JPH01126027A - Optical remote multiplex transmission system for subscriber line - Google Patents

Optical remote multiplex transmission system for subscriber line

Info

Publication number
JPH01126027A
JPH01126027A JP62283272A JP28327287A JPH01126027A JP H01126027 A JPH01126027 A JP H01126027A JP 62283272 A JP62283272 A JP 62283272A JP 28327287 A JP28327287 A JP 28327287A JP H01126027 A JPH01126027 A JP H01126027A
Authority
JP
Japan
Prior art keywords
subscriber
optical
signal
wavelength
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62283272A
Other languages
Japanese (ja)
Other versions
JP2539468B2 (en
Inventor
Shoichi Hanatani
昌一 花谷
Hirohisa Sano
博久 佐野
Katsuyuki Imoto
克之 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62283272A priority Critical patent/JP2539468B2/en
Publication of JPH01126027A publication Critical patent/JPH01126027A/en
Application granted granted Critical
Publication of JP2539468B2 publication Critical patent/JP2539468B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To prevent the deterioration in S/N and to eliminate the need for synchronization establishment time in a remote equipment by assigning different n-set of wavelength to each subscriber transmission optical signal. CONSTITUTION:Optical transmission circuits 24-1-24-n of wavelengths lambda21-lambda2n assigned to each subscriber are provided respectively to subscriber equipments 51-5n and the optical signal with a wavelength assigned to each subscriber from the optical transmission circuits 24-1-24-n is sent to a remote equipment 3. The remote equipment 3 synthesizes optical signals sent from each subscriber by an n:1 optical star coupler 26 and sends the result to an intra-office equipment 1 as it is. The equipment 1 uses an optical demultiplexer 9 to multiplex the subscriber transmission optical signal sent from the remote equipment 3 into each subscriber transmission optical signal and the signal is received by reception circuits 27-1-27-n corresponding respectively to each subscriber and the optical signal is converted into an electric signal. Moreover, the optical signal sent from the equipment 1 to the subscriber is processed similarly as a conventional system.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は局と光加入者間のディジタル信号伝送を遠隔装
置を経由して行う加入者線光遠隔多重伝送方式に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a subscriber line optical remote multiplex transmission system for transmitting digital signals between a station and an optical subscriber via a remote device.

〔従来の技術〕[Conventional technology]

近年、光フアイバ伝送によるl5DN(統合サービス・
ディジタル網)計画が世界各国で盛んに検討されている
In recent years, 15DN (integrated service/
Digital network) plans are being actively considered in countries around the world.

第2図はその一例である(特開昭61−45699)。FIG. 2 is an example (Japanese Patent Laid-Open No. 61-45699).

すなわち、局内袋filより伝送されてきた波長λ1の
光時分割多重化信号を遠隔装置3で光信号のまま多重分
離して各加入者装置51〜5nに供給するに際し、遠隔
装置3において局内装置1からの光時分割多重化信号を
電気信号に変換し、その変換出力によりフレーム同期を
とり、光多重分離のための光スイッチ12を制御し、各
加入者装置51〜5nへ分配を行い、逆に各加入者装置
51〜5□から局内装置1への送信信号は各加入者個有
のPNパターン(PNI〜P NI、)でスペクトラム
拡散した後、波長λ2の光信号に変換し、遠隔装置3の
n対1のスターカプラ26で各加入者装置51〜5□が
らの光信号を合波して局内装置1送出し、局内装置1で
光信号(波長λ2)を電気信号に変換し、スペクトラム
拡散復調する方法である。
That is, when the remote device 3 demultiplexes the optical time-division multiplexed signal of wavelength λ1 transmitted from the in-office bag fil as an optical signal and supplies it to each subscriber device 51 to 5n, the remote device 3 1 converts the optical time division multiplexed signal from 1 into an electrical signal, performs frame synchronization with the converted output, controls the optical switch 12 for optical demultiplexing, and distributes to each subscriber device 51 to 5n. Conversely, the transmission signal from each subscriber device 51 to 5□ to the in-office device 1 is spectrum spread using a PN pattern (PNI to PNI,) unique to each subscriber, and then converted into an optical signal of wavelength λ2, and then transmitted remotely. The n-to-1 star coupler 26 of the device 3 combines the optical signals from each subscriber device 51 to 5□ and sends it to the in-office device 1, and the in-office device 1 converts the optical signal (wavelength λ2) into an electrical signal. , is a method of spread spectrum demodulation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第2図に示す上記従来技術においては、各加入者から送
信される光信号を全て同一波長λ2に固定し、かつ安定
に保つことは極めて難しく、それぞれの光信号が独立に
変動する可能性が大きい。
In the above-mentioned conventional technology shown in FIG. 2, it is extremely difficult to fix all the optical signals transmitted from each subscriber to the same wavelength λ2 and keep them stable, and each optical signal may fluctuate independently. big.

このように個々の加入者装置の送信波長を同一値に、か
つ長期的に安定に保つことが困難になってくると、局内
装置1のスペクトラム拡散復調器の符号の同期確立時間
が長くかがる、信号対雑音比S/Nの劣化による伝送品
質の低下、等の問題が生じてくる。また上記波長変動範
囲が大きい場合には同期はずれによる通信不能を招いて
しまう。
If it becomes difficult to keep the transmission wavelengths of individual subscriber devices at the same value and stable over a long period of time, it will take a long time to establish synchronization of the codes of the spread spectrum demodulator in the station equipment 1. Problems arise, such as deterioration of transmission quality due to deterioration of signal-to-noise ratio S/N. Furthermore, if the wavelength variation range is large, communication may become impossible due to loss of synchronization.

本発明の目的は上記従来の問題点を解決する方法を提供
することにある。
An object of the present invention is to provide a method for solving the above-mentioned conventional problems.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は各加入者送信光信号にそれぞれ異なるn個の
波長λ21〜λ2nを割り当てることにより達成される
。すなわち、各加入者装置はそれぞれ各加入者に割り当
てられた波長λ21〜λ2□の光送信回路を備え、前記
光送信回路より各加入者に割り当てられた波長(λz工
〜λ2nの内にいずれか1波長)の光信号を遠隔装置へ
送る。遠隔装置では各加入者より送られてきた光信号を
n対1光スターカプラで合波してそのまま局内装置へ送
る0局内装置では1合波して遠隔装置より送られてきた
加入者送信光信号を光分波器により各加入者送信光信号
に分波し、それぞれ各加入者に対応する受信回路で光信
号を電気信号に変換する。
The above object is achieved by assigning n different wavelengths λ21 to λ2n to each subscriber's transmitted optical signal. That is, each subscriber device is equipped with an optical transmission circuit for the wavelengths λ21 to λ2□ assigned to each subscriber, and the wavelength (any one among λz-λ2n) assigned to each subscriber from the optical transmission circuit is provided. 1 wavelength) to a remote device. At the remote device, the optical signals sent from each subscriber are multiplexed by an n-to-1 optical star coupler and sent as is to the in-office device.In the in-office device, the optical signals sent from each subscriber are multiplexed and sent to the subscriber transmission light sent from the remote device. The signal is demultiplexed into optical signals transmitted by each subscriber using an optical demultiplexer, and the optical signal is converted into an electrical signal by a receiving circuit corresponding to each subscriber.

局内装置から加入者に送られる光信号は従来技術のまま
で可能なので記載を略す。
Since the optical signal sent from the in-office equipment to the subscriber can be done using conventional technology, the description thereof will be omitted.

〔作用〕[Effect]

本発明の方法では、各加入者送信光信号はそれぞれ割り
当てられた別個の波長に分割して遠隔装置に送られ、遠
隔装置のスターカプラで前記光信号は合波・波長多重化
されて局内装置に送られ、局内装置の分波器で各加入者
送信光信号に分波されて電気信号に変換される。したが
って従来のスペクトラム拡散伝送方式で問題になった各
加入者送信装置の波長の不均一性や不安定性による障害
(同期確立時間が長くかかる、S/N劣化を招く等)が
起こらない、また、各加入者装置に必要な光源の波長同
一性を確保するための光源の選別、遠隔装置に設ける各
加入者送信光信号用のアイソレータ、あるいはスペクト
ラム拡散変復調装置を必要としないのでコスト低減が図
れる。
In the method of the present invention, each subscriber's transmitted optical signal is divided into separate allocated wavelengths and sent to a remote device, and the star coupler of the remote device multiplexes and wavelength-multiplexes the optical signals to the local device. The signal is sent to the station, and is demultiplexed by a demultiplexer in the in-office equipment into optical signals transmitted by each subscriber and converted into electrical signals. Therefore, problems caused by wavelength non-uniformity and instability of each subscriber's transmitter, which were problems with conventional spread spectrum transmission systems, do not occur (such as taking a long time to establish synchronization, causing S/N deterioration, etc.). Costs can be reduced because there is no need for selection of light sources to ensure the wavelength identity of the light sources required for each subscriber device, an isolator for the optical signal transmitted by each subscriber provided in the remote device, or a spread spectrum modulation/demodulation device.

〔実施例〕〔Example〕

以下、第1図に示す本発明の一実施例を説明する。従来
例と同じように1個の局内装置1と遠隔装置3が1本の
光フアイバ伝送路2で接続され、遠隔装置3にはn個の
加入者装置5−1〜5−0がそれぞれの光フアイバ伝送
路4−z〜4−、を介して接続される。加入者装置は5
−1〜5−l、に示す装置と同様の構成である。
An embodiment of the present invention shown in FIG. 1 will be described below. As in the conventional example, one in-office device 1 and remote device 3 are connected by one optical fiber transmission line 2, and n subscriber devices 5-1 to 5-0 are connected to each remote device 3. They are connected via optical fiber transmission lines 4-z to 4-. There are 5 subscriber devices
It has the same configuration as the devices shown in -1 to 5-l.

まず、局内装置1から各加入者装置5−1〜5−9へ送
られる信号伝送について説明する。光送信回路8から送
信される波長λ1の光信号は分波器9゜光フアイバ伝送
路2を介して遠隔装置3へ送られる。遠隔装置3にある
分波器10により局内装置1から送られてきた波長λ1
の多重化信号は時分割光スイツチ部31に入力される。
First, signal transmission sent from the in-office device 1 to each subscriber device 5-1 to 5-9 will be explained. An optical signal having a wavelength λ1 transmitted from the optical transmission circuit 8 is sent to the remote device 3 via a demultiplexer 9° and an optical fiber transmission line 2. The wavelength λ1 sent from the local device 1 by the demultiplexer 10 in the remote device 3
The multiplexed signal is input to the time division optical switch section 31.

この時分割光スイツチ部31は従来例と同じ様に波長λ
lの光信号を受信回路で電気信号に変換復調し、その復
調出力からフレーム同期回路で光多重分離のための同期
信号をとり出し、その同期信号で時分割光スイツチ駆動
制御回路を制御する。こうして制御された時分割光スイ
ッチにより入力情報信号INz〜INnはそれぞれの加
入者用光ファイバ4−1〜4−nに順次分波伝送され、
それぞれの加入者装置5−1〜5−nへ送られ、各加入
者装置5−z〜5−nに設けた光受信回路で変換復調す
る。
This time-division optical switch section 31 has a wavelength λ as in the conventional example.
The receiving circuit converts and demodulates the optical signal of 1 into an electric signal, and from the demodulated output, a frame synchronization circuit extracts a synchronization signal for optical multiplexing and demultiplexing.The synchronization signal controls the time division optical switch drive control circuit. The input information signals INz to INn are sequentially demultiplexed and transmitted to the respective subscriber optical fibers 4-1 to 4-n by the time-division optical switches controlled in this manner.
The signal is sent to each subscriber device 5-1 to 5-n, and is converted and demodulated by an optical receiving circuit provided in each subscriber device 5-z to 5-n.

次に各加入者装置5−1〜5−0から局内装置1へ送ら
れる信号伝送について説明する。各加入者装置i! 5
− t〜5−0に割り当てた波長λzl〜λXnを発振
光信号波長とする送信回路24−1〜24−nによりそ
れぞれの加入者入力情、報信号I N1’〜工Nn′が
そぞれ対応する波長λ21〜λ2nに変換され、それぞ
れの分波器18−1〜18−nと加入者用光ファイバ4
−1〜4−0を介して遠隔装置3へ送られる。
Next, signal transmission sent from each subscriber device 5-1 to 5-0 to the in-office device 1 will be explained. Each subscriber device i! 5
- The respective subscriber input information and information signals IN1' to Nn' are transmitted by the transmitting circuits 24-1 to 24-n whose oscillation optical signal wavelengths are the wavelengths λzl to λXn assigned to t to 5-0, respectively. The wavelengths are converted into corresponding wavelengths λ21 to λ2n, and connected to the respective demultiplexers 18-1 to 18-n and the subscriber optical fiber 4.
-1 to 4-0 to the remote device 3.

遠隔装置3では、波長λ21〜λ2oの光信号がそれぞ
れ対応する分波器17−1〜17−0を介して1対n光
スターカブラ26で合波される。ここで従来例のように
分波器17−1〜17−nと1対n光スターカプラ26
との間にそれぞれアイソレータを挿入することは必要な
い。なぜならば、各分波器はそれぞれに割り当てられた
波長の光信号のみに通過させるバンドパスフィルタとし
て作用しているため、各分波器に割り当てられた以外の
波長の光信号は分波器でカットされ各加入者装置へ他の
加入者入力情報信号がもれこむことがない、これは本発
明の方式の特徴の一つである。合波された各加入者入力
情報信号INI’〜I Nn’は光フアイバ伝送路2を
通って局内装置1へ送られ、局内装置1の分波器9でそ
れぞれの加入者入力情報信号に分波され、それぞれ加入
者に対応する光受信回路27z〜27nで電気信号に変
換復調される。
In the remote device 3, optical signals with wavelengths λ21 to λ2o are multiplexed by a 1:n optical star coupler 26 via corresponding demultiplexers 17-1 to 17-0, respectively. Here, as in the conventional example, the demultiplexers 17-1 to 17-n and the 1-to-n optical star coupler 26
It is not necessary to insert an isolator between the two. This is because each demultiplexer acts as a bandpass filter that only passes optical signals with wavelengths assigned to it, so optical signals with wavelengths other than those assigned to each demultiplexer are passed through the demultiplexer. One of the features of the system of the present invention is that the input information signals of other subscribers are not cut and leaked to each subscriber device. The multiplexed subscriber input information signals INI' to INn' are sent to the in-office equipment 1 through the optical fiber transmission line 2, and are separated into respective subscriber input information signals by the demultiplexer 9 in the in-office equipment 1. The signals are then converted into electrical signals and demodulated by optical receiving circuits 27z to 27n corresponding to each subscriber.

以上のようにして局−光加入者間は遠隔装置を経由して
双方向伝送を行う。
As described above, bidirectional transmission is performed between the station and the optical subscriber via the remote equipment.

なお各加入者装置から送信する光源には半導体レーザの
発振波長を選別して用いることができるが、発光ダイオ
ードや例えば白色光源等の光信号をフィルタで切り出し
て用いることも可能である。
Although the oscillation wavelength of a semiconductor laser can be selected and used as the light source transmitted from each subscriber device, it is also possible to cut out the optical signal of a light emitting diode, for example, a white light source, etc. with a filter and use it.

ここで1局から加入者装置へ送る光信号の波長λlと各
加入者装置から局へ送る光信号の波長λ21〜λtnの
関係と局内装置の分波器9の構成について述べる。第3
図(a)、(b)に本実施例で適用を考えている波長λ
1とλ21〜λ2oの関係を示すスペクトラム同図(c
)に分波器9の構成の概略図を示す。第3図(a)、(
b)かられかるように波長λ1に対し波長λ21〜λ2
nを1グループとして扱えるような波長スペクトラムの
関係を作る。前記のようなスペクトラムの関係より分波
器9として(C)に示す構成を考えることができる。
Here, the relationship between the wavelength λl of the optical signal sent from one station to the subscriber unit and the wavelengths λ21 to λtn of the optical signals sent from each subscriber unit to the station, and the configuration of the demultiplexer 9 of the in-office unit will be described. Third
Figures (a) and (b) show the wavelength λ considered to be applied in this example.
1 and the spectrum showing the relationship between λ21 and λ2o (c
) shows a schematic diagram of the configuration of the duplexer 9. Figure 3 (a), (
b) As can be seen from the diagram, the wavelengths λ21 to λ2 are different from the wavelength λ1.
Create a wavelength spectrum relationship that allows n to be treated as one group. From the above-mentioned spectral relationship, the configuration shown in (C) can be considered as the duplexer 9.

方向性結合器やグレーティング素子等で構成可能な合分
波器33を介して局送信の光時分割多重化信号λ工は光
フアイバ伝送路2へ送られ、光フアイバ伝送路2を経由
して送られてくる加入者入力情報光信号λ2工〜λ2n
は分波器32へ送られる。
The optical time division multiplexed signal λ signal transmitted from the station is sent to the optical fiber transmission line 2 via the multiplexer/demultiplexer 33 which can be configured with a directional coupler, grating element, etc. Incoming subscriber input information optical signal λ2~λ2n
is sent to the duplexer 32.

分波器32はマツハツエンダ型干渉計やチューナプル光
フィルタで構成されており、これにより波長多重化され
て送られてきた加入者入力情報光信号λ21〜λInは
それぞれの光信号に分波され、各受信回路27z〜27
.へ送られる。
The demultiplexer 32 is composed of a Matsuhatsu Enda interferometer and a tuner pull optical filter, whereby the wavelength-multiplexed and sent subscriber input information optical signals λ21 to λIn are demultiplexed into respective optical signals. Each receiving circuit 27z~27
.. sent to.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、局内から各加入者装置内への光伝送に
は従来技術をそのまま用い、各加入者装置内から局内へ
の光伝送を行うに際し、各加入者装置に対応するそれぞ
れ波長の異なる光信号を割り当て、従来技術で用いる光
フアイバ伝送路を用いて局内へ伝送後、各加入者からの
光信号に分波して双方向伝送を行うもので、その結果、
同期確立時間が不要となり、かつ高S/Nを図ることが
できる。
According to the present invention, the conventional technology is used as is for optical transmission from inside the station to inside each subscriber equipment, and when performing optical transmission from inside each subscriber equipment to inside the office, each wavelength corresponding to each subscriber equipment is used. Different optical signals are allocated and transmitted within the office using the optical fiber transmission line used in conventional technology, and then split into optical signals from each subscriber for bidirectional transmission.As a result,
There is no need for synchronization establishment time, and a high S/N ratio can be achieved.

さらに、実施例(第1図)でも述べたように、従来技術
では必要となる遠隔装置内のアイソレータが不要となる
のでコスト低減が図れる。
Furthermore, as described in the embodiment (FIG. 1), the isolator in the remote device, which is required in the prior art, is not required, so cost can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例になる加入者線光遠隔多重伝
送方式のブロック図、第2図は従来の加入者線光遠隔多
重伝送方式の概略ブロック図、第3図(a)、(b)は
動入力光時分割多重化信号と加入者入力情報光信号の波
長スペクトラ11図、同図(c)は分波器9の構成の概
略ブロック図である・               
       γゝ・I 代理人 弁理士 小川勝馬ゝ、−7 (−一)′ 茅2図
FIG. 1 is a block diagram of a subscriber line optical remote multiplex transmission system according to an embodiment of the present invention, FIG. 2 is a schematic block diagram of a conventional subscriber line optical remote multiplex transmission system, and FIG. (b) is a wavelength spectrum 11 diagram of the dynamic input optical time division multiplexed signal and the subscriber input information optical signal, and (c) is a schematic block diagram of the configuration of the demultiplexer 9.
γゝ・I Agent Patent Attorney Katsuma Ogawa ゝ, -7 (-1)' Kaya 2

Claims (1)

【特許請求の範囲】[Claims] 1、局内装置の光送信回路より波長λ_1の光時分割多
重化信号を遠隔装置に送り、遠隔装置では時分割光スイ
ッチにより前記光時分割多重化信号を各加入者に分配伝
送し、各加入者装置受信部で前記遠隔装置から分配され
た波長λ_1の光信号を電気信号に変換し、逆に各加入
者装置送信部では各加入者に割り当てた個別の波長λ_
2_1〜λ_2_nの光信号を用いて遠隔装置に送り、
遠隔装置では前記波長λ_2_1〜λ_2_nの加入者
送信信号をn対1スターカプラーで合波し局内装置へ伝
送し、局内装置では合波された加入者送信々号を分波し
、各加入者に割り当てた光受信回路で前記各加入者送信
信号を電気信号に変換し、双方向伝送を行うことを特徴
とする加入者線光遠隔多重伝送方式。
1. An optical time division multiplexed signal of wavelength λ_1 is sent from the optical transmission circuit of the in-office device to a remote device, and the remote device distributes and transmits the optical time division multiplexed signal to each subscriber using a time division optical switch. The subscriber device receiving section converts the optical signal of wavelength λ_1 distributed from the remote device into an electrical signal, and conversely, each subscriber device transmitting section converts the optical signal of wavelength λ_1 distributed from the remote device into an electrical signal, and conversely, the optical signal of wavelength λ_1 assigned to each subscriber is converted into an electrical signal.
2_1 to λ_2_n to a remote device using optical signals;
In the remote equipment, the subscriber transmission signals of wavelengths λ_2_1 to λ_2_n are multiplexed by an n:1 star coupler and transmitted to the in-office equipment, and the in-office equipment demultiplexes the multiplexed subscriber transmission signals and sends them to each subscriber. A subscriber line optical remote multiplex transmission system characterized in that an assigned optical receiving circuit converts the signals transmitted by each subscriber into electrical signals and performs bidirectional transmission.
JP62283272A 1987-11-11 1987-11-11 Subscriber line optical remote multiplexing system Expired - Lifetime JP2539468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62283272A JP2539468B2 (en) 1987-11-11 1987-11-11 Subscriber line optical remote multiplexing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62283272A JP2539468B2 (en) 1987-11-11 1987-11-11 Subscriber line optical remote multiplexing system

Publications (2)

Publication Number Publication Date
JPH01126027A true JPH01126027A (en) 1989-05-18
JP2539468B2 JP2539468B2 (en) 1996-10-02

Family

ID=17663307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62283272A Expired - Lifetime JP2539468B2 (en) 1987-11-11 1987-11-11 Subscriber line optical remote multiplexing system

Country Status (1)

Country Link
JP (1) JP2539468B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823309A (en) * 1994-07-08 1996-01-23 Nec Corp Two-way optical catv system and two-way communication method
JP2006319899A (en) * 2005-05-16 2006-11-24 Oki Electric Ind Co Ltd Optical communication system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823309A (en) * 1994-07-08 1996-01-23 Nec Corp Two-way optical catv system and two-way communication method
JP2006319899A (en) * 2005-05-16 2006-11-24 Oki Electric Ind Co Ltd Optical communication system
JP4682692B2 (en) * 2005-05-16 2011-05-11 沖電気工業株式会社 Optical communication system

Also Published As

Publication number Publication date
JP2539468B2 (en) 1996-10-02

Similar Documents

Publication Publication Date Title
US7171123B2 (en) Method for decreasing and compensating the transmission loss at a wavelength-division-multiplexed passive optical network and an apparatus therefor
JP3117018B2 (en) Network equipment
KR100547709B1 (en) Self-Healing Wavelength Division Multiplexing Passive Optical Subscriber Network
US6198721B1 (en) Method and system for data transmission in a ring network
EP0762689B1 (en) Optical branching apparatus and tranmission line setting method therefor
JP3262453B2 (en) Information sharing method, line allocation method, and communication system using the same
JPH08167877A (en) Optical network and relay node
US8625993B2 (en) Wavelength-switched optical add-drop multiplexer with wavelength broadcasting capability
JP3549716B2 (en) Optical ADM device
KR100400362B1 (en) Apparatus for optical add drop multiplexing and WDM optical network comprising it
KR100960110B1 (en) Optical Backhaul Network for Wireless Broadband Service
CN103001725A (en) Noise reduction in optical communications networks
JP3132420B2 (en) WDM optical transmission equipment
JP2006054874A (en) Wideband optical module and passive optical subscriber network using same
JPH01126027A (en) Optical remote multiplex transmission system for subscriber line
JPH09289488A (en) Optical undersea branch device
KR100429042B1 (en) Bidirectional wavelength division multiplexed self-healing ring network composed of a add fiber and a drop fiber
JP3039430B2 (en) Optical add / drop circuit and optical transmission method
CN101399609B (en) Light branch system and light shunt procedure
JPH02272848A (en) Optical signal distribution/selection device
JP2001189712A (en) Wavelength multiple optical transmission system, device and method
JPH08265807A (en) Cross connector
JP2005348311A (en) Optical communication method and optical transmission apparatus
KR0134925B1 (en) An optic multiplexer
JP2599823B2 (en) Optical communication method