JPH0112549Y2 - - Google Patents

Info

Publication number
JPH0112549Y2
JPH0112549Y2 JP1982190937U JP19093782U JPH0112549Y2 JP H0112549 Y2 JPH0112549 Y2 JP H0112549Y2 JP 1982190937 U JP1982190937 U JP 1982190937U JP 19093782 U JP19093782 U JP 19093782U JP H0112549 Y2 JPH0112549 Y2 JP H0112549Y2
Authority
JP
Japan
Prior art keywords
voltage
bobbin
winding
divided
windings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982190937U
Other languages
Japanese (ja)
Other versions
JPS5995797U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19093782U priority Critical patent/JPS5995797U/en
Publication of JPS5995797U publication Critical patent/JPS5995797U/en
Application granted granted Critical
Publication of JPH0112549Y2 publication Critical patent/JPH0112549Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Rectifiers (AREA)
  • Details Of Television Scanning (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

【考案の詳細な説明】 本考案はテレビジヨン受像機のような陰極線管
装置に使用される高圧発生装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in high pressure generators used in cathode ray tube devices such as television receivers.

高圧コイル(2次コイル)を複数個に分割し、
各分割高圧巻線をそれぞれ整流用ダイオードを介
して直列に接続した構成のダイオード分割方式の
高圧発生装置は従来より知られている。第1図は
マルチシングラー方式と呼ばれている従来のダイ
オード分割方式の高圧発生装置の一例を示し、円
筒状低圧ボビンB0に巻回された低圧コイル(1
次コイル)L1の外周に複数の分離用つば部を有
する同じく円筒状高圧ボビンB1に巻回された3
つの分割高圧巻線H1〜H3を同軸状に配列した構
成を有し、巻線H1の巻取り端と巻線H2の巻始め
端との間、巻線H2の巻終り端と巻線H3の巻始め
端との間、および巻線H3の巻終り端にそれぞれ
整流用ダイオードD1,D2およびD3が接続され、
ダイオードD3のカソード側より直流高圧出力EHV
を取出すものである。また、第2図は各分割高圧
巻線H1〜H3をそれぞれ直径の異なる円筒状高圧
ボビンB1〜B3に巻回し、低圧コイルL1の外周に
順次に同軸的に多層に配列した従来のダイオード
分割方式多層同軸型高圧発生装置の一例を示す。
図中、Cはコアを示す。
Divide the high voltage coil (secondary coil) into multiple pieces,
2. Description of the Related Art A diode-divided high-voltage generating device in which each divided high-voltage winding is connected in series through a rectifying diode is conventionally known. Figure 1 shows an example of a conventional diode split type high voltage generator called the multi-singler type, in which a low voltage coil ( 1
Next coil) L 1 is wound around the same cylindrical high-pressure bobbin B 1 , which has multiple separating collars on the outer periphery of L 1.
It has a configuration in which two divided high-voltage windings H 1 to H 3 are arranged coaxially, and there is a winding end between the winding end of winding H 1 and the winding start end of winding H 2 , and a winding end of winding H 2 . Rectifier diodes D 1 , D 2 and D 3 are connected between and the winding start end of the winding H 3 and the winding end of the winding H 3 , respectively.
DC high voltage output E HV from the cathode side of diode D 3
It is for extracting. In addition, Fig. 2 shows that each divided high-voltage winding H 1 to H 3 is wound around a cylindrical high-voltage bobbin B 1 to B 3 with different diameters, and is sequentially arranged coaxially in multiple layers around the outer periphery of a low-voltage coil L 1 . An example of a conventional diode-divided multilayer coaxial high-voltage generator is shown.
In the figure, C indicates a core.

一般に、この種の高圧発生装置の性能を向上さ
せるにはダイオードによる分割数を多くすればよ
い。しかしながら、分割数を多くすると、第1図
のマルチシングラー方式では高さ方向(長さ方
向)の寸法が大きくなり、また第2図の多層同軸
方式では径方向の寸法が大きくなり、装置全体が
大型化する欠点がある。従つて、上記欠点をなく
す方法として第1図と第2図の構成を組み合せた
第3図の構成が考えられる。すなわち、第1図の
マルチシングラー方式を多層にすることである。
具体的には、高圧コイルを6つに分割したとする
と、第1ないし第3の分割高圧巻線H1〜H3を第
1の高圧ボビンB1に分割巻きし、その外周に第
4ないし第6の分割高圧巻線H4〜H6を分割巻き
した直径の大きな第2の高圧ボビンB2を同軸的
に配列し、多層構造としたものである。
Generally, the performance of this type of high voltage generator can be improved by increasing the number of divisions by diodes. However, if the number of divisions is increased, the height direction (length direction) of the multi-singular system shown in Figure 1 increases, and the radial dimension of the multilayer coaxial system shown in Figure 2 increases, making the entire device larger. There is a drawback of increasing the size. Therefore, as a way to eliminate the above drawbacks, the configuration shown in FIG. 3, which is a combination of the configurations shown in FIGS. 1 and 2, can be considered. That is, the multi-singular system shown in FIG. 1 is made into multiple layers.
Specifically, if the high-voltage coil is divided into six parts, the first to third divided high-voltage windings H1 to H3 are dividedly wound around the first high-voltage bobbin B1 , and the fourth to third divided high-voltage windings H1 to H3 are wound around the first high-voltage bobbin B1. A second high-voltage bobbin B2 having a large diameter, in which sixth divided high-voltage windings H4 to H6 are wound in sections, is arranged coaxially to form a multilayer structure.

上記構成によれば、ダイオード分割数が多くな
り、しかも径方向に僅かに寸法が大きくなるだけ
であるので、非常に有益な方法であるが、実際に
は下側層の巻線H1とH2間および巻線H2とH3
に接続されるダイオードD1およびD2を配置する
ためのスペースがなく、実現に問題がある。
According to the above configuration, the number of diode divisions is increased and the size is only slightly increased in the radial direction, so it is a very useful method, but in reality the lower layer windings H 1 and H There is no space for placing the diodes D 1 and D 2 , which are connected between them and between the windings H 2 and H 3 , which is problematic in their implementation.

本考案は上記点に鑑みてなされたもので、2層
目以後の高圧ボビンは2つに分割して中間部分を
なくし、1層目の分割高圧巻線間に接続されるダ
イオードをこの部分に配置するようにした高圧発
生装置を提供することをその目的とするものであ
る。
The present invention was made in view of the above points, and the high voltage bobbin from the second layer onwards is divided into two parts, eliminating the middle part, and the diode connected between the divided high voltage windings of the first layer is connected to this part. It is an object of the present invention to provide a high pressure generating device which is arranged in such a manner that the

以下、本考案の一実施例につき添付図面を参照
して詳細に説明する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the accompanying drawings.

第4図は本考案の一実施例を示す概略構成図
で、図示するように第1ないし第3の分割高圧巻
線H1〜H3は分離用つば部を有する第1の高圧ボ
ビンB1に分割巻きし、その外周に同軸的に配列
される2層目の高圧ボビンはB2とB3の2つに分
割し、かつ中央部分には高圧ボビンが配置されな
いようにする。高圧ボビンB2とB3は同じ直径を
有し、これらに巻回される第4および第5の分割
高圧巻線H4およびH5はそれらの巻巾および巻回
数を第1および第3の分割高圧巻線H1およびH3
とほぼ同じにし、第2の分割高圧巻線H2は巻線
H1,H3とは巻回方向を逆にし、巻回数は本実施
例では約2倍であるがその巻巾は2倍よりも短か
くなつている。具体的には、第5図に示すよう
に、第2の分割高圧巻線H2以外の高圧巻線を巻
回するボビンは単位あたりの巻数に対して長いボ
ビン長を有する。一方、巻線H2を巻回するボビ
ンは単位あたりの巻数に対して短かいボビン長を
有する。これは巻線H1とH4、およびH3とH5
多層構造を取るためできるだけボビン径方向の寸
法をおさえる必要があり、従つて径方向の巻数を
減らし、その分をボビン長を若干長くして巻回
し、ボビン径方向の寸法を小さくしているのであ
る。これに対し、巻線H2はその外周に上部層が
ないからボビン径方向の寸法が若干大きくなつて
も問題がなく、従つてボビン長を短かくして径方
向の巻数を多くしているのである。巻線H2のボ
ビン長が短かくできることによつて、巻線H1
H3のボビン長が長くなつた分がほぼ相殺でき、
全体のボビン長は長くならない。また、巻線H2
は低圧コイルL1の中央位置にあるので低圧コイ
ルL1とのリーケージインダクタンスが他の巻線
より小さくなり、従つて巻線の径が大きくなつて
もリーケージインダクタンスが大きくなることを
おさえることができる。
FIG. 4 is a schematic configuration diagram showing an embodiment of the present invention, and as shown in the figure, the first to third divided high voltage windings H 1 to H 3 are attached to a first high voltage bobbin B 1 having a separating collar. The second layer of high-pressure bobbins arranged coaxially around the outer circumference is divided into two parts , B2 and B3 , and no high-pressure bobbin is placed in the center. The high-voltage bobbins B 2 and B 3 have the same diameter, and the fourth and fifth divided high-voltage windings H 4 and H 5 wound on them have the same winding width and number of windings as the first and third. Split high voltage winding H 1 and H 3
and the second divided high voltage winding H2 is the winding
The winding direction of H 1 and H 3 is reversed, and the number of windings is approximately twice in this embodiment, but the winding width is shorter than twice. Specifically, as shown in FIG. 5, the bobbin around which high voltage windings other than the second divided high voltage winding H2 are wound has a long bobbin length relative to the number of turns per unit. On the other hand, the bobbin around which the winding H 2 is wound has a short bobbin length relative to the number of turns per unit. This is because the windings H 1 and H 4 and H 3 and H 5 have a multilayer structure, so it is necessary to reduce the radial dimension of the bobbin as much as possible. The winding is made longer and the radial dimension of the bobbin is reduced. On the other hand, winding H2 does not have an upper layer on its outer periphery, so there is no problem even if the bobbin's radial dimension becomes slightly larger, so the bobbin length is shortened and the number of radial turns is increased. . By shortening the bobbin length of winding H 2 , the length of winding H 1 and
The longer bobbin length of H 3 can be almost offset.
The overall bobbin length does not increase. Also, winding H 2
Since it is located at the center of the low voltage coil L1 , the leakage inductance with the low voltage coil L1 is smaller than that of other windings, so even if the diameter of the winding becomes large, leakage inductance can be prevented from increasing. .

本考案では上記のように構成したので、内側層
の分割高圧巻線H1の巻終り端と巻線H2の巻始め
端間に、および巻線H2の巻終り端と巻線H3の巻
始め端間にそれぞれ接続されるダイオードD1
よびD2を巻線H2の外側に配置し、収容すること
ができ、上記したダイオードの配置場所の問題は
全くなくなる。一方、上記本考案の構成によれ
ば、多層構造となる巻線H1とH4、およびH3
H5はそれぞれコアZ軸方向(巻線の巻巾方向)
に対して発生パルスの増加量は同一であり、各点
の層間にかかる交流分はほぼ0となる。また、中
間の巻線H2は巻回方向が逆であるので巻線H1
接近する側に正パルスが発生し、巻線H3と接近
する側に負パルスが発生する。従つて、H1とH4
およびH3とH5の多層構造を取る部分では層間分
布容量が交流に対しては等価的に0となり、巻線
H2とその他の巻線との分布容量も近接する巻線
端の発生パルスが、第6図に示すように、同じ極
性となるので等価的に0となる。かくして、共振
周波数に対する容量分が小さくなるので高次共振
が可能となり、性能が一段と向上することにな
る。さらに、多層構造を取つており、第1の分割
高圧巻線H1の巻始め端をアースしている(0電
位にしている)ので、必然的に巻線H4の巻始め、
H3の巻終り、およびH5の巻終り端が直流出力と
なり、従つて最終出力にダイオードを接続する必
要なしに直流高圧出力EHVに直接取出せ、コスト
ダウンが可能となる。さらに、巻線H4の巻始め、
H3の巻終り、H5の巻終り端が直流レベルとなつ
ているので、対外部に対する分布容量を無視する
ことができ高周波同調が可能となり、交流パルス
耐圧に対しても有利となる。その上、コアの全長
をおさえることができるので、装置全体の小型化
が可能になる等の多くのすぐれた利点がある。
Since the present invention is configured as described above, there is a gap between the end of the divided high voltage winding H1 of the inner layer and the beginning of the winding H2 , and between the end of the end of the winding H2 and the winding H3 . The diodes D1 and D2 , which are respectively connected between the winding start ends of the winding H2, can be arranged and housed outside the winding H2 , and the above-mentioned problem of where to arrange the diodes is completely eliminated. On the other hand, according to the configuration of the present invention, the windings H 1 and H 4 and H 3 and H 3 have a multilayer structure.
H 5 is the core Z-axis direction (winding width direction)
However, the amount of increase in the number of generated pulses is the same, and the amount of alternating current applied between the layers at each point is approximately zero. Furthermore, since the winding direction of the intermediate winding H2 is opposite, a positive pulse is generated on the side approaching the winding H1 , and a negative pulse is generated on the side approaching the winding H3 . Therefore, H 1 and H 4
In the multilayered structure of H3 and H5 , the interlayer distributed capacitance is equivalently 0 for AC, and the winding
The distributed capacitance between H 2 and the other windings is equivalently zero since the pulses generated at the ends of the windings adjacent to each other have the same polarity as shown in FIG. In this way, the capacitance relative to the resonant frequency becomes smaller, allowing higher-order resonance and further improving performance. Furthermore, since it has a multilayer structure and the winding start end of the first divided high-voltage winding H1 is grounded (set to 0 potential), the winding start of the winding H4 ,
The end of the winding of H3 and the winding end of H5 serve as DC outputs, so it is possible to directly take out the DC high voltage output EHV without the need to connect a diode to the final output, making it possible to reduce costs. Furthermore, the beginning of winding H 4 ,
Since the end of the winding of H3 and the end of the winding of H5 are at the DC level, distributed capacitance to the outside can be ignored, high frequency tuning is possible, and it is also advantageous for AC pulse withstand voltage. Furthermore, since the total length of the core can be kept small, there are many excellent advantages such as the ability to downsize the entire device.

なお、フオーカス電圧EFVは第5図に示すよう
に分割高圧巻線の直流出力部分つまり、巻線H2
の中間、巻線H3,H4の接続ポイントより取出す
ことができる。特に、第2の高圧巻線H2の部分
よりフオーカス電圧を取出す場合には、上層に高
圧ボビンが存在しないので、容易に出力リード線
が引出せる利点がある。
Note that the focus voltage E FV is determined by the DC output portion of the divided high-voltage winding, that is, the winding H 2
It can be taken out from the connection point of windings H 3 and H 4 in the middle of . Particularly, when extracting the focus voltage from the second high-voltage winding H2 , there is an advantage that the output lead wire can be easily drawn out because there is no high-voltage bobbin in the upper layer.

上記実施例では高圧巻線を同軸的に2層に配列
した場合について説明たが、2層以上に多層化す
る場合にも2層目以後の高圧ボビンを2分割し、
中間部分をなくすことによつて同様に本考案が適
用できるものである。その他、必要に応じて種々
の変形、変更がなし得ることはいうまでもない。
In the above embodiment, a case was explained in which the high voltage windings were coaxially arranged in two layers, but in the case of multilayering with two or more layers, the high voltage bobbin after the second layer is divided into two.
The present invention can be similarly applied by eliminating the intermediate portion. It goes without saying that various other modifications and changes can be made as necessary.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のマルチシングラー方式のダイオ
ード分割型高圧発生装置の一例を示す概略構成
図、第2図は従来の多層同軸方式のダイオード分
割型高圧発生装置の一例を示す概略構成図、第3
図はマルチシングラー方式と多層同軸方式を組み
合せた高圧発生装置の一例を示す概略構成図、第
4図は本考案による高圧発生装置の一実施例を示
す概略構成図、第5図はその構造を示す概略図、
第6図は第4図の装置によつて発生されるパルス
の帰線期間側の増加率の変化図である。 H1〜H5:分割高圧巻線、B1〜B3:高圧ボビ
ン、L1:低圧コイル、B0:低圧ボビン。
Fig. 1 is a schematic configuration diagram showing an example of a conventional multi-shingler type diode split type high voltage generator; Fig. 2 is a schematic configuration diagram showing an example of a conventional multilayer coaxial type diode split type high voltage generator;
The figure is a schematic configuration diagram showing an example of a high-pressure generator that combines a multi-singular system and a multilayer coaxial system, Figure 4 is a schematic diagram showing an example of a high-pressure generator according to the present invention, and Figure 5 shows its structure. Schematic diagram showing,
FIG. 6 is a diagram of the rate of increase of the pulses generated by the device of FIG. 4 during the retrace period. H1 to H5 : divided high-voltage winding, B1 to B3 : high-voltage bobbin, L1 : low-voltage coil, B0 : low-voltage bobbin.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 円筒状低圧ボビンに巻回した低圧コイルの外周
に、複数個に分割した高圧コイルの分割高圧巻線
を同軸的に多層に配列し、これら各層の円筒状高
圧ボビンにそれぞれ複数個の分割高圧巻線が巻回
されるダイオード分割方式高圧発生装置におい
て、2層目以後の高圧ボビンを2つに分割して中
間ボビン部分をなくし、1層目の高圧ボビンに巻
回されたボビン中央部分に位置する分割高圧巻線
を露出させ、前記1層目の高圧ボビンに巻回され
た分割高圧巻線間に接続されるダイオードをこの
露出部分に配置してなる高圧発生装置。
On the outer periphery of a low voltage coil wound around a cylindrical low voltage bobbin, divided high voltage windings of a plurality of divided high voltage coils are coaxially arranged in multiple layers, and a plurality of divided high voltage windings are arranged around each layer of the cylindrical high voltage bobbin. In a diode split type high pressure generator where wire is wound, the high pressure bobbin from the second layer onwards is divided into two to eliminate the middle bobbin part, and the bobbin is placed in the center part of the bobbin wound on the first layer high pressure bobbin. A high-voltage generator comprising: exposing a divided high-voltage winding, and arranging a diode connected between the divided high-voltage windings wound on the first-layer high-voltage bobbin in the exposed portion.
JP19093782U 1982-12-17 1982-12-17 High pressure generator Granted JPS5995797U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19093782U JPS5995797U (en) 1982-12-17 1982-12-17 High pressure generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19093782U JPS5995797U (en) 1982-12-17 1982-12-17 High pressure generator

Publications (2)

Publication Number Publication Date
JPS5995797U JPS5995797U (en) 1984-06-29
JPH0112549Y2 true JPH0112549Y2 (en) 1989-04-12

Family

ID=30411286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19093782U Granted JPS5995797U (en) 1982-12-17 1982-12-17 High pressure generator

Country Status (1)

Country Link
JP (1) JPS5995797U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS547378A (en) * 1977-06-20 1979-01-20 Seiko Instr & Electronics Ltd Electronic watch

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS547378A (en) * 1977-06-20 1979-01-20 Seiko Instr & Electronics Ltd Electronic watch

Also Published As

Publication number Publication date
JPS5995797U (en) 1984-06-29

Similar Documents

Publication Publication Date Title
EP0084912B1 (en) High-voltage supply for an x-ray generator
JPH02156513A (en) Method of winding electric winding part
JPH0112549Y2 (en)
KR930005134B1 (en) Flyback transformer
JPH02151008A (en) Method of winding electric winding component
JPS6355311B2 (en)
JPH0216662B2 (en)
JPS6130250Y2 (en)
JPS62239866A (en) Laminated winding flyback transformer
JP2917081B2 (en) Ultra-high voltage transformer secondary winding
JPH0639442Y2 (en) Flyback transformer
JPS5932229Y2 (en) High voltage generator
JPS5936887Y2 (en) High voltage generator
JPS592572A (en) High voltage generator
JPS591434Y2 (en) Bobbin device for high voltage generator
JPS6112653Y2 (en)
JPS645863Y2 (en)
JP3116586B2 (en) Flyback transformer
JPS6123896Y2 (en)
JPH0585023U (en) Winding structure of transformer
JPS63234871A (en) Voltage multiplying type high voltage generating device
JPH08138958A (en) Flyback transformer
JPS5926796Y2 (en) flyback transformer
JPS6227032Y2 (en)
JPH0658853B2 (en) Flyback transformer