JPH01126956A - Magnetic resonance diagnostic apparatus - Google Patents

Magnetic resonance diagnostic apparatus

Info

Publication number
JPH01126956A
JPH01126956A JP62284748A JP28474887A JPH01126956A JP H01126956 A JPH01126956 A JP H01126956A JP 62284748 A JP62284748 A JP 62284748A JP 28474887 A JP28474887 A JP 28474887A JP H01126956 A JPH01126956 A JP H01126956A
Authority
JP
Japan
Prior art keywords
signal
magnetic resonance
conductor
temp
diagnostic apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62284748A
Other languages
Japanese (ja)
Inventor
Masaaki Hino
日野 正章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62284748A priority Critical patent/JPH01126956A/en
Publication of JPH01126956A publication Critical patent/JPH01126956A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To bring resistance to zero, to eliminate the offset variation of a signal by voltage drop, to accurately measure the signal and to collect high accurate data, by constituting the system earth of each unit machinery constituting a system of a superconductive material and performing operation in a superconductive state. CONSTITUTION:A conductor 13 is cooled by a high temp. cooling medium 14 to hold a superconductive state. The connection part of a system earth SE', for example, the unit A thereof and the ground is formed using a conductor 16 such as a usual copper wire but the connection points 17a, 17b of the conductors 16, 13 are constituted so as to be almost cooled to the critical temp. of the conductor 13. Since said critical temp. is the temp. of liquid nitrogen being a high temp. cooling medium, the connection points 17a, 17b are easily cooled to the almost critical temp. unlike a material showing a superconductive state by liquid helium. By the above-mentioned constitution, the resistance value of the system earth SE' becomes zero and the unit A shows no offset variation of a signal by voltage drop and the signal can be accurately measured.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、静磁場中に配置した被検者に対して所定の励
起・検出手順に従りて傾斜磁場、励起用高周波磁場を印
加することによシ、前記被検者の特定部位に磁気共鳴現
象を生じせしめ、その励起した磁気共鳴信号を検出して
信号処理を施すことによシ前記被検者の特定部位の解剖
学的情報や質的情報をイメージングする磁気共鳴診断装
置に関し、特に、高精度のデータを収集可能とした磁気
共鳴診断装置に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention provides a gradient magnetic field for excitation, which is applied to a subject placed in a static magnetic field according to a predetermined excitation/detection procedure. By applying a high frequency magnetic field, a magnetic resonance phenomenon is caused in a specific part of the subject, and the excited magnetic resonance signal is detected and signal processed. The present invention relates to a magnetic resonance diagnostic apparatus that images anatomical information and qualitative information, and particularly relates to a magnetic resonance diagnostic apparatus that can collect highly accurate data.

(従来の技術) この種の磁気共鳴診断装置の一般的な構成を第2図を参
照して説明する。すなわち、第2図において、本体をな
すマグネットアセッングリMムは、超電導又は常電導方
式の静磁場磁石1、X軸。
(Prior Art) The general configuration of this type of magnetic resonance diagnostic apparatus will be explained with reference to FIG. That is, in FIG. 2, the magnet assembly limb M forming the main body is a static magnetic field magnet 1 of a superconducting or normal conducting type, and the X-axis.

Y軸、2軸傾斜磁場コイル2.送受信コイル3を有して
いる。
Y-axis, two-axis gradient magnetic field coil2. It has a transmitting/receiving coil 3.

また、静磁場磁石1は励磁制御及び冷媒制御を含む静磁
場制御系4によシ駆動され、X軸、Y軸。
Further, the static magnetic field magnet 1 is driven by a static magnetic field control system 4 including excitation control and coolant control, and is driven by an X-axis and a Y-axis.

2軸傾斜磁場コイル2はそれぞれX軸傾斜磁場電源5、
Y軸傾斜磁場電源6.2軸傾斜磁場電源1によシ駆動さ
れ、送受信コイル3は励起に対しては送信器8によシ駆
動され且つ検出に対しては受信器9によシ躯動されるよ
うになっている。
The two-axis gradient magnetic field coils 2 each have an X-axis gradient magnetic field power supply 5,
Y-axis gradient magnetic field power supply 6. Driven by two-axis gradient magnetic field power supply 1, transmitting/receiving coil 3 is driven by transmitter 8 for excitation and by receiver 9 for detection. It is now possible to do so.

また、X軸傾斜磁場電源5、Y軸傾斜磁場電源6.2軸
傾斜磁場電源1、及び送信器8はシーケンサ10によシ
所定のパルスシーケンスK i! ?て駆動されるよう
になりている。コンピュータシステム11はシーケンサ
JOを駆動制御すると共に受信器9から得られる磁気共
鳴信号を導入して信号処理を施すことKよシ、あるスラ
イス部位の断層像を生成し、光示系12にてモニタ表示
するようにしている。
Further, the X-axis gradient magnetic field power supply 5, the Y-axis gradient magnetic field power supply 6, the two-axis gradient magnetic field power supply 1, and the transmitter 8 are controlled by the sequencer 10 to generate a predetermined pulse sequence K i! ? It is designed to be driven by The computer system 11 drives and controls the sequencer JO, introduces the magnetic resonance signal obtained from the receiver 9, performs signal processing, and generates a tomographic image of a certain slice region, which is monitored by the optical display system 12. I am trying to display it.

ここで、アースとS/Nとの関係について説明する。す
なわち、データ収集系として受信器9やコンピュータシ
ステム11は、複数のユニットによシ構成され、これら
は相互間にシステムアースをとるようにしている。第3
図はシステムアースで接続された複数のユニット間の接
続構成を示す図である。すなわち、ユニットAとユニッ
トBとの間のアース電位を同電位にするべく銅線等の通
常の導体によシステムアースSKが取られているとする
と、銅線に含まれる抵抗分圧よる電力降下によシ、導体
wニラ)Aで観測される電位(例えば受信信号) Va
は、常にRa Ia+R(Ia+Ib )のオフセット
分を含んだものとなってしまう。
Here, the relationship between ground and S/N will be explained. That is, the receiver 9 and computer system 11 as a data collection system are composed of a plurality of units, and the system is grounded between them. Third
The figure is a diagram showing a connection configuration between a plurality of units connected by system ground. In other words, if the system ground SK is taken using a normal conductor such as a copper wire in order to make the ground potential between unit A and unit B the same, the power drop due to the partial voltage resistance contained in the copper wire The potential observed at A (for example, the received signal) Va
always includes the offset of Ra Ia+R (Ia+Ib).

ただし、RaはシステムアースSHのユニッ)A側にお
ける抵抗値、Iaはその区間を流れる電流、Rh ハシ
ステムアースSEのユニットB (illにおける抵抗
値、Ibはその区間を流れる電流、Rはシステムアース
SEの大地側における抵抗値である。
However, Ra is the resistance value on the unit A side of the system earth SH, Ia is the current flowing in that section, Rh is the resistance value on the unit B (ill) of the system earth SE, Ib is the current flowing in that section, R is the system ground This is the resistance value on the earth side of SE.

以上において、 II 、 Ib等が交流成分を持って
いると、ユニットAのアース点は変動し、そもそも磁気
共鳴信号は微弱であるため正確な信号測定が不可能にな
り、S/Nの低下を招くことになった。
In the above, if II, Ib, etc. have alternating current components, the ground point of unit A will fluctuate, and since magnetic resonance signals are weak in the first place, accurate signal measurement will be impossible, resulting in a decrease in S/N. I decided to invite him.

(発明が解決しようとする問題点) このように従来の技術においては、磁気共鳴信号は微弱
であるにもかかわらずアース電位の変動に対して有効表
対処を施していないため、正確な信号測定が不可能にな
シ、S/Nの低下を招いている、という問題点がありた
(Problem to be Solved by the Invention) In this way, in the conventional technology, although the magnetic resonance signal is weak, effective countermeasures are not taken against fluctuations in the ground potential, so it is difficult to measure the signal accurately. However, there was a problem in that it was impossible to do so, and the S/N ratio was lowered.

そこで本発明の目的は、高精度のデータを収集可能とし
た磁気共鳴診断装置を提供することにある。
Therefore, an object of the present invention is to provide a magnetic resonance diagnostic apparatus that is capable of collecting highly accurate data.

[発明の構成] (問題点を解決するための手段) 本発明は上記問題点を解決し且つ目的を達成するために
次のような手段を講じた構成としている◎すなわち、本
発明は、被検体に対して磁気共鳴現象を生じさせるため
の励起系と、誘起した磁気共鳴信号を検出して信号処理
するための検出系とを備えてなる磁気共鳴診断装置にお
いて、前記系を構成する各ユニット機器のシステムアー
スヲ、超電導材料で構成し且つ超電導状態で運転する構
成としたことを%徴とする。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems and achieve the object, the present invention has a structure that takes the following means. In a magnetic resonance diagnostic apparatus comprising an excitation system for causing a magnetic resonance phenomenon in a specimen and a detection system for detecting and signal processing the induced magnetic resonance signal, each unit constituting the system The system ground of the equipment is made of superconducting material and is configured to operate in a superconducting state.

(作用) このような構成によれば、アースのための導体を超電導
材料で構成し且つ超電導状態で運転するので、抵抗(イ
ンピーダンス)は零でおシ、電圧降下による信号のオフ
セット変動は無く、正確な信号測定が可能になる。
(Function) According to this configuration, since the grounding conductor is made of a superconducting material and is operated in a superconducting state, the resistance (impedance) is zero, and there is no signal offset fluctuation due to voltage drop. Accurate signal measurements are possible.

(実施例〕 以下本発明にかかる磁気共鳴診断装置の一実施例を図面
管参照して説明する。すなわち、本実施例は、第2図に
示す装置の全体構成は同じであるが、複数のユニットに
よシ構成されるデータ収集系つまシ受信器9やコンピュ
ータシステム11のシステムアースの構成を第1図に示
す構成としている。
(Embodiment) An embodiment of the magnetic resonance diagnostic apparatus according to the present invention will be described below with reference to the drawings.In other words, this embodiment has the same overall configuration as the apparatus shown in FIG. The structure of the system ground of the data collection system receiver 9 and the computer system 11, which are composed of units, is shown in FIG.

すなわち、液体ヘリウム等の極低温冷媒よりも100に
以上の高温冷媒である液体窒素の温度にて超電導状態を
示す高温超電導材を導体J3としてシステムアースSE
’に用い、この導体13は、高温冷媒14を収容した簡
易デユワ−75内に設けられている。ここで、導体13
は極端に細線でない板状に構成されているものとする。
That is, the system earth SE is made of a high-temperature superconducting material that exhibits a superconducting state at the temperature of liquid nitrogen, which is a high-temperature refrigerant 100 times higher than that of cryogenic refrigerants such as liquid helium, as conductor J3.
The conductor 13 is provided in a simple dewar 75 containing a high-temperature refrigerant 14. Here, the conductor 13
It is assumed that the wire is formed into a plate shape that is not an extremely thin wire.

この構成によシ、導体J3は高温冷媒14によシ冷却さ
れ超電導状態を保持するようKなる。また、システムア
ースSF’の例えばユニットAと大地との接続部は、通
常の銅線等の導体J6を用いるが、この導体ノロと導体
J3との接続点17h。
With this configuration, the conductor J3 is cooled by the high temperature coolant 14 and maintained in a superconducting state. Further, a conductor J6 such as a normal copper wire is used for the connection between the unit A of the system ground SF' and the earth, and the connection point 17h between this conductor and the conductor J3 is the connection point 17h.

J7bを導体J3の臨界温度程度に冷却を施した構成と
する。なお、接続点11g、17bを臨界温度程度に冷
却することは、この臨界温度が高温冷媒である液体窒素
の温度であることから、液体ヘリウム等によって超電導
状態を示す材料とは異なシ、実施は容易である。
J7b is cooled to about the critical temperature of conductor J3. Note that cooling the connection points 11g and 17b to about the critical temperature is different from materials that exhibit a superconducting state such as liquid helium because this critical temperature is the temperature of liquid nitrogen, which is a high-temperature refrigerant. It's easy.

以上の構成の本実施例によれば、システムアースSE’
は抵抗値は零となシ、ユニ、)Aは電圧降下による信号
のオフセット変動は無く、正確な信号測定が可能になる
According to this embodiment with the above configuration, the system earth SE'
The resistance value of A is zero, and there is no signal offset fluctuation due to voltage drop in A, making accurate signal measurement possible.

なお、磁気共鳴信号は高周波であシ、また他の信号も高
周波領域にあるので、システムアースSE’は抵抗値は
零であって、しかもインダクタンス成分が抑制されたも
のでなければならない。この要求に対し、本実施例では
導体J3を極端に細線でない板状に構成しているので、
インダクタンス成分は小さい値となシ、上述の高周波の
信号を取扱う場合でもインピーダンスは小さな値となシ
、やはシュニットAは電圧降下による信号のオフセ、ト
変動は無く、正確な信号測定が可能になる。
Incidentally, since the magnetic resonance signal is a high frequency signal and other signals are also in a high frequency region, the system earth SE' must have a resistance value of zero and an inductance component that is suppressed. In response to this requirement, in this embodiment, the conductor J3 is formed into a plate shape that is not an extremely thin wire.
The inductance component must be a small value, and even when handling high-frequency signals as mentioned above, the impedance must be a small value.The Schnitt A does not have signal offset or fluctuation due to voltage drop, making accurate signal measurement possible. Become.

上述ではデータ収集系つまり受信器9やコンピュータシ
ステムIノにおける1つのユニットについての適用例を
説明したが、複数のユニットの相互間にシステムアース
SE’を接続する構成とじてもよい。また、データ収集
系に限らず、他の微弱信号を扱うユニットに適用するよ
うにしてもよい。
Although the application example for one unit in the data acquisition system, that is, the receiver 9 or the computer system I has been described above, a configuration in which the system earth SE' is connected between a plurality of units may also be used. Furthermore, the present invention is not limited to data collection systems, and may be applied to other units that handle weak signals.

この他本発明の要旨を逸脱しない範囲で檀々変形して実
施できるものである。
In addition, various modifications can be made without departing from the spirit of the present invention.

[発明の効果コ 以上のように本発明では、系を構成する各二ニッle器
のシステムアースを、超電導材料で榊成し且つ超電導状
態で運転する構成としたことによシ、アースのための導
体を超電導材料で構成し且つ超電導状態で運転するので
、抵抗(インピーダンス)は零でToシ、電圧降下によ
る信号のオフセット変動は無く、正確な信号測定が可能
になシ、もって高精度のデータを収集可能とした磁気共
鳴診断装置を提供することができる。
[Effects of the Invention] As described above, in the present invention, the system earth of each two-layer device constituting the system is made of a superconducting material and is operated in a superconducting state. The conductor is made of superconducting material and is operated in a superconducting state, so the resistance (impedance) is zero, there is no signal offset fluctuation due to voltage drop, and accurate signal measurement is possible. A magnetic resonance diagnostic apparatus capable of collecting data can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発IMKかかる磁気共鳴診断装置の一実施例
の要部の構成を示す図、第2図は磁気共鳴診断装置の一
般的な構成を示す図、第3図は従来例の要部の構成を示
す図である。 MA・・・マグネ、トアセッンプリ、1・・・静磁場磁
石、2・・・X 軸、7461%2軸傾斜磁場コイル、
3・・・送受信コイル、4・・・静磁場制御系、5・・
・X軸傾斜磁場電源、6・・・Y軸傾斜磁場電源、2・
・・2軸傾斜磁場を源、8・・・送信器、9・・・受信
器、10・・・シーケンf、11・・・コンぎユータシ
ステム、12・・・表示系、J3・・・高温超電導材料
からなる導体、14・・・高温冷媒、15・・・簡易デ
ユワ−116・・・通常の導体、17a 、 I 7b
・・・m読点、SE’・・・システムアース。 出願人代理人  弁理士 鈴 江 武 彦第1因 第3図
FIG. 1 is a diagram showing the configuration of the main parts of an embodiment of the magnetic resonance diagnostic apparatus according to the IMK of the present invention, FIG. 2 is a diagram showing the general configuration of the magnetic resonance diagnostic apparatus, and FIG. 3 is a diagram showing the main parts of the conventional example. FIG. MA... Magneto, toe assembly, 1... Static magnetic field magnet, 2... X axis, 7461% 2-axis gradient magnetic field coil,
3... Transmission/reception coil, 4... Static magnetic field control system, 5...
・X-axis gradient magnetic field power supply, 6... Y-axis gradient magnetic field power supply, 2.
...Two-axis gradient magnetic field source, 8...Transmitter, 9...Receiver, 10...Sequence f, 11...Computer system, 12...Display system, J3... Conductor made of high temperature superconducting material, 14... High temperature refrigerant, 15... Simple dewar 116... Ordinary conductor, 17a, I 7b
...M reading mark, SE'...System earth. Applicant's agent Patent attorney Takehiko Suzue Cause 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 被検体に対して磁気共鳴現象を生じさせるための励起系
と、誘起した磁気共鳴信号を検出して信号処理するため
の検出系とを備えてなる磁気共鳴診断装置において、前
記系を構成する各ユニット機器のシステムアースを、超
電導材料で構成し且つ超電導状態で運転する構成とした
ことを特徴とする磁気共鳴診断装置。
In a magnetic resonance diagnostic apparatus comprising an excitation system for causing a magnetic resonance phenomenon in a subject, and a detection system for detecting and processing the induced magnetic resonance signals, each of the systems constituting the system A magnetic resonance diagnostic apparatus characterized in that a system ground of a unit device is made of a superconducting material and is operated in a superconducting state.
JP62284748A 1987-11-11 1987-11-11 Magnetic resonance diagnostic apparatus Pending JPH01126956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62284748A JPH01126956A (en) 1987-11-11 1987-11-11 Magnetic resonance diagnostic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62284748A JPH01126956A (en) 1987-11-11 1987-11-11 Magnetic resonance diagnostic apparatus

Publications (1)

Publication Number Publication Date
JPH01126956A true JPH01126956A (en) 1989-05-19

Family

ID=17682488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62284748A Pending JPH01126956A (en) 1987-11-11 1987-11-11 Magnetic resonance diagnostic apparatus

Country Status (1)

Country Link
JP (1) JPH01126956A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004037081A1 (en) * 2002-10-24 2004-05-06 Hitachi Medical Corporation Superconducting magnet device and magnetic resonance imaging system employing it
USD909063S1 (en) 2019-03-08 2021-02-02 Yeti Coolers, Llc Bag

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004037081A1 (en) * 2002-10-24 2004-05-06 Hitachi Medical Corporation Superconducting magnet device and magnetic resonance imaging system employing it
US7304478B2 (en) 2002-10-24 2007-12-04 Hitachi Medical Corporation Magnetic resonance imaging apparatus provided with means for preventing closed loop circuit formation across and between inside and outside of cryostat
CN100413465C (en) * 2002-10-24 2008-08-27 株式会社日立医药 Superconducting magnet device and magnetic resonance imaging system employing it
USD909063S1 (en) 2019-03-08 2021-02-02 Yeti Coolers, Llc Bag

Similar Documents

Publication Publication Date Title
EP0274773B1 (en) Magnetic resonance imaging apparatus comprising a quadrature coil system
US4613817A (en) Superconducting gradiometer coil system for an apparatus for the multi-channel measurement of weak nonstationary magnetic fields
JP3204542B2 (en) Magnetic field source measurement device
US5644234A (en) MR method and MR device for implementing the method
US20030088181A1 (en) Method of localizing an object in an MR apparatus, a catheter and an MR apparatus for carrying out the method
US4839595A (en) Magnetic resonance apparatus with a decoupling detection surface coil
EP0107238A1 (en) Nuclear magnetic resonance tomography apparatus
US20070219443A1 (en) Magnetic resonance marker based position and orientation probe
EP0529730B1 (en) Magnetic resonance apparatus comprising decoupled receiver coils
WO2002039896A1 (en) Magnetic resonance imaging system
JPH0350542B2 (en)
NL1033935C2 (en) Method and device for locally shielding an MR superconducting magnetic coil.
US6424853B1 (en) Magnetic field measurement apparatus
JPS5985651A (en) Nuclear magnetic resonance apparatus for diagnosis
EP0307981A1 (en) Magnetic resonance apparatus comprising integrated gradient r.f. coils
US4707662A (en) MR-apparatus having a transmission-measuring coil for high frequencies
CN1950712A (en) Magnetic resonance imaging at several RF frequencies
Hilschenz et al. Remote detected low-field MRI using an optically pumped atomic magnetometer combined with a liquid cooled pre-polarization coil
JPH02203839A (en) Inspection device using nuclear magnetic resonance
EP0514483B1 (en) Magnetic field generating assembly
JPH0578339B2 (en)
US6842637B2 (en) Magnetic field measurement apparatus
JPH01126956A (en) Magnetic resonance diagnostic apparatus
JPH0215833B2 (en)
Kita DC magnetoelectric effect measurements by a SQUID magnetometer