回路11は超音波プローブlに対して所定
の周期で超音波駆動信号を送信し、被検媒質の界面によ
って生ずる超音波エコーの反射信号を再び超音波プロー
ブlを介して受信するように構成されている。超音波プ
ローブ1で受信された反射信号は所定の増幅を行った後
に受信4号S1として超音波送受信回路11から出力さ
れる。超音波信号処理回路12は受信4号Slを受けて
眼軸長の計測演算を実行する機能を有し、その結果をデ
ータ表示器8に眼軸長計測データとして表示する。一方
、波形選択回路13は時限回路であり、超音波送受信回
路11からの超音波駆動信号に同期したタイミング信号
をトリガ入力し、波形選択スイッチ7の指令に応じて任
意の遅延時間後にゲート信号を出力する。なお、このゲ
ート信号のタイミングは図示しない手段により、モニタ
5の上に波形選択マーカMとして合成すると都合がよい
、サンプルホールド回路14は波形選択回路13から出
力されたゲート信号のタイミング毎に、受信4号S1の
電圧レベルを保持する機能を有する。A/D変換回路1
5はサンプルホールド回路14から出力される電圧レベ
ルに応じて相当するデジタルデータを発生し、表示駆動
回路16はこのデジタルデータを入力して、プローブ表
示器2の対応する表示セグメントの発光制御を行う。
The ultrasonic transmitting/receiving circuit 11 transmits an ultrasonic driving signal to the ultrasonic probe l at a predetermined period, and receives the reflected signal of the ultrasonic echo generated by the interface of the test medium again via the ultrasonic probe l. It is composed of The reflected signal received by the ultrasonic probe 1 is amplified in a predetermined manner and then outputted from the ultrasonic transmitting/receiving circuit 11 as a receiving signal S1. The ultrasonic signal processing circuit 12 has a function of receiving the reception No. 4 Sl and executing a measurement calculation of the axial length, and displays the result on the data display 8 as axial length measurement data. On the other hand, the waveform selection circuit 13 is a time-limited circuit, which receives a trigger input of a timing signal synchronized with the ultrasonic drive signal from the ultrasonic transmitter/receiver circuit 11, and outputs a gate signal after an arbitrary delay time according to a command from the waveform selection switch 7. Output. Note that it is convenient to synthesize the timing of this gate signal as a waveform selection marker M on the monitor 5 by means not shown. It has the function of holding the voltage level of No. 4 S1. A/D conversion circuit 1
5 generates digital data corresponding to the voltage level output from the sample and hold circuit 14, and the display drive circuit 16 receives this digital data and controls the light emission of the corresponding display segment of the probe display 2. .

以上の構成において、超音波プローブ1を被検眼Eの角
11!2E1に接触させて所定のアライメント操作を行
うと、超音波送受信回路11により得られる受信4号S
1の信号波形は一般に第3図に示すようになり、被検媒
質に含まれる界面、即ち角膜El、水晶体前面E2、水
晶体後面E3.網膜E4の順に時系列的に並んだ超音波
エコーの強度分布を示す形状となる。ここで、波形選択
スイッチ7により予め抽出した波形の時系列上のタイミ
ングを与えておけば、サンプルホールド回路14により
保持される電圧レベルは、任意の界面の反射波形の繰り
返し電圧情報とすることができる。
In the above configuration, when the ultrasound probe 1 is brought into contact with the corner 11!2E1 of the eye E to be examined and a predetermined alignment operation is performed, the reception No. 4 S obtained by the ultrasound transmission/reception circuit 11 is
Generally, the signal waveform of No. 1 is as shown in FIG. 3, and the signal waveform is generally as shown in FIG. The shape shows the intensity distribution of ultrasound echoes arranged in time series in the order of retina E4. Here, if the time-series timing of the waveform extracted in advance is given by the waveform selection switch 7, the voltage level held by the sample-and-hold circuit 14 can be set as repetitive voltage information of the reflected waveform of an arbitrary interface. can.

このようにして得られた電圧情報により1表示駆動回路
16を介して点灯するプローブ表示器2の表示は、構成
する表示セグメントの数に応じて量子化された受信4号
Slの任意の波形に関するリアルタイムのレベル表示と
なる。この場合に、超音波プローブlの側面のプローブ
表示器2は第4図に示すように配置することが好ましい
The display on the probe display 2 that is turned on via the 1-display drive circuit 16 based on the voltage information obtained in this way is related to an arbitrary waveform of the reception signal 4 SL that is quantized according to the number of display segments that constitute it. Real-time level display. In this case, it is preferable that the probe indicator 2 on the side of the ultrasound probe 1 be arranged as shown in FIG.

第5図は第2の実施例の信号処理系のブロック回路構成
図である。ここで、第2図と異なる部分のみを説明する
と、超音波送受信回路11の受信4号Slは超音波信号
処理回路12以外に2値化回路21、ゲートパルス発生
回路22に接続されている。2値化回路21には弁別レ
ベル発生回路23の出力も接続されており、2値化回路
21の出力は4個のゲート回路24a〜24dに接続さ
れている。また、ゲートパルス発生回路22の出力もゲ
ート回路24a〜24dに入力され、ゲート回路24a
〜24dの出力は超音波信号処理回路12からの出力と
共に、表示駆動回路25に入力され1表示駆動回路25
の出力はプローブ表示器2に接続されている。
FIG. 5 is a block circuit diagram of the signal processing system of the second embodiment. Here, to explain only the parts that are different from FIG. 2, the reception No. 4 Sl of the ultrasonic transmitter/receiver circuit 11 is connected to a binarization circuit 21 and a gate pulse generation circuit 22 in addition to the ultrasonic signal processing circuit 12. The output of the discrimination level generation circuit 23 is also connected to the binarization circuit 21, and the output of the binarization circuit 21 is connected to four gate circuits 24a to 24d. Further, the output of the gate pulse generation circuit 22 is also input to the gate circuits 24a to 24d,
The output of ~24d is input to the display drive circuit 25 together with the output from the ultrasonic signal processing circuit 12.
The output of is connected to the probe indicator 2.

2値化回路21は受信4号S1に対して弁別レベル発生
回路23からの所定の弁別レベル信号S2との2値化比
較を行って、受信2値化信号i3を出力する。ゲートパ
ルス発生回路22は超音波送受信回路tiからの超音波
駆動信号に同期したタイミング信号をトリガ入力し、第
3図のPamPdに示す位相の各ゲートパルスを発生す
る。ここで、ゲートパルスPaは角膜Elの反射信号、
ゲートパルスpbは水晶体前面E2の反射信号、ゲート
パルスPcは水晶体後面E3の反射信号、ゲートパルス
Pdは網11E4の反射信号のそれぞれ時系列上に許容
される時間帯に位相が設定されている0表示駆動回路2
5はゲート回路24a〜24dからの出力に応じてプロ
ーブ表示器2の対応する表示セグメントの発光制御を行
う。
The binarization circuit 21 performs a binarization comparison of the reception signal S1 with a predetermined discrimination level signal S2 from the discrimination level generation circuit 23, and outputs a reception binary signal i3. The gate pulse generation circuit 22 receives a trigger input of a timing signal synchronized with the ultrasonic drive signal from the ultrasonic transmitter/receiver circuit ti, and generates each gate pulse having the phase shown as PamPd in FIG. Here, the gate pulse Pa is a reflected signal of the cornea El,
The gate pulse pb is a reflected signal from the front surface E2 of the crystalline lens, the gate pulse Pc is a reflected signal from the posterior surface E3 of the crystalline lens, and the gate pulse Pd is a reflected signal from the net 11E4. Display drive circuit 2
5 controls the light emission of the corresponding display segment of the probe display 2 in accordance with the outputs from the gate circuits 24a to 24d.

以上の構成により、超音波プローブ1を被検眼Eの角膜
Elに接触させて所定の7ライメント操作を行うと、2
値化回路21から発生される受信2値化信号S3は第3
図に示すようになり、それぞれ被検眼Eの角膜El、水
晶体前面E2、水晶体後面E3.網膜E4の超音波反射
信号を弁別レベルS2に対して2値に量子化した論理信
号となる。このときゲートパルス発生回路22では、予
め設定されたゲートパルスPaNPdによって受信2値
化回路21のマスク処理を実行することとなり、ゲート
パルス発生回路22で得られた出力は、表示駆動回路2
5を介してプローブ表示器2の対応する表示セグメント
をそれぞれ独自に点灯する。ここで、ゲートパルスPa
−Pdの各位相に対応する時間帯に受信2値化信号S3
が論理rlJであれば、プローブ表示器2の対応する表
示セグメントは点灯し、論理「0」であれば不点灯とな
る。この場合に、プローブ表示器2は第6図に示すよう
に配置することが好ましい。
With the above configuration, when the ultrasound probe 1 is brought into contact with the cornea El of the eye E to be examined and the predetermined 7 alignment operations are performed, 2
The received binary signal S3 generated from the digitization circuit 21 is the third
As shown in the figure, the cornea El, the anterior surface of the crystalline lens E2, the posterior surface of the crystalline lens E3, and the like of the eye E, respectively. This becomes a logical signal obtained by quantizing the ultrasonic reflection signal of the retina E4 into binary values for the discrimination level S2. At this time, the gate pulse generation circuit 22 performs a masking process for the reception binarization circuit 21 using the preset gate pulse PaNPd, and the output obtained by the gate pulse generation circuit 22 is transmitted to the display drive circuit 2.
5 to independently illuminate the corresponding display segments of the probe display 2. Here, gate pulse Pa
- Received binary signal S3 in the time period corresponding to each phase of Pd.
If is a logic rlJ, the corresponding display segment of the probe display 2 is lit, and if it is a logic "0", it is not lit. In this case, the probe indicator 2 is preferably arranged as shown in FIG.

第5図のブロック回路構成図において、超音波信号処理
回路12は先の実施例で説明した構成、機能に加えて1
次に示す方法による眼軸長計測値の信頼度算出機能を有
するようにしてもよい、即ち、超音波信号処理回路12
には受信4号S1に含まれる超音波反射信号の時系列デ
ータが、超音波送受信回路11の作用により所定の周期
で繰り返し入力されており、演算の結果書られる眼軸長
の計測値は一定の時間内に複数個を算出することができ
る。ここで、所定の時間内に得られる複数の眼軸長計測
値に対して、各計測値のばらつきの量を所定値と比較す
る演算操作を実行して、この比較演算の結果を計測信頼
度信号S4として表示駆動回路25に向けて出力する。
In the block circuit diagram shown in FIG.
The ultrasonic signal processing circuit 12 may have a function of calculating the reliability of the axial length measurement value using the following method.
The time-series data of the ultrasonic reflection signal included in the receiver No. 4 S1 is repeatedly input at a predetermined period by the action of the ultrasonic transmitter/receiver circuit 11, and the measured value of the axial length written as a result of calculation is constant. It is possible to calculate multiple items within a time period of . Here, a calculation operation is performed to compare the amount of dispersion of each measurement value with a predetermined value for multiple axial length measurement values obtained within a predetermined time, and the results of this comparison calculation are used to determine the measurement reliability. It is output to the display drive circuit 25 as a signal S4.

この場合に、超音波プローブlを被検眼Eの角膜Elに
接触させたときに表示されるプローブ表示器2の表示内
容は、各反射面別の超音波反射信号のレベル弁別値の他
に、論理信号である計測信頼度信号S4の状態によって
、第7図に示すようにプローブ表示器2と共に、超音波
プローブ1に設けられた信頼度表示器26を点灯又は消
灯する。
In this case, the contents displayed on the probe display 2 when the ultrasound probe l is brought into contact with the cornea El of the eye E to be examined include, in addition to the level discrimination value of the ultrasound reflection signal for each reflective surface, Depending on the state of the measurement reliability signal S4, which is a logic signal, the reliability indicator 26 provided on the ultrasound probe 1 is turned on or off together with the probe indicator 2, as shown in FIG.

なお、上述の実施例のモニタ5を削除した構成によって
も、眼軸長の計測はプローブ表示器2及び信頼度表示器
26の表示確認により実行することができる。
Note that even with the configuration in which the monitor 5 of the above-described embodiment is removed, the measurement of the axial length can be performed by checking the display on the probe display 2 and the reliability display 26.

[発明の効果] 以上説明したように本発明に係る超音波眼軸長計は、超
音波グローブの側面に表示器を設けて、被検限の反射面
別の超音波反射信号の状態を表示することにより、角膜
に超音波プローブを接触させる超音波プローブのアライ
メント操作の実行と同時に、検者は視線をプローブに集
中させながら、超音波反射信号の状態を観察可能とする
ばかりでなく、眼軸長計測値の信頼度についてもリアル
タイムで確認可能となり、超音波眼軸長測定の操作性と
精度を向上することができる。
[Effects of the Invention] As explained above, the ultrasonic axial length meter according to the present invention includes a display device on the side surface of the ultrasonic glove to display the state of the ultrasonic reflection signal for each reflective surface of the test area. This allows the examiner to focus his/her line of sight on the probe and observe the state of the ultrasound reflected signal while simultaneously performing the alignment operation of the ultrasound probe that brings the ultrasound probe into contact with the cornea. It is also possible to check the reliability of the length measurement value in real time, improving the operability and accuracy of ultrasonic axial length measurement.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る超音波眼軸長計の実施例を示し、第
1図は装置の全体構成図、第2図は信号処理系のブロッ
ク回路構成図、第3図は信号波形図、第4図、第6図、
第7図はプローブ表示器の配置図、第5図は第2の実施
例の信号処理系ブロック回路構t?、図である。 符号1は超音波プローブ、2はプローブ表示器、4は計
測器本体、7は波形選択スイッチ、8はデータ表示器、
11は超音波送受信回路、12は超音波信号処理回路、
13は波形選択回路、14はサンプルホールド回路、1
5はA/D変換回路、16は表示駆動回路、21は2値
化回路、22はゲートパルス発生回路、23は弁別レベ
ル発生回路、25は表示駆動回路、26は信頼度表示器
である。 特許出願人   キャノン株式会社 帛3図 第4図
The drawings show an embodiment of the ultrasonic axial length meter according to the present invention, and FIG. 1 is an overall configuration diagram of the device, FIG. 2 is a block circuit diagram of a signal processing system, FIG. 3 is a signal waveform diagram, and FIG. Figure, Figure 6,
FIG. 7 is a layout diagram of the probe display, and FIG. 5 is the signal processing block circuit structure of the second embodiment. , is a diagram. 1 is an ultrasonic probe, 2 is a probe display, 4 is a measuring instrument body, 7 is a waveform selection switch, 8 is a data display,
11 is an ultrasonic transmitting and receiving circuit; 12 is an ultrasonic signal processing circuit;
13 is a waveform selection circuit, 14 is a sample hold circuit, 1
5 is an A/D conversion circuit, 16 is a display drive circuit, 21 is a binarization circuit, 22 is a gate pulse generation circuit, 23 is a discrimination level generation circuit, 25 is a display drive circuit, and 26 is a reliability indicator. Patent applicant: Canon Co., Ltd. Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1、被検眼の角膜に超音波プローブを接触させて眼軸長
を計測する眼軸長計において、前記超音波プローブに表
示手段を設け、超音波反射信号の状態を該表示手段に表
示することを特徴とする超音波眼軸長計。 2、被検眼部位からの複数の反射信号のうちの1つの反
射信号を選択する選択手段を有し、該選択手段の出力レ
ベルに応じて前記表示手段を駆動するようにした特許請
求の範囲第1項に記載の超音波眼軸長計。 3、被検眼部位からの複数の反射信号に対してそれぞれ
所定のレベルと比較する弁別手段を有し、該弁別手段の
出力により前記表示手段を駆動するようにした特許請求
の範囲第1項に記載の超音波眼軸長計。 4、被検眼の各部位に関する眼軸長の演算結果について
複数回の演算結果を比較する信頼度算出手段を有し、該
信頼度算出手段の出力が所定時間に渡って一定値以内で
あるときに、前記表示手段を駆動するようにした特許請
求の範囲第1項に記載の超音波眼軸長計。
[Scope of Claims] 1. In an axial length meter that measures the axial length of the eye by bringing an ultrasound probe into contact with the cornea of the eye to be examined, the ultrasound probe is provided with a display means, and the state of the ultrasound reflected signal is displayed. An ultrasonic axial length meter characterized by displaying on the means. 2. The present invention further comprises a selection means for selecting one reflected signal from a plurality of reflected signals from a part of the eye to be examined, and the display means is driven in accordance with the output level of the selection means. The ultrasonic axial length meter according to item 1. 3. Claim 1 further comprises a discrimination means for comparing each of a plurality of reflected signals from a part of the eye to be examined with a predetermined level, and the display means is driven by the output of the discrimination means. The ultrasonic axial length meter described. 4. When the apparatus has reliability calculation means for comparing the calculation results of the axial length of each part of the eye to be examined, and the output of the reliability calculation means is within a certain value over a predetermined period of time. 2. The ultrasonic axial length meter according to claim 1, wherein said display means is driven.
JP62287036A 1987-11-13 1987-11-13 Ultrasonic eye axial length meter Pending JPH01129835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62287036A JPH01129835A (en) 1987-11-13 1987-11-13 Ultrasonic eye axial length meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62287036A JPH01129835A (en) 1987-11-13 1987-11-13 Ultrasonic eye axial length meter

Publications (1)

Publication Number Publication Date
JPH01129835A true JPH01129835A (en) 1989-05-23

Family

ID=17712212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62287036A Pending JPH01129835A (en) 1987-11-13 1987-11-13 Ultrasonic eye axial length meter

Country Status (1)

Country Link
JP (1) JPH01129835A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320665A (en) * 1989-06-19 1991-01-29 Hitachi Ltd Ultrasonic apparatus and ultrasonic probe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320665A (en) * 1989-06-19 1991-01-29 Hitachi Ltd Ultrasonic apparatus and ultrasonic probe

Similar Documents

Publication Publication Date Title
KR0128104B1 (en) Multi-dimensional visualization apparatus for observing tissue
JPH0696014B2 (en) Ophthalmic digital ultrasonic measuring instrument
EP1837681B1 (en) Ultrasonic diagnosis system and testing method
JP2001074598A (en) Optical pulse tester
EP0075284A2 (en) Ultrasonic blood flow sensing apparatus
EP0204000B1 (en) Ultrasonic diagnostic apparatus
JPH05220139A (en) Ultrasonic image diagnosing apparatus and driving method thereof
CN109303572A (en) Ultrasonic diagnostic equipment and the method for controlling ultrasonic diagnostic equipment
JP2002159492A (en) Ultrasonic diagnostic equipment and element testing method
US5569853A (en) Ultrasonic measuring apparatus which minimizes the number of digital values treated by processing means
JPH01129835A (en) Ultrasonic eye axial length meter
JP4117991B2 (en) Ophthalmic ultrasound system
JP2953668B2 (en) Optometry device
US20080072673A1 (en) Portable testing system
US3733891A (en) Gating systems used with nondestructive material testers and the like
US5737058A (en) Eye examination apparatus using ultrasonic wave radiation
JPH01256939A (en) Ultrasonic ophthalmo-axis length gauge
JPH01129836A (en) Ultrasonic eye axial length meter
JP6855550B1 (en) Ultrasonic diagnostic equipment
KR100233074B1 (en) Apparatus for measure of fetus month age of ultrasonic wave diagnostic device
US20170252003A1 (en) Tissue characterization apparatus
SU1528447A1 (en) Method and apparatus for determining manъs pretension level
JP2948241B2 (en) Ultrasonic inspection equipment
JP2824488B2 (en) Method of measuring plate thickness of concrete structure by ultrasonic pulse reflection method
JPH09294722A (en) Ophthalmologic instrument