JPH01126949A - Intracorporeal equivalent current dipole tracing apparatus and display apparatus thereof - Google Patents

Intracorporeal equivalent current dipole tracing apparatus and display apparatus thereof

Info

Publication number
JPH01126949A
JPH01126949A JP62285728A JP28572887A JPH01126949A JP H01126949 A JPH01126949 A JP H01126949A JP 62285728 A JP62285728 A JP 62285728A JP 28572887 A JP28572887 A JP 28572887A JP H01126949 A JPH01126949 A JP H01126949A
Authority
JP
Japan
Prior art keywords
current dipole
potential
dipole
square error
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62285728A
Other languages
Japanese (ja)
Other versions
JPH0342897B2 (en
Inventor
Saburo Honma
本間 三郎
Toshimitsu Musha
利光 武者
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Avio Infrared Technologies Co Ltd
Original Assignee
NEC Avio Infrared Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Avio Infrared Technologies Co Ltd filed Critical NEC Avio Infrared Technologies Co Ltd
Priority to JP62285728A priority Critical patent/JPH01126949A/en
Publication of JPH01126949A publication Critical patent/JPH01126949A/en
Publication of JPH0342897B2 publication Critical patent/JPH0342897B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

PURPOSE:To calculate the position and vector component of an equivalent dipole with high accuracy, by operating the square error between the actual measured value and calculated value of the potential of each electrode to calculate the position of a current dipole where the operated value becomes min. and setting the current dipole at this position to the equivalent dipole. CONSTITUTION:A current dipole is supposed at a certain position in the skull and the potential generated at the position of each electrode from said current dipole is calculated using formula [wherein p is the vector component of the current dipole, r is the position of the current dipole and A(r) is a transmission matrix of M-line 3-row when the number of electrodes are set to M (the function of the position r of the dipole)]. Then, the square error So of the potential Vm actually measured at each electrode and the potential Vc calculated from the current dipole is calculated and, next, the position of the current dipole is slightly shifted to measure a square error in the same way as mentioned above. By this method, the position where the square error becomes min. is found out while the position of the current dipole is changed little by little and determined as the position of the current dipole. The dipole degree showing the approximate degree of the potential calculated from the current dipole is calculated with respect to the actually measured potential to display the current dipole on a CRT so as to be capable of tracing a nerve activity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は生体内等価電流双極子追跡装置に係り、特に生
体の神経活動を電流双極子に置換し、この置換によって
体表上に投影される電位分布から逆に電流双極子の発生
源に関する情報を得るようにした等(lIi?Ii流双
極子追流値極子追跡装置(発明の概要〕 本発明は生体内等価電流双極子追跡装置に関し、生体の
体表面上に装着した複数の電極により、生体の神経活動
に基づいて各電極に生じる電位を同時に測定し、次に不
均質媒質とした生体内の所定位置に電流双極子を仮定し
、この電流双極子によって作られる各電極位置の電位を
計算により求め、更に、各電極毎に得られた実測値と計
算値との間の二乗誤差を求め、この二乗誤差が最小とな
る電流双極子の位置とベクトル成分を求めて′4価電流
双捲子とし、生体内の電気的な情報の流れを追跡する様
にしたものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an in-vivo equivalent current dipole tracking device, and in particular, it replaces the neural activity of the living body with a current dipole, and by this replacement, the current dipole is projected onto the body surface. The present invention relates to an in-vivo equivalent current dipole tracking device (Summary of the Invention). Using multiple electrodes attached to the body surface of a living body, we simultaneously measure the potential generated at each electrode based on the living body's neural activity, and then assume a current dipole at a predetermined position within the living body, which is a heterogeneous medium. , calculate the potential at each electrode position created by this current dipole, then calculate the square error between the measured value and the calculated value obtained for each electrode, and find the current dipole that minimizes this square error. The position and vector component of the current are determined and used as a quadrivalent current twin winding, so that the flow of electrical information within the living body can be tracked.

〔従来の技術〕[Conventional technology]

従来から、生体の神経活動により、体表面上に現われる
電位を測定する装置としては脳波計、筋電計、誘発電位
加算装置等が使用されている。近時、生体の神経活動に
伴って体表面上に発生する電位を計測し、生体内の活動
部位を推定する等油水極子法が提案されている。この方
法は例えば、脳の各活動部位の細胞が刺激されると起電
力を発生して、頭皮上に電位分布を生ずる。この様な電
位分布から各部位を電気的な双極子で対応させ、この双
極子の位置とベクトル成分を上述の電位分布から演算し
て活動している脳細胞の位置を推定することにより脳の
活動状態を追跡する様にしたものである。この様な双極
子を推定する等油水極子法に於ては、双極子が発生する
電位分布を繰返し演算する関係から、従来では電位分布
計算を行うために、例えば、頭を完全な球と仮定すると
共に、頭蓋が−様な無限導体の中にあるものと仮定し演
算が行なわれた。更に、頭部内に均質な脳があるものと
した均質導体球又は同心或は異心の球殻を仮定して電位
分布を演算する方法等が提案されている。
2. Description of the Related Art Conventionally, electroencephalographs, electromyographs, evoked potential addition devices, and the like have been used as devices for measuring potentials appearing on the body surface due to neural activity of living organisms. Recently, the iso-oil-water method has been proposed, which measures the potential generated on the body surface due to neural activity in the living body and estimates the active site within the living body. In this method, for example, when cells in each active region of the brain are stimulated, an electromotive force is generated, resulting in a potential distribution on the scalp. From this potential distribution, each region is associated with an electrical dipole, and the position of this dipole and vector component are calculated from the above potential distribution to estimate the location of active brain cells. It is designed to track activity status. In the iso-oil-hydropole method for estimating such dipoles, because the potential distribution generated by the dipole is repeatedly calculated, conventionally, in order to calculate the potential distribution, for example, the head is assumed to be a perfect sphere. At the same time, calculations were performed on the assumption that the skull was inside a --like infinite conductor. Furthermore, methods have been proposed in which the potential distribution is calculated assuming a homogeneous conductive sphere or concentric or eccentric spherical shells, assuming that a homogeneous brain exists within the head.

又、脳内の生理的現象の発生部位を立体的に表示する装
置として、X線CT(コンピュータ・トモグラフ)、M
Rl(核磁気共鳴コンピュータ・トモグラフ)、PE”
r(ポジトロン・エミツシヨン・トモグラフ)等が利用
されている。これらX線CTやMHIでは脳器質の状態
を視るものであり、PE’l’は活動している組織の代
謝の結果を視るもので、生体内の電気的情報の流れを時
々刻々追跡表示することが出来なかった。
In addition, X-ray CT (computed tomography), M
Rl (nuclear magnetic resonance computer tomography), PE”
r (positron emission tomograph), etc. are used. These X-ray CT and MHI are used to view the state of brain organs, while PE'I' is used to view the metabolic results of active tissues, and the flow of electrical information within the living body is tracked moment by moment. could not be displayed.

〔発明が解決しようとする問題点) 叙上の従来構成による等油水極子法によると、生体、例
えば頭部は擬似的な球状体或は球殻状と仮定し、無限−
様媒質、即ち、脳と同じ導?1!率を持つ導体が頭の外
にも−様に存在すると仮定するか、又は頭部を球状体或
は球殻状と仮定し、球体内に−様な媒質、即ち脳がある
と仮定して電位分布を演算するために二つの問題が発生
する。第1の問題は頭部内を均一の媒質としているため
に、指定された等(−双極子の位置及びベクトル成分の
精度が十分ではなくなることである。この原因を@4図
によて説明する。第4図は生体+1)として頭蓋骨を考
え、この頭蓋骨内に眼孔や耳孔の空洞部(2)を考慮し
ている。今指定された等漬水掻子として、等漬水極子の
真価(3a)のベクトル成分方向が第4図に示す様に空
洞部(2)に向っている場合に、この等漬水極子の計算
値(3b)は空洞部(2)の影響を受けて真の位置より
空洞部(2)から遠ざかる゛と共にそのベクトル成分は
真値より小さくなる。一方、等漬水極子の真値(3a’
)のベクトル成分方向が空洞部(2)に平行している場
合はこの等価双極子(3b’)は空洞部(2)の影響を
受けて真の位置より空洞部(2)に近づくと共にそのベ
クトル成分は真価(3b’ )より大きくなる。しかし
、従来の等油水極子法ではこれらの点が考慮されないた
めに等(aiff極子の位置やベクトル成分の精度が劣
化する問題があった。
[Problems to be Solved by the Invention] According to the iso-oil-hydropole method with the conventional configuration described above, it is assumed that the living body, for example, the head, is a pseudo-spherical body or a spherical shell, and the infinite -
similar medium, i.e. the same conduction as the brain? 1! Suppose that a conductor with a constant rate exists outside the head in a similar manner, or suppose that the head is a spherical body or a spherical shell, and that there is a medium in a similar manner, that is, the brain, inside the sphere. Two problems arise in calculating the potential distribution. The first problem is that because the inside of the head is a homogeneous medium, the precision of the specified dipole position and vector component is not sufficient.The reason for this is explained with Figure @4. In Fig. 4, a skull is considered as a living body +1), and cavities (2) for eye holes and ear holes are considered within this skull. For the equi-immersed water pole specified just now, if the vector component direction of the equi-immersed water pole's true value (3a) is toward the cavity (2) as shown in Figure 4, then this equi-immersed water pole's The calculated value (3b) is influenced by the cavity (2) and becomes farther from the cavity (2) than the true position, and its vector component becomes smaller than the true value. On the other hand, the true value of the equi-immersed water pole (3a'
) is parallel to the cavity (2), this equivalent dipole (3b') will be influenced by the cavity (2) and will move closer to the cavity (2) than its true position. The vector component becomes larger than the true value (3b'). However, in the conventional iso-oil-water pole method, these points are not taken into account, so there is a problem that the accuracy of the position of the aiff pole and the accuracy of the vector component deteriorates.

次に第2の問題は頭部はもともと球状体でないのに頭蓋
を球で近似して等漬水極子を指定しているために、推定
した等漬水極子が脳内のどの部位にあるかを特定出来な
い事である。
The second problem is that the head is not originally a spherical body, but since the skull is approximated by a sphere and the equidispersed water pole is specified, it is difficult to determine where in the brain the estimated equidistant water pole is located. It is impossible to specify.

本発明は叙上の欠点に鑑み成されたものであり、本発明
の主目的は生体内の電気的な情報の流れを経皮的に追跡
する際に推定する等油水極子の位置及びベクトル成分を
高精度に求められる生体内等価電流双極子追跡装置を得
るにある。
The present invention has been made in view of the above-mentioned drawbacks, and the main purpose of the present invention is to estimate the position and vector components of oil water poles when transcutaneously tracing the flow of electrical information in a living body. The goal is to obtain an in-vivo equivalent current dipole tracking device that requires high accuracy.

本発明の他の目的は生体内の電気的な情報の流れを経皮
的に追跡する際に、等油水極子から生体活動部位を時々
刻々表示し得る生体内等価電流双極子追跡用表示装置を
提供するにある。
Another object of the present invention is to provide an in-vivo equivalent current dipole tracking display device that can momentarily display biological activity sites from iso-oil water poles when transcutaneously tracing the flow of electrical information in a living body. It is on offer.

(問題点を解決するための手段〕 本発明は第1図に1例を示す様に生体Qlに装着された
複数の電極(5)の電位を同時に測定する電位測定手段
(10)と、媒質が不均一な生体内の任意の位置に電流
双極子を仮定し、電流双極子によって作られる複数の電
極(5)に夫々対応する電位を演詐する演算手段(9b
)と、電位測定手段(1o)の実測値と、演算手段(9
b)の計算値との間の二乗誤差を演算する二乗誤差演算
手段(9b)と、二乗it/4差演算手段から得た二乗
誤差値を最小にする電流双極子の位置とベクトル成分を
求めて等価電流双極子とする等価電流双極子設定手段(
9b)とを有するものである。
(Means for Solving the Problems) As shown in one example in FIG. A calculation means (9b) assumes a current dipole at an arbitrary position in the living body where the current dipole is non-uniform, and manipulates the potential corresponding to each of the plurality of electrodes (5) created by the current dipole.
), the actual measured value of the potential measuring means (1o), and the calculating means (9
Find the position and vector component of the current dipole that minimizes the squared error value obtained from the squared error calculation means (9b) and the squared it/4 difference calculation means for calculating the squared error between the calculated value in b). An equivalent current dipole setting means (
9b).

(作用) 生体に装着した複数の電極の電位を測定して実測値とし
、生体内の任意の位置に電流双極子を仮定して、この電
流双極子により作られる電位を演算して計算値とし、各
電極の電位の実測値と計算値との間の二乗iI4差を演
算して、その値が最小となる電流双極子の位置を求め、
この位置の電流双極子を等油水極子としたものである。
(Function) Measure the potential of multiple electrodes attached to the living body to obtain the actual value, assume a current dipole at an arbitrary position within the living body, calculate the potential created by this current dipole, and use it as the calculated value. , calculate the square iI4 difference between the measured value and the calculated value of the potential of each electrode, and find the position of the current dipole where the value is the minimum,
The current dipole at this position is an iso-oil water pole.

〔実施例〕〔Example〕

以下、本発明の生体内等1th電流双撫子追跡装置の一
実施例を第1図乃至第3図について説明する。
Hereinafter, an embodiment of the in-vivo 1th electric current tracking device of the present invention will be described with reference to FIGS. 1 to 3.

第1図は生体11)を頭部内の脳として、脳細胞活動状
態を追跡する場合の系統図を示すものである。
FIG. 1 shows a system diagram for tracking the activity state of brain cells in a living body 11) as a brain in the head.

以下第1図について詳記する。Figure 1 will be described in detail below.

まずはじめに生体(1)体表の測定部位、例えば、頭部
の形状寸法を正確につかむために、X線−CTを用いて
CT断層像(16)を15枚前後とり、次にこのCT断
層像(16)の二次元寸法を1枚づつデジタイザー(1
8)のピックアップ(17)を用いて人力ボート(14
)を介しコンピュータ(9)に続み込んで、その信号か
ら三次元の頭部形状を求める様にする。また、三次元の
頭部形状に対応させた各電極位置をキーボード等の電極
位置信号入力装置(19)からXI  )’I  ”の
三次元座標として人力する。
First of all, in order to accurately grasp the shape and size of the measurement site on the body surface of the living body (1), for example, the head, approximately 15 CT tomograms (16) are taken using X-ray CT, and then this CT tomogram is taken. The two-dimensional dimensions of the image (16) are measured one by one using a digitizer (1
Using the pickup (17) of 8), pick up the human-powered boat (14)
) to the computer (9), and the three-dimensional head shape is determined from the signal. Further, each electrode position corresponding to the three-dimensional head shape is manually entered as three-dimensional coordinates XI'I'' from an electrode position signal input device (19) such as a keyboard.

次に、頭部(1)に例えば21個前後の電極群(5)を
装着して脳内神経活動に基づく電位を電位測定手段(1
0)で測定する。電極(51からの測定電位は増幅器(
6)及びマルチプレクサ(7)を介してアナログ−デジ
タル変換器(A/D)(8)に供給され、デジタル化さ
れた測定電位は入カポ−1−(14)を介してコンピュ
ータ(9)に供給される。コンピュータ(9)内には制
御部(9a)と演算部(9b)を有し、アドレスバス(
lla)及びデータバス(llb)はROM(12) 
、 RAM (13) 、入力ポート(14)、出カポ
−1−(15)に接続されている。上記ROM(12)
及びRA M  (13)は信号処理に必要なプログラ
ムを記憶すると共にデジタイザー(1B)、電極位置信
号入力装置(19) 、 ?ti位測定手段(10)か
らのデータを記憶する記憶手段である。コンピュータ(
9)の演算部(9a)には演算手段と等価?1流双極子
設定手段とを有する。入力ポート(14)には等油水極
子を求めるプログラム等が格納された外部記憶装置(2
0)が接続され、出力ボート(14)にはコンピュータ
(9)の演算結果を表示するCRT等の表示手段(22
)と表示手段(22)に表示されたデータや波形を記録
するプリンタ(20)が接続されている。
Next, a group of about 21 electrodes (5), for example, is attached to the head (1), and the potential based on the neural activity in the brain is measured by the potential measuring means (1).
0). The measured potential from the electrode (51) is measured by the amplifier (
6) and a multiplexer (7) to an analog-to-digital converter (A/D) (8), and the digitized measured potential is sent to a computer (9) via an input capo-1-(14). Supplied. The computer (9) has a control section (9a) and a calculation section (9b), and an address bus (
lla) and data bus (llb) are ROM (12)
, RAM (13), input port (14), and output port-1-(15). Above ROM (12)
and RAM (13) stores programs necessary for signal processing, as well as a digitizer (1B), an electrode position signal input device (19), ? It is a storage means for storing data from the ti position measuring means (10). Computer(
Is the arithmetic unit (9a) in 9) equivalent to the arithmetic means? first-stream dipole setting means. The input port (14) is connected to an external storage device (2
0) is connected to the output board (14), and a display means (22) such as a CRT for displaying the calculation results of the computer (9).
) and a printer (20) for recording the data and waveforms displayed on the display means (22) are connected.

上述の構成に於ける、本例の動作を第2図のフロチャー
トにより説明する。
The operation of this example in the above configuration will be explained with reference to the flowchart of FIG.

第2図に於いて、図示しないが電流を“オン゛して本例
の生体内等価電流双極子追跡装置(23)を第1ステツ
プS ”l” sに示す様に初期状態に設疋する0次の
第2ステツプST2では後述する各種演算用のプログラ
ム及び信号処理用のプログラム等を外部記憶装置(20
)から読み出してコンピュータ(9)内のRAM(13
)に格納する。この様なプログラムはコンピュータ(9
)内の不揮発性メモリであるROM(12)内に予め記
憶して置けば第2ステツプS T 2は不要となる。
In FIG. 2, although not shown, the in-vivo equivalent current dipole tracking device (23) of this example is set in the initial state as shown in the first step S by turning on the current. In the 0th-order second step ST2, programs for various calculations and signal processing programs, etc., which will be described later, are stored in an external storage device (20
) and stores it in the RAM (13) in the computer (9).
). Such a program can be run on a computer (9
), the second step ST2 becomes unnecessary.

次の第3ステツプS’l’3では例えば生体(11であ
る頭部形状寸法を入力する0頭蓋形状寸法計測の1例と
してX線C′rを用いて1人の人間についてスライス間
隔15+smで15枚程度のCT断層像(16)を作る
。このCT断層像(16)は各個人毎に頭蓋の周長9幅
1前後方向の長さ等の数種のパラメータを測定し、数m
類用怠した標準モデルに当はめる方法をとる様にすれば
一人一人の頭蓋を計測するためにC′r断層像をとる手
間が省けて計測がより簡単になる。勿論−人一人の頭蓋
を計測してもよい。この様にスライスした15枚のCT
断層像(16)の二次元ii!i像上を各断層像(16
)についてピックアップ(17)で取り出してデジタイ
ザー(18)を使って入力ボート(14)からコンピュ
ータ(9)に入力し、RAM(13)に記憶する。この
場合にスライスを三次元的に積み宙ねて行くときに、「
ずれ」が生じない様にスライス断面と垂直な3本の直線
の交点を各スライスに七定して置くを可とする。
In the next third step S'l'3, for example, input the head shape and size of a living body (11). Approximately 15 CT tomograms (16) are created.These CT tomograms (16) are made by measuring several parameters such as the circumference, width, length, and anteroposterior direction of the cranium for each individual.
If the method is applied to a standard model that has been neglected, the measurement becomes easier because the trouble of taking C'r tomographic images to measure each person's cranium can be saved. Of course - one person's cranium may be measured. 15 pieces of CT sliced like this
Two-dimensional tomographic image (16) ii! Each tomographic image (16
) is taken out by the pickup (17), inputted into the computer (9) from the input board (14) using the digitizer (18), and stored in the RAM (13). In this case, when stacking slices three-dimensionally and moving them through the air,
The intersection points of three straight lines perpendicular to the slice cross section may be placed at a fixed location in each slice to prevent "misalignment" from occurring.

この様に人力された頭部形状寸法に基づいて、第4ステ
ツプST4ではコンピュータ(9)は補間計算をして頭
蓋の三次元データに変換する。
In the fourth step ST4, the computer (9) performs interpolation calculations based on the head shape and dimensions manually inputted in this way and converts it into three-dimensional data of the cranium.

次の第5ステツプST5では生体+1)の頭部に載置し
た21個前後の電極(5)位置を第4ステツプS ’1
’ 4で得た三次元の頭部形状に対応させるために第1
図に示すキーボード等の電極位置信号入力装置(19)
からx、y、z軸の三次元座標として入力し、コンピュ
ータ(9)内のRAM(13)に格納する。
In the next fifth step ST5, the positions of the 21 electrodes (5) placed on the head of the living body +1) are changed to the fourth step S'1.
' In order to correspond to the three-dimensional head shape obtained in 4.
Electrode position signal input device (19) such as a keyboard shown in the figure
are input as three-dimensional coordinates of the x, y, and z axes and stored in the RAM (13) in the computer (9).

第6ステツプS′rεでは第1図に示す様に生体(1)
である頭部に21個前後の電極群(5)を載置し、脳内
神経活動に基づく電位測定が行なわれる。この様に測定
された神経活動の電位は電気刺激、光刺激、音刺激等の
種々の刺激に対する誘発電位、或は刺激を加えない状態
での神経活動の電位であってもよく、測定値は増幅器(
6)−マルチプレクサ(7)−A / D (81を介
して人力ボート(14)からコンピュータ(9)にデジ
タルデータとして供給され、RAM(13)上に格納さ
れる。
In the sixth step S'rε, as shown in Figure 1, the living body (1)
Approximately 21 electrode groups (5) are placed on the head, and electrical potentials are measured based on neural activity in the brain. The neural activity potential measured in this way may be an evoked potential in response to various stimuli such as electrical stimulation, optical stimulation, or sound stimulation, or a neural activity potential in a state where no stimulation is applied, and the measured value is amplifier(
6) - Multiplexer (7) - A/D (Supplied as digital data from the human powered boat (14) to the computer (9) via A/D (81) and stored on the RAM (13).

第7ステツプS ’r tでは神経活動の電位のうちか
ら1サンプルクロツクの電位を取り出しコンピュータ(
9)に指定する。
In the seventh step S'rt, one sample clock potential is extracted from the neural activity potentials and the computer (
9).

次の第8ステツプSTsでは電流双極子を頭蓋内の所定
位置に置いたと仮定したときの指定した電極(5)位置
の伝達行列をコンビエータ(9)の演算手段(9b)が
演算し、電流双極子が発生する各電極位置の電位を計算
する。一般的に神経活動電位の発生源を電流双極子と仮
定したときその電流双極子により頭皮上に発生する電位
VCは(11式で表される。
In the next eighth step STs, the calculation means (9b) of the combiator (9) calculates the transfer matrix of the specified electrode (5) position assuming that the current dipole is placed at a predetermined position in the skull, and Calculate the potential at each electrode location where the child occurs. Generally, when the source of a nerve action potential is assumed to be a current dipole, the potential VC generated on the scalp by the current dipole is expressed by equation (11).

Vc =A (r)  ・p ・・・(1まただし、p
:電流双極子のベクトル成分、r:fli流双流子梯子
置、 A(r):電極の数をMとするとM行3列の伝達行列(
双極子の位置 γの関数) である。
Vc = A (r) ・p ... (1 round, p
: vector component of current dipole, r: fli-flow twin current ladder arrangement, A(r): where M is the number of electrodes, transfer matrix with M rows and 3 columns (
function of dipole position γ).

ここで頭蓋内の脳を無限−様の媒質と考えた場合に仮定
した電流双極子から発生ずる電位をφ。
Here, if we consider the intracranial brain as an infinite-like medium, the potential generated from the current dipole is φ.

とじ、この電位から第3図に示す様に生体(11として
の頭蓋骨内に眼孔、耳孔等の空洞部(2)及び脳(24
)を考えた不均質媒体の電位に変換することを考える。
From this potential, as shown in Figure 3, a living body (11) has cavities such as eye holes and ear holes (2) in the skull, and the brain (24).
) to the potential of a heterogeneous medium.

第3図に於いて、 甲0 :脳、空洞以外の組織における電位v1 :脳内
における電位 甲2 :空洞内における電位 甲out :頭蓋外における電位 Ω0:脳、空調以外の組織の領域 Ω1 :脳の領域 Ω2 :空洞の領域 見out :頭蓋外の領域 σG =脳、空洞以外の組織の導電率 σ1 :脳の導電率 σ2:空洞の導電率 σout :頭蓋外の導電率 Say  St+  S2 :各領域との境界とすると
、電流双極子を領域Ω!内に置き、この領域が無限−様
媒質であると仮定したIときのこの電流双極子から発生
する電位をφ〜とすると、φ。は式■で与えられる ここでσ1は無限−様媒質である脳の導1!率ra+は
電極取付位置 領域をΩとし領域内に電流湧き出し口がある場合その領
域内ではポアソンの方程式で電位を記述できる。即ち領
域Ω内で lφ−−□         ・・・・(3)σ ここでσは導電率 ■は電流湧き出しの強さ φは電位 このポアソンの式は境界要素法では解きにくいので、次
の式を定義する。
In Figure 3, A0: Potential in tissues other than the brain and cavity v1: Potential in the brain A2: Potential in the cavity Kout: Potential outside the skull Ω0: Region of tissues other than the brain and air conditioning Ω1: Brain region Ω2: Cavity region out: Extracranial region σG = Electrical conductivity of tissues other than the brain and cavity σ1: Brain conductivity σ2: Cavity conductivity σout: Extracranial conductivity Say St+ S2: Each If we take the current dipole as the boundary with the region, then the current dipole is the region Ω! Let φ be the potential generated from this current dipole when I assumes that this region is an infinite-like medium, then φ. is given by the formula ■where σ1 is the brain conductor 1 which is an infinite-like medium! For the ratio ra+, if the electrode attachment position region is Ω and there is a current source in the region, the potential can be described by Poisson's equation. That is, within the region Ω, lφ−−□ ... (3) σ where σ is the electrical conductivity ■ is the strength of the current outflow φ is the electric potential This Poisson's equation is difficult to solve using the boundary element method, so the following equation Define.

φ0ヨ甲0−φoo1 この式(4)を用いればポアソンの方程式は次のラプラ
スの式となり、境界要素法で解けることになる。
φ0yoK0−φoo1 Using this equation (4), Poisson's equation becomes the following Laplace's equation, which can be solved using the boundary element method.

SL、S2上では電位及び電流密度が等しいので次の式
が成立する。
Since the potential and current density are equal on SL and S2, the following equation holds true.

φ0+φ661 so =φ叫+φoo13゜ここでn
は外向きの法線を表わす・ 以上式(5)と(6)を境界要素法を用いて解くことに
より、不均質媒質における電位が求まる。
φ0 + φ661 so = φ shout + φoo13゜here n
represents the outward normal line. By solving equations (5) and (6) above using the boundary element method, the potential in the heterogeneous medium can be found.

次の第9ステツプSTsでは第6ステツプS T sで
測定した神経活動の測定電位(■−とする)から直接電
流双極子を求めるのは困難なので次に述べる方法で電流
双極子を求める。
In the next ninth step STs, it is difficult to directly determine the current dipole from the measured potential of the nerve activity measured in the sixth step STs (assumed to be -), so the current dipole is determined by the method described below.

上述の測定電位vIIIと(1)式で求めた不均質媒質
での電位Vcとの二乗誤差をSとするとSは(7+I式
%式% ここでtは転置行列である。
Letting S be the square error between the above-mentioned measured potential vIII and the potential Vc in the heterogeneous medium determined by equation (1), S is (7+I equation % equation %) where t is a transposed matrix.

この二乗誤差Sを最小とするような電流双極子の位置r
とベクトル成分pを求める。電流双極子の位置rを任意
に固定したとき(7)式を最小にするベクトルpは(1
1式とから次の様に求まる。
The position r of the current dipole that minimizes this squared error S
and find the vector component p. When the position r of the current dipole is arbitrarily fixed, the vector p that minimizes equation (7) is (1
It can be found from equation 1 as follows.

p= (AtA)−1・A”  −VIl      
・・・・(81ベクトル成分pをこの様に選んだとき、
二乗誤差Sは電流双極子の位置rだけの関数としてSo
 =Vmt ・ (EX −A  (A”  A)−”
・A’)VIl・・・・(91ここでEMはM次の単位
行列として求まる。
p= (AtA)-1・A''-VIl
...(81 When the vector component p is selected in this way,
The squared error S is So as a function of only the position r of the current dipole
=Vmt ・(EX −A (A” A)−”
・A')VIl...(91 Here, EM is found as an M-th order unit matrix.

次の第10ステツプS ’r 1oでは二乗誤9Soを
最小にする電流双極子の位置rを求め、二乗誤差が基準
値以下であるか否かの判断がコンピュータ(9)で成さ
れる。
In the next tenth step S'r1o, the position r of the current dipole that minimizes the square error 9So is determined, and the computer (9) determines whether the square error is less than a reference value.

この二乗誤差が基準以上である場合はシンプレックス法
によって電流双極子の位置を第11ステンプS T I
Lに示す様に移動させて、第8ステツプS T aに戻
して二乗誤差の値が収束する迄この動作を繰り返す、向
上述のシンプレ7クス法は非線形鮭通化手法の一つであ
り、反復計算を行なうことによって近似解を求めるもの
である。この反復計算を行なうとき、例えばgB蓋内に
正四面体を設定し、正四面体の四つの頂点位置に¥、−
価双油水を仮定し、その等捕水極子が発生する頭皮上の
電極位置での電位と、実測電位との二乗誤差を各等価双
極子ごとに計算し、そのうちで一番大きな二乗誤差の値
をもつ頂点を、二乗誤差が小さくなる方向へ移動させる
。このときどこへ移り」させるかのアルゴリズムは(l
O)式にのっとって行われる。
If this squared error is greater than the standard, the position of the current dipole is determined by the simplex method in the 11th step S T I
The simplex method described above, which moves as shown in L, returns to the 8th step STa, and repeats this operation until the value of the squared error converges, is one of the nonlinear salmonization methods, and is an iterative method. An approximate solution is obtained by performing calculations. When performing this iterative calculation, for example, set a regular tetrahedron in the gB lid, and set the four vertices of the regular tetrahedron at ¥, -
Assuming valence dual oil and water, calculate the square error between the potential at the electrode position on the scalp where the equihydroptic pole occurs and the actual potential for each equivalent dipole, and calculate the value of the largest square error among them. Move the vertex with , in the direction where the squared error becomes smaller. The algorithm for determining where to move at this time is (l
O) It is carried out according to the formula.

ここでXは四面体の頂点位置 xhは二乗誤差が最大となる頂点位置 XIIIはXhを除いた全頂点での重心α、β、γは定
数 X r、X e、X cは上記式での計算後の値ごの三
つの式を計算しながら、四面体の各頂点を、二乗誤差が
小さくなる方へ移動させ、停止条件を満足したところで
停止する。この停止したときの位置が、最終的に求まっ
た位置と決定する。
Here, X is the vertex position xh of the tetrahedron, and the vertex position XIII is the center of gravity at all vertices except for Xh. While calculating the three equations for each calculated value, each vertex of the tetrahedron is moved in the direction where the squared error becomes smaller, and the process is stopped when the stopping condition is satisfied. The position when the robot stops is determined as the final position.

この様に二乗8%差の値が収束して“YES″の状態に
なり基準値以下になったら、第12ステツプ5Tx2の
様にその位置の電流双極子を等油水極子として、位置を
RAM(13)等のメモリに記憶させる。
In this way, when the value of the squared 8% difference converges and becomes "YES" and becomes less than the reference value, the current dipole at that position is set as an iso-oil water pole and the position is stored in the RAM ( 13) etc.

次に、第12ステツプS ’T’ 12で決定した位置
の等11III双極子の第8式にボすベクトル成分pを
第13ステツプS T13に示す様にコンピュータ(9
)の演算部(9b)で演算する。
Next, the vector component p given to the equation 8 of the equal 11III dipole at the position determined in the 12th step S 'T' 12 is calculated by the computer (9) as shown in the 13th step ST13.
) is calculated by the calculation unit (9b).

次の第14ステツプS ’r’ 14では実測された電
位に対して電流双極子から求めた電位がどの程度近似し
ているかの程度を表す双極予震dを計算する。
In the next 14th step S'r' 14, a bipolar preshock d is calculated, which indicates how close the potential obtained from the current dipole is to the actually measured potential.

この双極予震dは(11)式で求められる。This bipolar preshock d is obtained by equation (11).

ここでMは電極の数である。Here M is the number of electrodes.

次にこの双極予震dの値を予め決めておき、限界値以上
か否かを第15ステツプS Tzsで判IJiする。
Next, the value of this bipolar preshock d is determined in advance, and it is determined in a 15th step STzs whether or not it is greater than a limit value.

例えば双極予震dの限界値を(資)%以上とし、90%
以上のものは有効とし、90%以下では第7ステツプS
T↑に戻し次の時点のサンプリング値を指定する。双極
予震dが(資)%以上であれば第16ステツプ5TLG
に示す様°に、表示手段のCRT(22)上に電流双極
子の位置とベクトル成分を三次元で表した頭部の図形内
に表示する。
For example, the limit value of bipolar preshock d is set to (capital)% or more, and 90%
If the above is valid, if it is 90% or less, the 7th step S
Return to T↑ and specify the sampling value at the next point in time. If the bipolar preshock d is more than (capital)%, the 16th step 5TLG
As shown in , the position and vector component of the current dipole are displayed in a three-dimensional head shape on the CRT (22) of the display means.

本例は上述の様な制御動作が成されるが、これら制御動
作を要約すれば、頭蓋内のある位置に電流双極子を仮定
し、その電流双極子から各々の電極位置に生じる電位を
(1)式を用いて計算する。そして各々の電極で実測さ
れた電位V■と電流双極子から計算された電位Vcとの
二乗誤差Soを計算する。次に電流双極子の位置を少し
ずらし前記と同様に二乗誤差を求める。この様にして電
流双極子の位置を少しずつ変えていきながら二乗誤差が
最小になる位置をみつけ、そこを電流双極子の位置と決
める。又、実測電位に対して電流双極子から求めた電位
の近似度合を示す双極予震を求めて、電流双極子をCR
T上に表示させる様にして、神経活動状態を追跡出来る
様にしたものである。
In this example, the control operations described above are performed, but to summarize these control operations, a current dipole is assumed at a certain position within the skull, and the potential generated from the current dipole at each electrode position is 1) Calculate using the formula. Then, a square error So between the potential V■ actually measured at each electrode and the potential Vc calculated from the current dipole is calculated. Next, the position of the current dipole is slightly shifted and the square error is determined in the same manner as above. In this way, while changing the position of the current dipole little by little, find the position where the squared error is minimized, and decide that position as the position of the current dipole. In addition, the bipolar preshock that indicates the degree of approximation of the potential obtained from the current dipole to the actual measured potential is determined, and the current dipole is CR
The neural activity state can be tracked by displaying it on the T.

尚、上記実施例では特定の時刻に於ける等油水極子の位
置とベクトル成分を求める場合を説明したが、いくつか
の時点の等油水極子を求めてメモリに記憶させ、これら
を同一画面上に同時に表示することで等油水極子の経時
変化を追跡することも出来、その他、上述の実施例に限
定されることなく本発明の要旨を逸醜しない範囲で種々
の変形が可能である。
In the above example, the case where the position and vector component of the iso-oil water pole at a specific time is found, but it is also possible to find the iso-oil water pole at several points in time and store them in memory, and display them on the same screen. By displaying them simultaneously, it is possible to track changes in the iso-oil water pole over time, and various modifications can be made without being limited to the above-described embodiments without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明は畝上の如く構成させたので生体内の電流双極子
の早い動きや位置を正確に追跡iiJ能となる。又、体
表面電位の発生源と嵩えられている生体内の異常部位の
みならず正常機能状態の下で外界からの刺激(光、音、
電気、特定の質問または投薬)によって特に興奮する部
位などに関する情報を追跡することによって例えば脳内
での情報処理過程を解明できる。更に頭部寸法を入力す
る場合、標準モデルパターンを使用すれば被検Hに対し
、無侵襲で安全に生体内の測定を行うことができる。即
ち、X線C′rやP E ’r等の様にX線を照射した
り、放射生物質を投与する必要がない等の特長を有する
Since the present invention is configured like a ridge, it is possible to accurately track the rapid movement and position of current dipoles within a living body. Furthermore, in addition to abnormal areas within the body that are thought to be the source of body surface potential, stimulation from the outside world (light, sound,
For example, information processing processes in the brain can be elucidated by tracking information about areas that are particularly excited by electricity, specific questions, or medications. Furthermore, when inputting the head dimensions, if a standard model pattern is used, in-vivo measurements can be safely and non-invasively performed on the subject H. That is, it has the advantage that it is not necessary to irradiate X-rays like X-ray C'r or P E'r, or to administer radioactive materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第11121は本発明の生体内等価電流双極子追跡装置
の1例を示す系統図、第2図は第1図のフロチャート例
、第3図は不均質媒質を説明する頭部模式図、ff14
図は不均質媒体の影響を説明するための頭部模式図であ
る。 (1)は生体、(2)は空洞部、(5)は電極、(9)
はコンピュータ、(10)は電位測定手段、(18)は
デジタイザ、(19)は電極位置信号入力装置、(22
)は表示手段、(23)は生体内等価電流双極子追跡装
置、(24) は脳である。
11121 is a system diagram showing an example of the in-vivo equivalent current dipole tracking device of the present invention, FIG. 2 is an example of the flowchart of FIG. 1, and FIG. 3 is a schematic diagram of the head explaining a heterogeneous medium, ff14
The figure is a schematic diagram of the head for explaining the influence of a heterogeneous medium. (1) is a living body, (2) is a cavity, (5) is an electrode, (9)
is a computer, (10) is a potential measuring means, (18) is a digitizer, (19) is an electrode position signal input device, (22)
) is a display means, (23) is an in-vivo equivalent current dipole tracking device, and (24) is a brain.

Claims (1)

【特許請求の範囲】 1、生体に装着された複数の電極の電位を同時に測定す
る電位測定手段と、 媒質が不均一な生体内の任意の位置に電流双極子を仮定
し、該電流双極子によって作られる上記複数の電極に夫
々対応する電位を演算する演算手段と、 上記電位測定手段の実測値と、上記演算手段の計算値と
の間の二乗誤差を演算する二乗誤差演算手段と、 上記二乗誤差演算手段から得た二乗誤差値を最小にする
電流双極子の位置とベクトル成分を求めて等価電流双極
子とする等価電流双極子設定手段とを有することを特徴
とする生体内等価電流双極子追跡装置。 2、生体に装着された複数の電極の電位を同時に測定す
る電位測定手段と、 生体内の任意の位置に電流双極子を仮定し、該電流双極
子によって作られる上記複数の電極に夫々対応する電位
を演算する演算手段と、上記電位測定手段の実測値と、
上記演算手段の計算値との間の二乗誤差を演算する二乗
誤差演算手段と、 上記二乗誤差演算手段から得た二乗誤差値を最小にする
電流双極子の位置とベクトル成分を求めて等価電流双極
子とする等価電流双極子設定手段と、 上記電位測定手段の実測値と上記等価電流双極子設定手
段から残差を求めて所定値以上の近似度合を演算する近
似度合演算手段とを有し、上記近似度合演算手段により
得られた等価電流双極子の位置並にベクトル成分を表示
手段に表示して成ることを特徴とする生体内等価電流双
極子追跡用表示装置。
[Claims] 1. Potential measuring means for simultaneously measuring the potentials of a plurality of electrodes attached to a living body; Assuming a current dipole at an arbitrary position in the living body where the medium is non-uniform, a calculation means for calculating a potential corresponding to each of the plurality of electrodes created by the above; a square error calculation means for calculating a square error between an actual measurement value of the potential measurement means and a calculated value of the calculation means; An in-vivo equivalent current dipole characterized by having an equivalent current dipole setting means for determining the position and vector component of the current dipole that minimizes the square error value obtained from the square error calculation means and setting it as an equivalent current dipole. Child tracking device. 2. Potential measuring means for simultaneously measuring the potentials of a plurality of electrodes attached to a living body, and assuming a current dipole at an arbitrary position within the living body, each corresponding to the plurality of electrodes created by the current dipole. a calculation means for calculating the electric potential; an actual value measured by the electric potential measurement means;
a square error calculation means for calculating the square error between the calculated value of the calculation means; and an equivalent current dipole for determining the position and vector component of the current dipole that minimizes the square error value obtained from the square error calculation means an equivalent current dipole setting means as a child, and an approximation degree calculating means for calculating a degree of approximation of a predetermined value or more by calculating a residual from the actual measurement value of the potential measuring means and the equivalent current dipole setting means, A display device for tracking an equivalent current dipole in a living body, characterized in that the position and vector component of the equivalent current dipole obtained by the approximation degree calculating means are displayed on a display means.
JP62285728A 1987-11-12 1987-11-12 Intracorporeal equivalent current dipole tracing apparatus and display apparatus thereof Granted JPH01126949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62285728A JPH01126949A (en) 1987-11-12 1987-11-12 Intracorporeal equivalent current dipole tracing apparatus and display apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62285728A JPH01126949A (en) 1987-11-12 1987-11-12 Intracorporeal equivalent current dipole tracing apparatus and display apparatus thereof

Publications (2)

Publication Number Publication Date
JPH01126949A true JPH01126949A (en) 1989-05-19
JPH0342897B2 JPH0342897B2 (en) 1991-06-28

Family

ID=17695269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62285728A Granted JPH01126949A (en) 1987-11-12 1987-11-12 Intracorporeal equivalent current dipole tracing apparatus and display apparatus thereof

Country Status (1)

Country Link
JP (1) JPH01126949A (en)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BIOMAGNETISM:APPLICATIONS&THEORY=1984 *
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING=1978 *
MEDICAL&BIOLOGICAL ENGINEERING&COMPUTING=1985 *

Also Published As

Publication number Publication date
JPH0342897B2 (en) 1991-06-28

Similar Documents

Publication Publication Date Title
US11013444B2 (en) Method and device for determining and presenting surface charge and dipole densities on cardiac walls
US7471973B2 (en) Determining a surface geometry of an object
CA3012942A1 (en) Advanced current location (acl) automatic map rotation to detect holes in current position map (cpm) mapping
US20120232376A1 (en) Methods and systems for channel selection
Bayford et al. Solving the forward problem in electrical impedance tomography for the human head using IDEAS (integrated design engineering analysis software), a finite element modelling tool
Derfus et al. A comparison of measured and calculated intracavitary potentials for electrical stimuli in the exposed dog heart
JP2626712B2 (en) In vivo equivalent current dipole display
JP2804961B2 (en) Equivalent current dipole tracking device in the head
JPH01126949A (en) Intracorporeal equivalent current dipole tracing apparatus and display apparatus thereof
JPH0399630A (en) Equivalent dipole measuring apparatus and equivalent dipole estimating method
Ramon et al. MCG simulations with a realistic heart-torso model
JP3191862B2 (en) A dipole tracking device in the brain by fixing the dipole estimation position of the background brain potential
Walker Epicardial potential distributions calculated from body surface measurements using multiple torso models
Muller et al. Open magnetic and electric graphic analysis
Pullan et al. A computational procedure for modelling electrical activity from heart to body surface
Nousiainen et al. GGGGGGGG LLS UNIVERSITY OF TECHNOLOGY
Huang et al. Sensor Weighted Multiple Sphere Head Model for MEG
JP2004065671A (en) Bioactivity analyzing program