JPH01127801A - Gas turbine exhaust-heat recovery boiler - Google Patents

Gas turbine exhaust-heat recovery boiler

Info

Publication number
JPH01127801A
JPH01127801A JP28437487A JP28437487A JPH01127801A JP H01127801 A JPH01127801 A JP H01127801A JP 28437487 A JP28437487 A JP 28437487A JP 28437487 A JP28437487 A JP 28437487A JP H01127801 A JPH01127801 A JP H01127801A
Authority
JP
Japan
Prior art keywords
water
line
water supply
boiler
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28437487A
Other languages
Japanese (ja)
Other versions
JP2554110B2 (en
Inventor
Tadashi Tsuji
正 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62284374A priority Critical patent/JP2554110B2/en
Publication of JPH01127801A publication Critical patent/JPH01127801A/en
Application granted granted Critical
Publication of JP2554110B2 publication Critical patent/JP2554110B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE: To ensure a high volume of steam to be generated while saving supply water by disposing a post-stage economizer independently on the downstream side of exhaust gas from a prestage economizer and providing a bypass line coupling a gas turbine exhaust line and a boiler flue thereby keeping a high quantity of heat to be recovered from the boiler. CONSTITUTION: On the downstream side of exhaust gas from a prestage economizer 1b, a post-stage water supply line 3b branched from a prestage water supply line is coupled with a post-stage economizer 1c through a mixer 8. A gate valve V1 is closed while a water supply valve V3 and other valves C2 , C3 , V4 and V5 are opened thus separating the economizers 1b, 1c from each other. Independently from circulation I of return water of the economizer 1b, water at about 60 deg.C is passed at first through the economizer 1c and heated up to about 100 deg.C thence introduced through a recirculation line 9 to a water supply tank 3. It is then passed through the line 3b branched from the line 3a and returned back to the economizer 1c before being recirculated. According to the arrangement, heat can be recovered from gas turbine exhaust gas up to the temperature of about 100 deg.C. When heat demand of steam or hot water is low, steam generation is suppressed by discharging a part of exhaust gas through a boiler bypass line 10.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電力需要に対応するガスタービンの排気ガス
の熱を回収し、蒸気や温水を発生させて熱需要をも併せ
て賄うガスタービン排熱回収ボイラに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is a gas turbine exhaust heat system that recovers the heat of the exhaust gas of a gas turbine that meets the demand for electricity and generates steam or hot water to meet the demand for heat. Regarding recovery boilers.

従来の技術 このような従来のガスタービン排熱回収ボイラのシステ
ムを第14図に基づき説明すると、l′は排熱回収ボイ
ラ(以下単にボイラと称する)、2′はガスタービン、
3′は給水タンク、そして4′は蒸気ライン、5′は補
給水ライン、6′は冷凍機及び7′は熱需要先であって
、発電機2a’及び圧縮機2b’に直結したガスタービ
ン2′から放出された排ガスは排気ラーrン10a′を
通ってボイラl′入口側に供給されていた。
BACKGROUND ART A conventional gas turbine exhaust heat recovery boiler system like this will be explained based on FIG. 14. l' is an exhaust heat recovery boiler (hereinafter simply referred to as a boiler), 2' is a gas turbine,
3' is a water supply tank, 4' is a steam line, 5' is a makeup water line, 6' is a refrigerator, and 7' is a heat demand destination, which is a gas turbine directly connected to a generator 2a' and a compressor 2b'. The exhaust gas discharged from 2' was supplied to the inlet side of the boiler l' through an exhaust runner 10a'.

そして、ボイラ蒸発器の蒸発器1a’、及びその蒸発器
と組をなす節炭器lb′に排ガスが通過することにより
、給水タンク3′から給水ライン3a’を通して送水さ
れる給水をまず節炭器tb’で所定の温度にまで加熱し
た後、蒸発器1a’内で蒸発させ、蒸気ライン4′から
その蒸気を例えば系内に配置された冷凍機6′や図に示
されない系外に配置されたプロセス、暖房や給湯等の熱
需要先7′に供給・分配していた。
By passing the exhaust gas through the evaporator 1a' of the boiler evaporator and the energy saver lb' that is paired with the evaporator, the water supplied from the water supply tank 3' through the water supply line 3a' is first reduced in energy consumption. After being heated to a predetermined temperature in the evaporator tb', it is evaporated in the evaporator 1a', and the steam is sent from the steam line 4' to, for example, a refrigerator 6' disposed within the system or outside the system not shown in the figure. It was supplied and distributed to heat demand 7' such as space heating and hot water supply.

また、このように使用されて熱を放出した蒸気即ち戻り
水は各給水戻りライン6a’、 7a’を通して、給水
タンク3′内に戻しており、この給水タンクに導入され
た給水は熱需要先7′で消費された不足分を補給水ライ
ン5′からの補給水で補いつつ、前述の如き節炭器tb
’及び蒸発器1a’に再循環されていた。
In addition, the steam that has been used in this way and has released heat, that is, the return water, is returned to the water supply tank 3' through each supply water return line 6a', 7a', and the supply water introduced into this water tank is sent to the heat demand destination. While making up for the shortage consumed in water line 7' with make-up water from make-up water line 5', the above-mentioned energy saver tb
' and was recycled to evaporator 1a'.

この場合、一つの例としてガスタービン2′の排に送り
、蒸発器1a’で蒸気としていた。この蒸発器は水管式
、煙管式等自由に型式が選ばれていた。
In this case, as an example, it was sent to the exhaust of the gas turbine 2' and turned into steam in the evaporator 1a'. The type of evaporator was freely chosen, such as water tube type or smoke tube type.

そして、発生蒸気は夏季/プロセス蒸気・冷房用蒸気、
冬季/プロセス蒸気・暖房用蒸気、ならびに年間を通し
て給湯用に使用されていた。
The generated steam is summer/process steam/cooling steam,
It was used for process steam and heating steam in the winter, and for hot water heating throughout the year.

ボイラメイキャップならびに蒸気消耗に対しては、補給
水を軟水装置5a’で水処理して供給し、なおボイラ水
質は薬注装置3b’で確保していた。
For boiler make-up and steam consumption, make-up water was treated with a water softener 5a' and supplied, and boiler water quality was ensured with a chemical feeder 3b'.

冷凍機6′からの戻り水辺外に、プロセス蒸気、暖房用
蒸気、給湯用蒸気の戻り水があれば、最終的に給水戻り
ライン6 a’ 、 7 a’を介して給水タンク3′
に集まるようにし、不足水を補給水ライン5′で賄って
いた。
If there is return water of process steam, heating steam, or hot water supply steam outside the return water area from the refrigerator 6', it is finally returned to the water supply tank 3' via the water supply return lines 6a' and 7a'.
The shortage of water was made up by the makeup water line 5'.

発明が解決しようとする問題点 以上述べた従来のガスタービン排熱回収ボイラは、しか
し、次のような問題か生じていた。
Problems to be Solved by the Invention The conventional gas turbine exhaust heat recovery boiler described above, however, has the following problems.

(り給水の戻り量とその温度の点について。(Regarding the amount of water returned and its temperature.

冷凍機6′の部分負荷運転では、戻り水(ドレン水)の
流産が減少すると同時に、ドレン温度が定格時よりも低
下していた。ボイラ1′を蒸発量一定で週転し冷凍機6
′を部分負荷運用するときは「冷凍機6′が使用しなく
なった残余蒸気を系外のプロセス蒸気として使用する」
ことになるが、その初期にプロセス蒸気戻り水として戻
り水ライン7a’中残留水が給水タンク3′に戻るため
、低温ドレン水とと右に給水タンク3′水温を低下させ
てしまう。それからプロセス蒸気の戻りがない場合は補
給水(夏季で約25℃)を供給するため低温ドレン水と
ともに常時給水タンク3′水温を更に低めることになっ
ていた。
During partial load operation of the refrigerator 6', the miscarriage of return water (drain water) was reduced, and at the same time, the drain temperature was lower than the rated temperature. Boiler 1' is rotated weekly with a constant evaporation amount, and refrigerator 6
When operating ' with partial load, the residual steam that is no longer used by refrigerator 6' is used as process steam outside the system.'
However, at the initial stage, residual water in the return water line 7a' returns to the water supply tank 3' as process steam return water, which lowers the water temperature of the water supply tank 3' together with the low-temperature drain water. If there is no return of process steam, make-up water (approximately 25° C. in summer) is supplied, and the temperature of the water in the constant water supply tank 3' is further lowered together with low-temperature drain water.

このことにより節炭器1b’入口水温の低下はそのまま
蒸発機1a’入口水温の低下をもたらし、蒸気発生量が
低減してしまい、排熱回収効率を悪化させることになっ
ていた。
As a result, a decrease in the water temperature at the inlet of the economizer 1b' directly causes a decrease in the water temperature at the inlet of the evaporator 1a', resulting in a reduction in the amount of steam generated and deteriorating the exhaust heat recovery efficiency.

(2)ガスタービンの排熱利用について。(2) Regarding the use of exhaust heat from gas turbines.

ガスタービン2′側が例えば都市ガス13A等のクリー
ン燃料を使用した燃焼では、ボイラl′から大気へ放出
される排ガスの温度が低温腐食防止制限値の約100℃
になるまで熱回収が可能であるが、実際には排気温度1
40℃前後までの熱回収しか行なわれていないのが現状
であり、クリーン燃暑の熱回収利得が有効に活かされて
いなかった。
When the gas turbine 2' side uses clean fuel such as city gas 13A for combustion, the temperature of the exhaust gas released from the boiler l' to the atmosphere is approximately 100°C, which is the low-temperature corrosion prevention limit value.
It is possible to recover heat up to 1, but in reality the exhaust temperature is 1
Currently, heat recovery is only performed up to around 40°C, and the heat recovery gain of clean burning heat has not been effectively utilized.

(3)蒸気量の調整について。(3) Regarding adjustment of steam amount.

蒸気総量が少なくて良い場合、ガスタービン2′の部分
負荷で対応することになる。ところが、ガスタービン2
′が高負荷が要求されているときに蒸気総量を少なくす
るには一旦ボイラ1′で発生させた蒸気をガスタービン
に投入せずに消音器を介して大気中に放風しなければな
らず、結局その余剰となった蒸気を得るために費やした
補給水を無駄に大気中に捨てることになっていた。
If the total amount of steam is small, the partial load of the gas turbine 2' will be sufficient. However, gas turbine 2
In order to reduce the total amount of steam when a high load is required for 1', the steam generated in boiler 1' must be discharged into the atmosphere through a silencer without being input to the gas turbine. In the end, the make-up water used to obtain the surplus steam was wasted into the atmosphere.

問題点を解決するための手段 本発明は、このような従来の問題点を解決するために、
ガスタービンの排熱を回収して蒸気や温水を発生させて
各蒸気ライン、温水ラインに通し、系内の冷凍機や系外
の熱需要先に使用した後、その戻り水を給水戻りライン
を介して給水タンクに導入させるようにした排熱回収ボ
イラにおいて、ボイラ蒸発器と組をなし、かつ給水タン
クに前段給水ラインを介して連結する前段節炭器の排ガ
ス下流側に、上記肋膜給水ラインから分岐して混合器を
途中に設ける後段給水ラインに接続し、かつ給水タンク
に再循環ラインを介して連結する後段節炭器を独立して
設け、該後段節炭器出口側の再循環ラインと前段節炭器
入口側の前段給水ラインとを仕切弁を介して連結し、上
記混合器に給水タンクに伸びる水位調整ラインから分岐
する補給水ラインを接続すると共に、ガスタービン及び
ボイラを連結する排気ラインとボイラの煙道とを連結す
るボイラバイパスラインにバイパス人口ダンパ弁を設け
、かつ上記排気ライン及び煙道夫々にボイラ入口ダンパ
弁及びボイラ出口ダンパ弁を配設したものである。
Means for Solving the Problems In order to solve these conventional problems, the present invention provides the following:
The exhaust heat of the gas turbine is recovered to generate steam and hot water, which are passed through each steam line and hot water line to be used for the chiller inside the system or for heat demand outside the system, and then the return water is passed through the water supply return line. In the exhaust heat recovery boiler, which is introduced into the water supply tank through the exhaust heat recovery boiler, the above-mentioned pleural water supply line is connected to the exhaust gas downstream side of the front-stage economizer, which is paired with the boiler evaporator and connected to the water supply tank through the front-stage water supply line. A post-stage economizer is provided independently, which is connected to a post-stage water supply line that branches off from the mixer and is connected to the water supply tank via a recirculation line, and a recirculation line is provided on the outlet side of the post-stage economizer. and a pre-stage water supply line on the inlet side of the pre-stage economizer are connected via a gate valve, and a make-up water line branching from a water level adjustment line extending to the water supply tank is connected to the mixer, and a gas turbine and a boiler are connected. A bypass artificial damper valve is provided in the boiler bypass line that connects the exhaust line and the flue of the boiler, and a boiler inlet damper valve and a boiler outlet damper valve are provided in the exhaust line and the flue, respectively.

作用 従って、後段節炭器の設置によりガスタービン排気を排
気ガスからは約140℃から更に100℃までの範囲に
拡げて熱回収できるため、ボイラの熱回収量を高く維持
できる。このことは前段節炭器と上記後段節炭器とを独
立して使用する場合、又はシリーズに使用する場合のい
ずれにおいても可能である。
Therefore, by installing a post-stage energy saver, heat can be recovered from the gas turbine exhaust gas by expanding the range from about 140° C. to 100° C., so the amount of heat recovered from the boiler can be maintained at a high level. This is possible whether the front stage economizer and the latter stage economizer are used independently or in series.

また、熱需要先の一つとして熱負荷の大きい系内の冷凍
機が部分負荷となった場合、系外の他の熱需要先へ蒸気
を供給すべく補給水を投入でき、また、その補給水の増
旭による前段節炭器の給水温度低下は、その前段節炭器
に接続する前段給水ラインと独立した後段節炭器に接続
する再循環ラインに通る給水を再循環させておくため、
給水タンク内の給水温度が高められることにより防止で
き、ボイラ発生蒸気量を高く確保できる。
In addition, when the refrigerator in the system, which has a large heat load as one of the heat demand destinations, becomes partially loaded, makeup water can be injected to supply steam to other heat demand destinations outside the system. The temperature of the water supply to the front-stage economizer decreases due to the increase and rise of water, because the water that passes through the front-stage water supply line connected to the front-stage economizer and the independent recirculation line connected to the rear-stage economizer is recirculated.
This can be prevented by increasing the temperature of the water supply in the water supply tank, ensuring a high amount of steam generated by the boiler.

しかも、蒸気・温水等の熱需要が少ない場合は、ボイラ
バイパスラインでガスタービン排気を一部放出し、ボイ
ラへは必要量のみ投入することにより、不必要な蒸気を
発生しなくて済むため補給水の節約が図れる。
Moreover, when the demand for heat such as steam and hot water is low, part of the gas turbine exhaust gas is discharged through the boiler bypass line and only the required amount is input to the boiler, thereby eliminating the need to generate unnecessary steam and replenishing it. You can save water.

実施例 以下、第1〜12図を参照して本発明による実施例にっ
て説明すると、第1図は排熱回収ボイラ、給水タンクま
わり及び系外にある熱需要先の基本的な系統を示してお
り、ボイラlの有する蒸発器laと組をなし給水タンク
3から伸びる前段給水ライン3aに接続した前段節炭器
1bの排ガス下流側は、その前段給水ラインから分岐さ
れた後段給水ライン3bを混合器8を介して後段節炭器
IC入口に接続している。
EXAMPLE Hereinafter, an example of the present invention will be explained with reference to FIGS. 1 to 12. FIG. 1 shows the basic system of the waste heat recovery boiler, the area around the water supply tank, and the heat demand outside the system. The downstream side of the exhaust gas of the front-stage economizer 1b connected to the front-stage water supply line 3a that is paired with the evaporator la of the boiler l and extends from the water supply tank 3 is connected to the rear-stage water supply line 3b branched from the front-stage water supply line. is connected to the inlet of the latter-stage economizer IC via the mixer 8.

そして、後段節炭器IC出口と給水タンク3との間には
給水タンク温調弁Ciを途中に設けた再循環ライン9を
接続して前段節炭器1cと独立させて配設し、更にこの
再循環ラインを前段給水ライン3aに仕切弁V、を介し
て連結している。
Then, a recirculation line 9 with a water tank temperature control valve Ci installed in the middle is connected between the outlet of the rear stage economizer IC and the water supply tank 3, and is arranged independently from the front stage energy saver 1c. This recirculation line is connected to the pre-stage water supply line 3a via a gate valve V.

また、後段節炭器用給水温度調整弁C!を途中に設けた
補給水ライン5を混合器8に接続し、この補給水ライン
の途中からは水位調整弁Csを途中に設けた給水タンク
に伸びる水位調整ライン5aが分岐されている。
In addition, the water supply temperature adjustment valve C for the rear stage energy saver! A make-up water line 5 with a water level adjustment valve Cs provided in the middle is connected to the mixer 8, and a water level adjustment line 5a is branched from the middle of the make-up water line to a water tank with a water level adjustment valve Cs in the middle.

一方、ガスタービン2のボイラ1人口側排気ライン10
aとボイラl出口煙道fobとの間には、バイパス人口
ダンパ弁DIを途中に設けたボイラバイパスライン10
を連結すると共に、排気ライン10a及び煙道10b夫
々にボイラ入口ダンパ弁り、及びボイラ出口ダンパ弁り
、を配設している。
On the other hand, the boiler 1 population side exhaust line 10 of the gas turbine 2
A boiler bypass line 10 is provided with a bypass artificial damper valve DI in the middle between a and the boiler l outlet flue fob.
In addition, a boiler inlet damper valve and a boiler outlet damper valve are arranged in the exhaust line 10a and the flue 10b, respectively.

なお、図中、11は(プロセス)温水ラインを示し、そ
の他制部系の諸弁として、C4はボイラ水位調整弁、C
,は冷凍機蒸気流量調整弁及びC6は冷凍機蒸気遮断弁
、そして開閉弁として、■、は前段節炭器給水弁、V、
は後段節炭器給水弁、■4は水位調整用給水弁、V、は
混合器用給水弁、■、はプロセス温水給水弁及び、■、
はボイラ止弁である。
In the figure, 11 indicates the (process) hot water line, and other control system valves include C4, boiler water level adjustment valve, and C4.
, is a refrigerator steam flow rate adjustment valve; C6 is a refrigerator steam cutoff valve;
is the water supply valve for the rear stage energy saver, ■4 is the water supply valve for water level adjustment, V is the water supply valve for the mixer, ■ is the process hot water supply valve, and ■,
is the boiler stop valve.

次に、その作用について説明する。Next, its effect will be explained.

項目(1) まず、後段節炭器1cにてガスタービン排気を約140
℃から更に100℃の低温に至るまで熱回収をするため
に、第2〜4図を基に説明すると、第2図は蒸発器1a
と共に前段節炭器1bを単独で(後段節炭器1cは休止
)、ガスタービン排気熱を回収し、発生した蒸気を全量
、冷凍機6用蒸気に消費する場合を示し、第3図は蒸発
器1a、前段節炭器tbと独立して後段節炭器1cを使
用し、系内及び系外全での熱需要先7で消費する場合を
示し、第4図は蒸発器1a、前段節炭器1b及び後段節
炭器1cの全伝熱管をシリーズにして使用し、熱需要先
7が主にプロセス蒸気に消費する場合を示しており、給
水ライン3a、3bの接続は熱需要先7の使用内容によ
り適宜選択するものとする。実用上は夏季は第3図、冬
季は第4図の如きシステムが適当である。
Item (1) First, the gas turbine exhaust gas is reduced to approximately 140
In order to recover heat from 100°C to a low temperature of 100°C, an explanation will be given based on Figures 2 to 4. Figure 2 shows the evaporator 1a.
3 shows a case where the front-stage economizer 1b is used alone (the latter-stage economizer 1c is stopped), the gas turbine exhaust heat is recovered, and the entire amount of generated steam is consumed as steam for the refrigerator 6. Figure 4 shows the case where the post-stage economizer 1c is used independently of the evaporator 1a and the pre-stage economizer tb, and the heat is consumed by the heat demand destination 7 both inside and outside the system. The case is shown in which all the heat transfer tubes of the coalizer 1b and the post-stage economizer 1c are used in series, and the heat demand destination 7 mainly consumes process steam, and the water supply lines 3a and 3b are connected to the heat demand destination 7. The selection shall be made as appropriate depending on the usage. Practically speaking, a system as shown in Fig. 3 for summer and Fig. 4 for winter is appropriate.

なお、給水ライン3a、3bの切り替え弁V、、 V、
In addition, the switching valves V, V, of the water supply lines 3a, 3b,
.

V、を手動弁としているが頻繁に操作するときや遠隔操
作の場合は自動弁としてももちろん良い。
Although V is used as a manual valve, it is of course possible to use an automatic valve if the valve is operated frequently or remotely.

以上の内容をまとめると第1表のようになる。The above contents can be summarized as shown in Table 1.

まず、第2図に示す操作において、仕切弁VI%後段節
炭器給水弁V、の他諸弁C,,C,、v、、 v、を閉
止し、節炭器1b、Icは縁切りすることにより、発生
蒸気が蒸発器1aから蒸気ライン4を介して冷凍機6に
入り、戻り水と°なって給水戻りライン6aを経て給水
タンク3内に導入し、さらに前段給水ライン3aを介し
て前段節炭器1bに戻され、再び以上のライン(以下、
循環■と称する)を循環することとなる。この場合、第
5図に示すように冷凍機6からの戻り水(ドレン水)が
給水タンク3内では例えば95℃前後の温度となり、こ
の95℃程度の給水設定温度においては、ガスタービン
排気が約140℃の温度まで熱回収し得る、これはガス
タービン2、ボイラ1及び冷凍機6のいずれも設計点(
Base Full)の場合にのみ成立する基本系統で
ある。
First, in the operation shown in Fig. 2, the sluice valve VI% subsequent stage energy saver water supply valve V and other valves C, , C, , v, , v are closed, and the energy savers 1b and Ic are cut off. As a result, the generated steam enters the refrigerator 6 from the evaporator 1a via the steam line 4, becomes return water, is introduced into the water supply tank 3 via the water supply return line 6a, and is further introduced into the water supply tank 3 via the pre-stage water supply line 3a. It is returned to the pre-stage economizer 1b, and the above line (hereinafter referred to as
(referred to as circulation ■). In this case, as shown in Fig. 5, the return water (drain water) from the refrigerator 6 has a temperature of around 95°C in the water supply tank 3, and at this set water supply temperature of about 95°C, the gas turbine exhaust gas Heat can be recovered up to a temperature of approximately 140°C, which is the design point (
This is a basic system that is established only in the case of (Base Full).

従って、例えば都市ガスを基調に灯・軽油を混焼させる
Dual Fuelを使用する場合には硫酸腐食防止の
観点から、このシステムで運転する。ただし、この段階
までは、前述の如き欠点を回避するまでには至らない。
Therefore, for example, when using a dual fuel system that co-combusts kerosene and light oil based on city gas, this system is used to prevent sulfuric acid corrosion. However, up to this stage, the above-mentioned drawbacks cannot be avoided.

次に、第3図に示す操作において、仕切弁vlは閉止し
、後段節炭器給水弁Vs他諸弁Ct、 C,、V、。
Next, in the operation shown in FIG. 3, the gate valve vl is closed, and the subsequent stage economizer water supply valve Vs and other valves Ct, C,, V, are closed.

■、を開弁じ、前段及び後段節炭器1b、Iaが夫々独
立することにより、前記第2図の前段節炭器tbにおけ
る戻り水の循環Iとは別に、当初、60℃前後の給水を
後段節炭器1cに通して約100℃前後の温水に加熱し
た後、再循環ライン9を介して給水タンク3に導入し、
前段給水ライン3aから分岐した後段給水ライン3bを
経て後段節綬器1cに戻し、再び以上のライン(以下、
循環■と称する)を循環させることとなる。
(2) By opening the valve and making the front-stage and rear-stage economizers 1b and Ia independent, the supply water at around 60°C is initially After heating the water to around 100°C through the latter stage economizer 1c, the water is introduced into the water supply tank 3 via the recirculation line 9,
The water supply line 3b branches from the water supply line 3a in the previous stage, returns to the water pipe 1c in the latter stage, and the above line (hereinafter referred to as
(referred to as circulation ■).

そして、再循環をくり返すうちに、給水タンクル3内の
温度を約90〜95℃に保つようにし、一方、後段節炭
器1c入口の給水温度60℃においては、ガスタービン
排気が約100℃の温度まで熱回収が可能となる。この
場合、前記第1表に掲げた冷凍機6を含む蒸気、温水の
熱需要先7全てに部分負荷又は全負荷がかかるときに適
用されるシステムである。
As the recirculation is repeated, the temperature inside the water supply tank 3 is maintained at approximately 90 to 95°C. On the other hand, when the water supply temperature at the inlet of the post-stage economizer 1c is 60°C, the gas turbine exhaust temperature is maintained at approximately 100°C. It is possible to recover heat up to a temperature of . In this case, the system is applied when a partial load or full load is applied to all of the steam and hot water heat demand destinations 7 including the refrigerator 6 listed in Table 1 above.

従って、第6図に示すように後段節炭器1 ’cでのガ
スタービン排気からの吸熱量Qは、補給水ライン5から
混合器8を経て給水が常に後段節炭器1c側に供給され
(循環■)、前段節炭器1bの蒸気発生系統、つまり循
環■と無関係に確保できるため制御し易い。
Therefore, as shown in FIG. 6, the amount of heat Q absorbed from the gas turbine exhaust gas in the post-stage economizer 1'c is determined by the fact that water is always supplied to the post-coal economizer 1c from the make-up water line 5 through the mixer 8. (Circulation (2)) is easy to control because it can be ensured independently of the steam generation system of the pre-stage economizer 1b, that is, the circulation (2).

そして、図中、後段節炭器1cにおけるガスタービン排
気100℃までの1回収熱量Qが、冷凍機ドレン水(戻
り水)の系内加熱量q、と蒸気(復水)や温度が消費さ
れて不足する戻り水相当の補給水の系外加熱量q、が循
環■と無関係に最大限運用された場合、つまり Q =
ql+ Qtのときシステム効率を最大にできる。
In the figure, the amount of heat Q recovered per gas turbine exhaust gas up to 100°C in the post-stage economizer 1c is the amount of heat Q in the system of the refrigerator drain water (return water), and the steam (condensate) and temperature are consumed. If the extra-system heating amount q of make-up water equivalent to the insufficient return water is operated to the maximum regardless of circulation ■, that is, Q =
System efficiency can be maximized when ql+Qt.

ここで、このシステムにおける各流体の温度ノー例を第
2表にまとめる。
Here, Table 2 summarizes temperature examples of each fluid in this system.

第  2  表 そこで、蒸発器1aで所定圧力(例えば9 Ky/cm
″9)となるように、前段給水ライン3aの途中に設け
た給水ポンプ3Cで昇圧した給水は、前段及び後段節炭
器1b、lc夫々へ供給・分配する。
Table 2 Therefore, the predetermined pressure (for example, 9 Ky/cm
9), the water whose pressure is increased by the water supply pump 3C provided in the middle of the front-stage water supply line 3a is supplied and distributed to the front-stage and rear-stage energy savers 1b and lc, respectively.

そして、後段節炭器1cへの給水に際しては、混合器8
内で予め補給水と混合して前述の如き60℃に調整して
いるが、後段節炭器給水温調弁C2による補給水ライン
5からの補給水量が不十分な場合には、      −
−゛ この補給水ライン5と分岐した水位調整ライン5aの給
水タンク水位調整弁C5にて給水タンク水位を調整する
ことで補う。後段節炭器1c出日水は約95℃まで排ガ
スにより昇温し、給水タンク3に再循環させる。この温
水は必要に応じて給湯用温水、給水タンク加熱水等に割
当て使用する。
When supplying water to the latter stage energy saver 1c, the mixer 8
Although the temperature is adjusted to 60°C as described above by mixing it with make-up water in advance in the tank, if the amount of make-up water from the make-up water line 5 by the post-stage coal saver feed water temperature control valve C2 is insufficient, -
- Supplement by adjusting the water level of the water tank with the water tank water level adjustment valve C5 of the water level adjustment line 5a branched from this make-up water line 5. The temperature of the water in the second-stage energy saver 1c is raised to about 95° C. by the exhaust gas, and then recirculated to the water supply tank 3. This hot water is allocated and used as hot water for hot water supply, water tank heating water, etc. as needed.

また、別途、給水タンク3から(プロセス)aL水シラ
イン11通してプロセス温水を供給することも可能であ
る。
It is also possible to separately supply process hot water from the water supply tank 3 through the (process) aL water cylinder line 11.

また、発生した蒸気と循環I、Hにおける循環水(戻り
水)との関係を、冷凍機6の場合を例に取り第3表にま
とめる。
Further, the relationship between the generated steam and the circulating water (return water) in the circulations I and H is summarized in Table 3, taking the case of the refrigerator 6 as an example.

−区 一方、第4図に示す操作において、仕切弁V9、後段節
炭器給水弁V、を開弁の他、諸弁Cm、 Vi又はCa
+ v、のうち一方を開弁、そして前段節炭器給水弁V
、の他v6を閉止し、また本システムが主に冬季時に実
施されるため冷凍機まわりの制御弁cl、 Csも閉止
することにより、蒸発器1a、前段節炭器1b及び後段
節炭器1cの全伝熱管をシリーズに連結する。
- On the other hand, in the operation shown in FIG.
+ V, open one of them, and open the front stage energy saver water supply valve V.
In addition, since this system is mainly implemented in winter, the control valves cl and Cs around the refrigerator are also closed. Connect all heat exchanger tubes in series.

この場合、第1図に示すように後段節炭器1cでのガス
タービン排気からの吸熱量Q′を消費する、後段節炭器
1cから再循環ライン9(循環■)を介して給水タンク
3へ流れる戻り水の系内加熱It q t ’ と、冷
凍機6及びプロセス温水(Va開閉止の閉止時に系外に
て消費されて不足する戻り水相当の補給水の系外供給加
熱量q、′とのうち、前者の戻り水の系内加熱量Q+’
  が循環■を再循環するため、前段節炭器1bの蒸気
発生系統、つまり蒸気ライン4から系外への循環(図中
、循環■で示す)と無関係に確保できる。
In this case, as shown in FIG. 1, the water supply tank 3 is routed from the post-stage economizer 1c via the recirculation line 9 (circulation ■), which consumes the amount of heat Q' absorbed from the gas turbine exhaust gas in the post-stage economizer 1c. In-system heating It q t ' of the return water flowing to the refrigerator 6 and process hot water (Va, the external heating amount q of make-up water equivalent to the insufficient return water that is consumed outside the system when closing/closing Va), ′, the amount of heating in the system of the former return water Q+′
Since the circulation (■) is recirculated, it can be ensured independently of the steam generation system of the pre-stage economizer 1b, that is, the circulation from the steam line 4 to the outside of the system (indicated by the circulation (■ in the figure)).

そして、前記諸弁の開閉操作において補給水はその補給
水温度の設定により水位調整ライン5aを通して給水タ
ンク3へ、又は補給水ライン5を通して混合器8へいず
れも導入可能で、給水タンク3又は混合器8にて補給水
の加熱が行なわれることとなる。
During the opening and closing operations of the various valves, make-up water can be introduced into the water tank 3 through the water level adjustment line 5a or into the mixer 8 through the make-up water line 5, depending on the setting of the make-up water temperature. The make-up water will be heated in the container 8.

即ち、補給水温度は第4表のように調整される。That is, the makeup water temperature is adjusted as shown in Table 4.

第  4  表 項目(2) 次に、前記項目(1)の他の実施例について説明すると
、第8図に特に蒸気・給水系の温度調節例を示しており
、項目(1)では飽和蒸気を使用するシステムを引用し
たが、本発明によれば、これに限らず蒸発器1aの上流
に過熱器1dとその過熱器に温調弁C9を配設して過熱
蒸気を使用するシステムにも適用できることは云うまで
もない。
Table 4 Item (2) Next, to explain another example of the above item (1), Fig. 8 shows an example of temperature control of the steam/water supply system. Although the system used has been cited, the present invention is not limited to this, and can also be applied to a system that uses superheated steam by disposing a superheater 1d upstream of the evaporator 1a and a temperature control valve C9 in the superheater. It goes without saying that it can be done.

また、ボイラlは煙管式・水管式(脱気器内袋打・無)
を含めあらゆる形式のものを対象とすることができる。
In addition, the boiler L is smoke tube type or water tube type (deaerator internally sealed or not)
It can be of any format, including

後段節炭器1c入口蒸気の(熱量。(Calorific value of the steam at the inlet of the second stage economizer 1c.

温度)の変化に対して常にその後段節炭器出口水を所定
値(例えば95℃)に制御するためには後段節炭器バイ
パス温調弁C6が有効である。なお、12aは第1助燃
バーナ、12bは第2助燃バーナである。
The post-coal economizer bypass temperature control valve C6 is effective in always controlling the post-coal economizer outlet water to a predetermined value (for example, 95° C.) in response to changes in temperature. Note that 12a is a first auxiliary combustion burner, and 12b is a second auxiliary combustion burner.

項目(3) 一方、蒸気や温水等の熱需要が少ない場合は、ボイラバ
イパスラインlOでガスタービン排気を一部放出する操
作を行なう。第9及び10図を基に説明すると、ボイラ
1の蒸気発生量の制御に関して、第9図は系外の熱需要
先7に対する消費蒸気が系内の余剰蒸気を全て消費する
場合の制御を示し、第10図は系外の消費蒸気がその都
度変化し、蒸気ヘッダ圧力が一定となるように圧力変動
に対応して蒸気の供給量を増減する場合の制御を示して
おり、夫々蒸気圧調弁C8及び放風弁CIOを蒸気ライ
ン4上に設けたものである。そして前者において、ボイ
ラ1ではガスタービン2負荷に見合った最大蒸気を成り
ゆきで発生すれば良いため、蒸気圧調弁C8は元圧正調
とし、放風弁CIOはボイラ1起動初期の蒸気条件確立
までの放風を行なうためON・OFF弁とする。なお、
手動弁としても可能である。
Item (3) On the other hand, when the demand for heat such as steam or hot water is low, an operation is performed to release part of the gas turbine exhaust gas through the boiler bypass line IO. Explaining based on FIGS. 9 and 10, regarding the control of the steam generation amount of the boiler 1, FIG. 9 shows control when the consumed steam for the heat demand 7 outside the system consumes all the surplus steam inside the system. , Figure 10 shows control when the amount of steam consumed outside the system changes each time and the amount of steam supplied is increased or decreased in response to pressure fluctuations so that the steam header pressure remains constant. A valve C8 and a blowoff valve CIO are provided on the steam line 4. In the former case, the boiler 1 only needs to generate the maximum steam corresponding to the gas turbine 2 load, so the steam pressure control valve C8 is used to properly adjust the source pressure, and the blow-off valve CIO is operated until the steam conditions are established at the beginning of boiler 1 startup. An ON/OFF valve is used to release air. In addition,
Also possible as a manual valve.

一方、後者において、蒸気正調は出口正調(下流側)と
し、放風はドラム工高にて行なうよう制御する。また、
蒸気元圧が所定値より高くなる場合には制御装置13の
制御にてバイパス人口ダンパ弁り、を開弁しボイラ入口
ダンパ弁D!を閉止するリモート・マニュアル操作を行
なう。
On the other hand, in the latter case, the steam is controlled properly at the outlet (downstream side), and the air discharge is controlled to occur at the drum height. Also,
When the steam source pressure becomes higher than a predetermined value, the bypass artificial damper valve is opened under the control of the control device 13, and the boiler inlet damper valve D! Perform remote manual operation to close.

そして、その制御の順序としては(イ)ガスタービン2
負荷を電力需要に設定し、(ロ)ガスタービン2排気熱
量が蒸気需要より高い場合、制御装置13によりボイラ
lへの流入熱量を制限して下げることとする。
The order of control is (a) gas turbine 2
The load is set to electric power demand, and (b) when the exhaust heat amount of the gas turbine 2 is higher than the steam demand, the control device 13 limits and lowers the amount of heat flowing into the boiler I.

更に前述の如き前者、後者の共通の機能として、制御装
置13にはガスタービン2起動をり、を全開にし、制御
弁り、、 D、を全閉で行ない、ガスタービン2が所定
負荷に安定した後に、D3を全開にし、D。
Furthermore, as a common function of the former and the latter as mentioned above, the control device 13 is configured to start the gas turbine 2, fully open the gas turbine 2, fully open the control valves D, and fully close the gas turbine 2 to stabilize the gas turbine 2 at a predetermined load. After that, fully open D3 and D.

を閉止、D、を開弁とする操作を行なうためのリモート
・マニュアル操作及びシーケンサ(図示せず)等を備え
る。
It is equipped with a remote manual operation, a sequencer (not shown), etc. for closing D and opening D.

また、バイパス入口ダンパ弁り、及びボイラ入口ダンパ
弁り、は自動弁であるが、(イ)個別操作弁とし、電気
的に連動させることや、(ロ)リンクで結合し、機構的
にも連結させること等の対策を施す。
In addition, the bypass inlet damper valve and the boiler inlet damper valve are automatic valves, but (a) they can be individually operated valves and electrically interlocked, or (b) they can be connected by links, so that they can be mechanically improved. Take measures such as connecting them.

一方、ボイラ出口ダンパ弁り、は自動弁でも手動弁のど
ちらでも良く、本質的には全閉(遮蔽)が確保できれば
良い。
On the other hand, the boiler outlet damper valve may be either an automatic valve or a manual valve, and essentially only needs to ensure complete closure (shielding).

項目(4) 更に、前記項目(3)の他の実施例について説明すると
、第11図に示すようにボイラバイパス人口弁D1及び
ボイラ入口ダンパ弁り、の代わりに、弁体1枚からなる
ダンパ弁D4を設けて、これにてガスタービン排気の流
量配分の機能を持たせることもできる。
Item (4) Furthermore, to explain another embodiment of item (3), as shown in FIG. 11, a damper consisting of one valve body is used instead of the boiler bypass artificial valve D1 and the boiler inlet damper valve. It is also possible to provide a valve D4 to have a function of distributing the flow rate of the gas turbine exhaust gas.

2  項目(5) このような構成の下で適用される実際のシステム例につ
いて述べると、第12図に熱需要先の詳細を示しており
、冷凍機6の他、14はプロセス、14aはプロセスボ
イラ、15aは蒸気暖房(ファンコイルユニット)、t
sbは温水暖房、そして16aは蒸気熱交及びtabは
給湯熱交であり、14bはプロセス蒸気用ヘッダ、14
cはプロセス環水用ヘッダ、そして17aは(コジェネ
)温水用ヘッダ、及び17bは(コジェネ)環水用ヘッ
ダであり、特にプロセス蒸気ヘッダ14bは蒸気正調弁
C8を介して蒸気ライン4下流に接続している。これら
冷凍機6、暖房15a、 15b 1蒸気16aや給湯
16b等の各構成機器が蒸気正調弁C8上流側に配列さ
れているため、これらの時々刻々の消費量をボイラ発生
蒸気から差れ し引いた残余蒸気(温水)がC,下流側に設置さ姑プロ
セス側への所要量と合致するように、そのボイラ発生蒸
気を加減制御することになる。
2 Item (5) Regarding an actual system example applied under such a configuration, Fig. 12 shows the details of the heat demand destination, in addition to the refrigerator 6, 14 is a process, and 14a is a process Boiler, 15a is steam heating (fan coil unit), t
sb is a hot water heater, 16a is a steam heat exchanger, tab is a hot water heat exchanger, 14b is a process steam header, 14
c is a header for process recycled water, 17a is a (cogeneration) hot water header, and 17b is a header for (cogeneration) recycled water. In particular, the process steam header 14b is connected to the downstream side of the steam line 4 via a steam control valve C8. are doing. These components such as the refrigerator 6, heaters 15a and 15b, steam 16a and hot water supply 16b are arranged upstream of the steam control valve C8, so their momentary consumption is subtracted from the steam generated by the boiler. The steam generated by the boiler is controlled so that the remaining steam (hot water) matches the amount required for the downstream process.

そして、主に蒸気と温水の夫々の流れについて簡単に説
明すると、まず蒸気の使用において、蒸気は系内で冷凍
機6用に使用し、系外では蒸気ライン4を経てプロセス
14、暖房15a、 15b及び蒸気 −に使用する。
To briefly explain the respective flows of steam and hot water, first, in the use of steam, the steam is used within the system for the refrigerator 6, and outside the system, it passes through the steam line 4 to the process 14, heating 15a, 15b and steam.

このとき、 (イ)′プロセス蒸気は他のプロセスボイラ14aの蒸
気とともに一旦蒸気ヘッダ14bに集めプロセス14へ
払い出す。プロセスでは熱回収の他、一部蒸気を消耗し
、残りを遣水として遣水ヘッダ14cに戻す。更にこの
環水(コジェネ系分)を環水ヘッダ17bに戻し、また
環水消耗分、つまりプロセス蒸気ヘッダ14bに送り出
された蒸気とプロセス環水ヘッダ14cへの戻り蒸気(
温水)との差については系内に補給水を供給する。
At this time, (a)' Process steam is once collected in the steam header 14b together with steam from other process boilers 14a and discharged to the process 14. In the process, in addition to heat recovery, a portion of the steam is consumed and the rest is returned to the water supply header 14c as water supply. Furthermore, this recycled water (cogeneration system component) is returned to the recycled water header 17b, and the consumed recycled water, that is, the steam sent to the process steam header 14b and the return steam to the process steam header 14c (
Supply water into the system for the difference between hot water and hot water.

(ロ)暖房用蒸気はファンコイルユニット15a ニ供
給し、ドレン水をホットウェルタンク (図示せず)を
介して遣水ヘッダ17bに導入する。
(b) Heating steam is supplied to the fan coil unit 15a, and drain water is introduced to the water supply header 17b via a hot well tank (not shown).

(ハ)給湯用蒸気はまず蒸気熱交16aで温水を確保し
、ドレン水を還水ヘッダ17bに導入する。
(c) Hot water for hot water supply is first secured in the steam heat exchanger 16a, and drain water is introduced into the return water header 17b.

次に、温水の使用において、系内からの温水供給すなわ
ち、給湯ラインlla及びプロセス温水ライン11での
給湯、プロセス温水が蒸気熱交16aで得られた温水と
共に温水ヘッダ17aにまとめた後、(イ)温水ヘッダ
17aからの温水を加熱源として給湯熱交tabで上水
を昇温してこれを給湯に使用し、消費されずに冷却した
給湯は給湯熱交16b出口から蒸気熱交16aに再循環
する。
Next, in the use of hot water, hot water is supplied from within the system, that is, hot water is supplied from the hot water supply line lla and the process hot water line 11, and after the process hot water is collected together with the hot water obtained in the steam heat exchanger 16a in the hot water header 17a, ( b) The hot water from the hot water header 17a is used as a heating source to raise the temperature of tap water in the hot water heat exchanger tab and is used for hot water supply. Recirculate.

(ロ)そして、温水ヘッダ17bで低温化した温水は、
温水暖房15bを通過して遣水ヘッダ17bに回収する
(b) Then, the hot water whose temperature has been lowered by the hot water header 17b is
The water passes through the hot water heater 15b and is collected into the water supply header 17b.

(ハ)その後、遣水ヘッダ17b内の遣水は、給水戻り
水ライン7aを通して戻り水として給水タンク3内に導
入され、再循環させる処理を施す。
(c) Thereafter, the water in the water supply header 17b is introduced into the water supply tank 3 as return water through the supply water return water line 7a, and is subjected to a process of being recirculated.

最後に、以上述べた本発明によるガスタービン排熱回収
ボイラを含めた全体的なコジェネレーションシステムの
一般計例を第13図に示しており、この場合の主な仕様
を第5表にまとめる。
Finally, a general example of the overall cogeneration system including the gas turbine exhaust heat recovery boiler according to the present invention described above is shown in FIG. 13, and the main specifications in this case are summarized in Table 5.

第  5  表 なお、図中5aは軟水装置、5bは補給水槽、5cは補
給水供給ポンプ、18はシールガス放出管、19はダン
プ蒸気放出消音器、20はアキュムレータ及び21は燃
料ガス圧縮機であり、6aは冷水供給ポンプ、6bは冷
却水供給ポンプ、llbはプロセス給水ポンプ、モして
22は煙突、及び23は冷却塔である。
Table 5 In the figure, 5a is a water softener, 5b is a makeup water tank, 5c is a makeup water supply pump, 18 is a seal gas discharge pipe, 19 is a dump steam discharge silencer, 20 is an accumulator, and 21 is a fuel gas compressor. 6a is a cold water supply pump, 6b is a cooling water supply pump, llb is a process water supply pump, 22 is a chimney, and 23 is a cooling tower.

発明の効果 以上詳述したように、本発明によれば、(1)後段節炭
器出口水温例えば(95℃)を加熱源として給水タンク
水温を一定値に保つことで、ボイラでの蒸気発生量およ
び熱回収量を高く維持できる。
Effects of the Invention As detailed above, according to the present invention, (1) steam generation in the boiler is improved by keeping the water temperature of the water supply tank at a constant value using the water temperature at the outlet of the downstream economizer, for example (95°C) as a heating source; It is possible to maintain a high amount of heat recovery and heat recovery.

(2)給水タンク内水温を冷凍機使用時は常に約95℃
に、冷凍機非使用時は例えば約60℃に制御する。また
冷凍機使用時は後段節炭器入口で給水温度を同様な温度
60℃に制御することでボイラ蒸発量、熱回収量が高く
得られる。冷凍機非使用時は前段及び後段節炭器間は連
結しており節炭器の総伝熱面積を大きく確保している。
(2) The water temperature in the water tank is always approximately 95℃ when using a refrigerator.
When the refrigerator is not in use, the temperature is controlled at, for example, about 60°C. Furthermore, when the refrigerator is in use, the boiler evaporation amount and heat recovery amount can be increased by controlling the feed water temperature to a similar temperature of 60° C. at the inlet of the latter-stage economizer. When the refrigerator is not in use, the front and rear economizers are connected, ensuring a large total heat transfer area for the economizers.

(3)ボイラバイパスラインを設けることにより、各ダ
ンパ弁の開度に応じて蒸気供給量をO〜ioo%の全域
で自由に調整出来、補給水量も必要量のみに制御できる
(3) By providing a boiler bypass line, the amount of steam supplied can be freely adjusted in the range of 0 to ioo% according to the opening degree of each damper valve, and the amount of make-up water can also be controlled to only the necessary amount.

(4)また、Dual Fuel即ち、都市ガスに灯油
・軽油等を含んだ燃料がガスタービンに使用された場合
に、若干硫黄を含むので、硫酸腐食の点から前段節炭器
を単独での運転(第2図参照)、無硫黄の単一燃料がガ
スタービンに使用された場合に、ガスタービン排気熱量
の効率的な回収の点から前段節炭器及び後段節炭器を夫
々独立させた運転(第3図参照)、又は前段及び後段節
炭器をシリーズにした運転(第4図参照)のいずれのシ
ステムを選択し切替えるときにも、給水ライン及び循環
ライン(循環1.n)に装備する制御弁及び諸弁の簡単
な切替操作により容易に対応することができる。
(4) In addition, when Dual Fuel (that is, city gas containing kerosene, diesel oil, etc.) is used in a gas turbine, it contains some sulfur, so the front stage economizer must not be operated alone from the viewpoint of sulfuric acid corrosion. (See Figure 2) When a single sulfur-free fuel is used in a gas turbine, the front-stage economizer and the post-stage economizer are operated independently from the viewpoint of efficient recovery of gas turbine exhaust heat. (Refer to Figure 3) or operation with a series of front and rear stage economizers (Refer to Figure 4). This can be easily handled by simple switching operations of control valves and valves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるガスタービン排熱回収ボイラの一
例を示す基本構成図、第2図は前段節炭器を単独で使用
するシステムを示す構成図、第3図は前段及び後段節炭
器を夫々独立させて使用するシステムを示す構成図、第
4図は前段及び後段節炭器をシリーズにして使用するシ
ステムを示す構成図である。第5.6.7図は夫々第2
.3.4図の各システムに対応するガスタービン排気温
度−ボイラ発生蒸気・給水温度の関係を示す図でバイパ
スライン、排気ライン及び煙道に設けられるダンパ弁を
用いた蒸気発生量の制御方式を示す構成図であり、第1
1図は第9及び10図の他の実施例を示す要部構成図で
ある。第12図は熱需要先とその構成機器の一例を示す
系統図、第13図は本発明によるガスタービン排熱回収
ボイラを含むコジェネレーションシステムの一般計例を
示す全体構成図である。第14図は従来のガスタービン
排熱回収ボイラの一例を示す概略構成図である。 l・・ボイラ、1a・・蒸発器、lb・・前段節炭器、
1c・・後段節炭器、2・・ガスタービン、3・・給水
タンク、3a・・前段給水ライン、3b・・後段給水ラ
イン、4・・蒸気ライン、5・・補給水ライン、5a・
・水位調整ライン、6・・冷凍機、6a、7a・・給水
戻りライン、7・・熱需要先、8・・混合器、9・・再
循環ライン、IO・・ボイラバイパスライン、10a 
・・排気ライン、tab ・・煙道、11・・(プロセ
ス)温水ライン、vl・・仕切弁、Dl・・バイパス人
口ダンパ弁、D、・・ボイラ入口ダンパ弁、D、・・ボ
イラ出口ダンパ(ほか1名) 第2図 第63図 第4図 第6図 第11図
Fig. 1 is a basic configuration diagram showing an example of a gas turbine exhaust heat recovery boiler according to the present invention, Fig. 2 is a configuration diagram showing a system using a front-stage economizer alone, and Fig. 3 is a diagram showing a system using the front-stage and rear-stage economizers. Fig. 4 is a block diagram showing a system in which the front stage and rear stage economizers are used in series. Figures 5.6.7 are the second
.. Figure 3.4 shows the relationship between gas turbine exhaust temperature and boiler generated steam/feed water temperature for each system, and shows how to control the amount of steam generated using damper valves installed in the bypass line, exhaust line, and flue. FIG.
FIG. 1 is a main part configuration diagram showing another embodiment of FIGS. 9 and 10. FIG. 12 is a system diagram showing an example of a heat demand destination and its component equipment, and FIG. 13 is an overall configuration diagram showing a general example of a cogeneration system including a gas turbine exhaust heat recovery boiler according to the present invention. FIG. 14 is a schematic configuration diagram showing an example of a conventional gas turbine exhaust heat recovery boiler. l...Boiler, 1a...Evaporator, lb...Pre-stage economizer,
1c...Late stage energy saver, 2...Gas turbine, 3...Water supply tank, 3a...Front stage water supply line, 3b...Late stage water supply line, 4...Steam line, 5...Makeup water line, 5a...
・Water level adjustment line, 6.. Refrigerator, 6a, 7a.. Water supply return line, 7.. Heat demand destination, 8.. Mixer, 9.. Recirculation line, IO.. Boiler bypass line, 10a
...Exhaust line, tab...Flue, 11...(process) hot water line, VL...Gate valve, Dl...Bypass artificial damper valve, D,...Boiler inlet damper valve, D,...Boiler outlet damper (1 other person) Figure 2 Figure 63 Figure 4 Figure 6 Figure 11

Claims (1)

【特許請求の範囲】[Claims] ガスタービンの排熱を回収して蒸気や温水を発生させて
各蒸気ライン、温水ラインに通し、系内の冷凍機や系外
の熱需要先に使用した後、その戻り水を給水戻りライン
を介して給水タンクに導入させるようにした排熱回収ボ
イラにおいて、ボイラ蒸発器と組をなし、かつ給水タン
クに前段給水ラインを介して連結する前段節炭器の排ガ
ス下流側に、上記前段給水ラインから分岐して混合器を
途中に設ける後段給水ラインに接続し、かつ給水タンク
に再循環ラインを介して連結する後段節炭器を独立して
設け、該後段節炭器出口側の再循環ラインと前段節炭器
入口側の前段給水ラインとを仕切弁を介して連結し、上
記混合器に給水タンクに伸びる水位調整ラインから分岐
する補給水ラインを接続すると共に、ガスタービン及び
ボイラを連結する排気ラインとボイラの煙道とを連結す
るボイラバイパスラインにバイパス入口ダンパ弁を設け
、かつ上記排気ライン及び煙道夫々にボイラ入口ダンパ
弁及びボイラ出口ダンパ弁を配設してなるガスタービン
排熱回収ボイラ。
The exhaust heat of the gas turbine is recovered to generate steam and hot water, which are passed through each steam line and hot water line to be used for the chiller inside the system or for heat demand outside the system, and then the return water is passed through the water supply return line. In the exhaust heat recovery boiler, the exhaust gas is introduced into the water supply tank through the front water supply line, on the downstream side of the front stage energy saver, which is paired with the boiler evaporator and connected to the water supply tank via the front water supply line. A post-stage economizer is provided independently, which is connected to a post-stage water supply line that branches off from the mixer and is connected to the water supply tank via a recirculation line, and a recirculation line is provided on the outlet side of the post-stage economizer. and a pre-stage water supply line on the inlet side of the pre-stage economizer are connected via a gate valve, and a make-up water line branching from a water level adjustment line extending to the water supply tank is connected to the mixer, and a gas turbine and a boiler are connected. A gas turbine exhaust heat system in which a bypass inlet damper valve is provided in the boiler bypass line that connects the exhaust line and the boiler flue, and a boiler inlet damper valve and boiler outlet damper valve are provided in the exhaust line and the flue, respectively. recovery boiler.
JP62284374A 1987-11-12 1987-11-12 Gas turbine exhaust heat recovery boiler Expired - Lifetime JP2554110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62284374A JP2554110B2 (en) 1987-11-12 1987-11-12 Gas turbine exhaust heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62284374A JP2554110B2 (en) 1987-11-12 1987-11-12 Gas turbine exhaust heat recovery boiler

Publications (2)

Publication Number Publication Date
JPH01127801A true JPH01127801A (en) 1989-05-19
JP2554110B2 JP2554110B2 (en) 1996-11-13

Family

ID=17677754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62284374A Expired - Lifetime JP2554110B2 (en) 1987-11-12 1987-11-12 Gas turbine exhaust heat recovery boiler

Country Status (1)

Country Link
JP (1) JP2554110B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017025901A (en) * 2015-07-16 2017-02-02 株式会社神戸製鋼所 Thermal energy recovery device and activation method therefor
JP2021067420A (en) * 2019-10-25 2021-04-30 日鉄エンジニアリング株式会社 Exhaust heat recovery system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017025901A (en) * 2015-07-16 2017-02-02 株式会社神戸製鋼所 Thermal energy recovery device and activation method therefor
JP2021067420A (en) * 2019-10-25 2021-04-30 日鉄エンジニアリング株式会社 Exhaust heat recovery system

Also Published As

Publication number Publication date
JP2554110B2 (en) 1996-11-13

Similar Documents

Publication Publication Date Title
WO2020181677A1 (en) Flexible hybrid solar/coal-fired power generation system and operation method
CN100557306C (en) The startup method of band circulating-stove-water pump monotube boiler near steam heating boilers
CN113803706B (en) Power generation system based on hot air recycling and utilizing waste heat of tail flue gas of boiler
CN110793011A (en) Two-stage steam extraction type medium-temperature and medium-pressure waste incineration power generation system and use method thereof
CN103115377B (en) A kind of sub-control phase transformation air preheating system and air preheat method
CN201163019Y (en) System connection device of low temperature coal economizer
CN102635847B (en) Water feeding system for multiple condensing boilers
CN106765039B (en) A kind of SCR inlet flue gas water side temperature raising system and method
CN110553245A (en) System for improving wide-load operation thermal efficiency of coal-fired unit
CN108224465A (en) It is a kind of by the use of activation system draining as the device and method of steam air heater heating source
CN102494329B (en) Device for utilizing flue gas waste heat of boiler comprehensively
CN208253553U (en) A kind of system improving the wide load operation thermal efficiency of coal unit
CN201697098U (en) Outlet smoke temperature adjusting system for waste heat boiler
JPH01127801A (en) Gas turbine exhaust-heat recovery boiler
CN203784906U (en) Circulating fluidized bed boiler gas temperature regulation and control and waste-heat utilization system suitable for variable-working-condition operation
CN104676250B (en) Steam exhaust recycling and main pipe network dual-combination steam regulating system
CN206430185U (en) One kind bypass air preheater heat recovery system
CN109139153A (en) Thermal generation unit heat storage type assists peak regulation heating system and method
CN212132387U (en) Two-stage steam extraction type medium-temperature and medium-pressure waste incineration power generation system
CN211011462U (en) System for utilize condensate water to improve air heater and adjust cold and hot overgrate air temperature
CN212157106U (en) Drainage waste heat utilization equipment is started to once-through boiler
CN113864849A (en) Dry-wet state undisturbed switching system and control method suitable for supercritical unit under deep peak regulation state
CN208858422U (en) Thermal generation unit heat storage type assists peak regulation heating system
CN205957147U (en) Exhaust -heat boiler enlarges water supply system of economizer
CN203147804U (en) Multi-level controlled phase-change air preheating system