JPH0112536B2 - - Google Patents

Info

Publication number
JPH0112536B2
JPH0112536B2 JP15952584A JP15952584A JPH0112536B2 JP H0112536 B2 JPH0112536 B2 JP H0112536B2 JP 15952584 A JP15952584 A JP 15952584A JP 15952584 A JP15952584 A JP 15952584A JP H0112536 B2 JPH0112536 B2 JP H0112536B2
Authority
JP
Japan
Prior art keywords
catalyst
reactor
pipe
oil
mineral oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15952584A
Other languages
Japanese (ja)
Other versions
JPS6135840A (en
Inventor
Katsuhiko Kawakami
Yukimasa Nakamoto
Hideyuki Iseki
Masanao Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOFUTAADO KOGYO KK
TEROTETSUKU KK
Original Assignee
SOFUTAADO KOGYO KK
TEROTETSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOFUTAADO KOGYO KK, TEROTETSUKU KK filed Critical SOFUTAADO KOGYO KK
Priority to JP15952584A priority Critical patent/JPS6135840A/en
Publication of JPS6135840A publication Critical patent/JPS6135840A/en
Publication of JPH0112536B2 publication Critical patent/JPH0112536B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/0025Feeding of the particles in the reactor; Evacuation of the particles out of the reactor by an ascending fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、化学プラントにおける各種塔槽類、
例えば水添脱硫反応器内の、活性の劣化したいわ
ゆる廃触媒等の触媒を交換する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to various towers and tanks in chemical plants,
For example, the present invention relates to a method for replacing a catalyst such as a so-called waste catalyst whose activity has deteriorated in a hydrodesulfurization reactor.

[背景技術とその問題点] 一般に、化学プラントにおける塔槽類には各種
触媒が用いられているが、この触媒は、炭化物、
金属等の堆積に基づく被毒による活性の低下、機
械的強度の低下による破砕、および機器の修繕或
いは検査等のため、交換する必要がある。
[Background technology and its problems] Generally, various catalysts are used in columns and tanks in chemical plants.
Replacement is necessary due to a decrease in activity due to poisoning due to accumulation of metals, etc., fracture due to decrease in mechanical strength, and repair or inspection of equipment.

この触媒交換作業は、プラント稼動停止期間を
できるだけ短くする必要から、工期を短縮する必
要があり、また、使用中の触媒は還元性雰囲気に
あるものが多く、これを触媒交換のために大気に
開放すると、触媒の使用中に付着した炭化物、硫
黄等が酸化するため発熱、発火する等の危険性が
あり、かつ、発火に伴うSOxの発生による人体へ
の影響、更には触媒の粉塵による人体への影響等
を防止しながら適切な交換作業をしなければなら
ない。
This catalyst replacement work needs to shorten the construction period because it is necessary to shorten the plant operation period as much as possible, and the catalyst in use is often in a reducing atmosphere, which is exposed to the atmosphere for catalyst replacement. If opened, there is a risk of heat generation and ignition due to the oxidation of carbides, sulfur, etc. that adhered to the catalyst during use, and there is a danger that the ignition will cause SOx to be generated, which will affect the human body, and furthermore, the human body will be affected by the catalyst dust. Appropriate replacement work must be carried out while preventing any effects on the equipment.

従来は、触媒の抜出しにあたり、比較的小型の
反応器においては、スチーム、空気により再生
し、反応器内で完全に燃焼させ、この後触媒を抜
出す方法が行われているが、反応器内での燃焼再
生であるため、再生時間に長時間を要し、コスト
アツプになるばかりでなく、再生に伴いSOx等の
発生による公害を処理する費用がかかる等の欠点
がある。また、大型の反応器においては、触媒の
酸化による発火等を防止する方法として反応器内
に窒素ガスを供給し、この窒素ガス雰囲気下にて
触媒を抜出すか、或いは、運転停止操作により触
媒を軽油等で湿潤させ、触媒を酸化させないよう
にして抜出す方法が取られている。しかし、前者
の方法においては、触媒抜出し作業中、完全に空
気を遮断することは技術的に困難であり、また、
作業員のエアラインマスクからの空気の流出等に
より、時間と共に触媒が徐々に酸化発熱し、触媒
の抜出し作業中に著しく反応器の中の温度が上昇
したり、SOx等のガスの発生、更には粉塵等によ
り作業環境が極めて悪化し、ときには発火の危険
もある等、必ずしも良好な触媒の交換方法ではな
い。また、軽油等で湿潤させる後者の方法におい
ても、一週間程度の作業期間は有効であるが、そ
れ以上の長期間の作業には必ずしも有効ではな
く、特にかなりの大型の反応器では一週間以上の
かなり長期にわたる抜出し作業をするため、この
方法も万全ではない。
Conventionally, when extracting a catalyst from a relatively small reactor, the method used was to regenerate it with steam or air, completely burn it inside the reactor, and then extract the catalyst. Since regeneration is performed by combustion, it not only takes a long time to regenerate and increases costs, but also has drawbacks such as the cost of dealing with pollution caused by the generation of SOx and the like during regeneration. In addition, in large reactors, as a method to prevent ignition due to oxidation of the catalyst, nitrogen gas is supplied into the reactor and the catalyst is extracted under this nitrogen gas atmosphere, or the catalyst is shut down by an operation shutdown operation. The method used is to moisten the catalyst with light oil or the like and extract it without oxidizing the catalyst. However, in the former method, it is technically difficult to completely shut off air during the catalyst extraction process, and
Due to air leakage from the worker's airline mask, the catalyst gradually oxidizes and generates heat over time, causing the temperature inside the reactor to rise significantly during the catalyst removal process, generating gases such as SOx, and This is not necessarily a good method for replacing the catalyst, as it creates an extremely poor working environment due to dust, and sometimes there is a risk of fire. In addition, the latter method of moistening with light oil etc. is effective for a working period of about one week, but it is not necessarily effective for longer working periods, especially for a fairly large reactor for more than one week. This method is also not perfect, as the extraction process takes quite a long time.

このため、長期の作業期間においても触媒の酸
化による発熱等が発生しない触媒の交換方法が望
まれている。
Therefore, there is a need for a catalyst replacement method that does not generate heat due to oxidation of the catalyst even during long-term operation.

[発明の目的] 本発明の目的は、触媒の酸化防止を長期にわた
つて有効に行うことができ、安全かつ経済的な触
媒の交換方法を提供するにある。
[Object of the Invention] An object of the present invention is to provide a safe and economical catalyst replacement method that can effectively prevent oxidation of a catalyst over a long period of time.

[問題点を解決するための手段および作用] 本発明は、運転停止操作により触媒を軽油等の
鉱油により第一次的に湿潤させた後、第二次的に
触媒の表面を泡層で被覆し、これにより触媒の表
面を完全に被覆して触媒の酸化を防止し、空気の
雰囲気下での作業を可能として前記目的を達成し
ようとするものである。
[Means and effects for solving the problems] The present invention first wets the catalyst with mineral oil such as diesel oil by a shutdown operation, and then secondarily coats the surface of the catalyst with a foam layer. However, this aims to achieve the above object by completely coating the surface of the catalyst to prevent oxidation of the catalyst and making it possible to work in an air atmosphere.

本発明において用いられる鉱油としては、軽
油、灯油、アスフアルテン含有量の少ない芳香属
に富む重油等広範囲なものが含有される。この第
一次的に湿潤させるのに使用される鉱油は蒸留性
状が90%留出温度350℃以下の軽油が好ましいが、
本発明において洗浄油は高温高圧下で使用される
ため、この点はさほど重要でない。また、泡層を
形成する原液としては動物蛋白、鯨油等が用いら
れる。
The mineral oil used in the present invention includes a wide range of mineral oils such as light oil, kerosene, and heavy oil rich in aromatic elements with a low content of asphaltenes. The mineral oil used for this primary wetting is preferably a light oil with a distillation property of 90% and a distillation temperature of 350°C or less,
Since the cleaning oil is used under high temperature and pressure in the present invention, this point is not so important. In addition, animal protein, whale oil, etc. are used as the stock solution for forming the foam layer.

[実施例] 以下、本発明の一実施例を図面に基づいて説明
する。
[Example] Hereinafter, an example of the present invention will be described based on the drawings.

重油等の原料油を供給する供給配管1の途中に
は、開閉弁2およびポンプ3が設けられ、このポ
ンプ3の吐出側には加熱炉4が設けられて所定温
度の加熱ができるようになつている。この加熱炉
4からの出口配管5の途中には、板を挿入して前
後の縁切りを行なえる仕切弁6が設けられるとと
もに、この出口配管5の先端は、触媒が充填され
た水添脱硫用等の反応器7に接続されている。こ
の反応器7の塔底配管8の途中には、前述と同様
な盲板を挿入できる仕切弁9が設けられるととも
に、冷却器10が設けられ、更にその先端は分離
器11の頂部に連結されている。この分離器11
の頂部には途中に開閉弁12を有するフレア配管
13が接続されるとともに、分離器11の気相部
にはガス循環配管14が接続されている。このガ
ス循環配管14の途中にはブロワ15が設けられ
るとともに、ガス循環配管14の先端は、前記ポ
ンプ3と加熱炉4との間において供給配管1に接
続されている。このガス循環配管14には、プラ
ントの運転時には通常水素ガスが流通されてい
る。
An on-off valve 2 and a pump 3 are provided in the middle of a supply pipe 1 that supplies raw material oil such as heavy oil, and a heating furnace 4 is provided on the discharge side of this pump 3 to enable heating to a predetermined temperature. ing. A gate valve 6 is provided in the middle of the outlet pipe 5 from the heating furnace 4, and a plate can be inserted to cut off the front and rear edges. The reactor 7 is connected to the reactor 7, etc. In the middle of the bottom pipe 8 of this reactor 7, a gate valve 9 into which a blind plate similar to that described above can be inserted is provided, and a cooler 10 is also provided, the tip of which is connected to the top of the separator 11. ing. This separator 11
A flare pipe 13 having an on-off valve 12 in the middle is connected to the top of the separator 11, and a gas circulation pipe 14 is connected to the gas phase portion of the separator 11. A blower 15 is provided in the middle of the gas circulation pipe 14, and the tip of the gas circulation pipe 14 is connected to the supply pipe 1 between the pump 3 and the heating furnace 4. Hydrogen gas normally flows through this gas circulation pipe 14 during plant operation.

前記分離器11の液体抜出配管16には、蒸留
塔17の塔央部が接続され、この蒸留塔17には
塔頂配管18および塔底液抜出配管19が設けら
れている。この塔底液抜出配管19の途中にはポ
ンプ20が設けられるとともに、このポンプ20
の吐出側は二股に分岐され、一方は途中に開閉弁
21を有する塔底液次工程供給配管22とされ、
他方は同じく途中に開閉弁23を有する塔底液循
環配管24とされ、この塔底液循環配管24の先
端は、前記供給配管1の開閉弁2とポンプ3との
間に接続されている。
The liquid withdrawal pipe 16 of the separator 11 is connected to the center of a distillation column 17, and the distillation column 17 is provided with a column top pipe 18 and a bottom liquid withdrawal pipe 19. A pump 20 is provided in the middle of this column bottom liquid extraction pipe 19, and this pump 20
The discharge side is branched into two, one being a tower bottom liquid next process supply pipe 22 having an on-off valve 21 in the middle,
The other end is a bottom liquid circulation pipe 24 which similarly has an on-off valve 23 in the middle, and the tip of this bottom liquid circulation pipe 24 is connected between the on-off valve 2 of the supply pipe 1 and the pump 3.

前記供給配管1の塔底液循環配管24の接続部
より上流側で開閉弁2よりも下流側には、途中に
開閉弁25を有する被覆液供給配管26が接続さ
れ、この被覆液供給配管26を介して軽油等の鉱
油が供給されるようになつている。
A coating liquid supply pipe 26 having an on-off valve 25 in the middle is connected to the supply pipe 1 upstream from the connection part of the tower bottom liquid circulation pipe 24 and downstream from the on-off valve 2. Mineral oil such as diesel oil is now supplied through the

前記反応器7の塔頂には、原液供給配管27の
一端が接続され、この原液供給配管27の途中に
は発泡装置28が設けられるとともに、その他端
は原液収納タンク29に接続されている。前記発
泡装置28には、空気吸込管30が設けられ、こ
の空気吸込管30からの空気と原液収納タンク2
9内の泡層形成用の原液31とが発泡装置28内
で一緒にされて発泡するようにされている。発泡
装置28としては、石油類貯蔵タンクの消火用と
して用いられている一般的構造のものが用いられ
る。また、原液収納タンク29内に収納された原
液31としては、動物蛋白、鯨油等が用いられ
る。
One end of a stock solution supply pipe 27 is connected to the top of the reactor 7, a foaming device 28 is provided in the middle of the stock solution supply pipe 27, and the other end is connected to a stock solution storage tank 29. The foaming device 28 is provided with an air suction pipe 30, and the air from the air suction pipe 30 and the stock solution storage tank 2 are
The stock solution 31 for forming a foam layer in 9 is combined in a foaming device 28 and foamed. As the foaming device 28, one having a general structure used for extinguishing petroleum storage tanks is used. Further, as the stock solution 31 stored in the stock solution storage tank 29, animal protein, whale oil, etc. are used.

なお、図中符号31は、反応器7の塔底に設け
られたドレン配管である。
Note that the reference numeral 31 in the figure is a drain pipe provided at the bottom of the reactor 7.

次に、本実施例のプラントにおける触媒の交換
方法につき、第2図をも参照して説明する。
Next, a method for replacing the catalyst in the plant of this example will be explained with reference to FIG. 2 as well.

運転停止操作に入る前に、加熱炉4の加熱温度
を下げて反応器7の温度を200℃程度迄、徐々に
下げる。次いで、供給配管1の開閉弁2を閉止す
るとともに、被覆液供給配管26の開閉弁25を
開いて原料油から軽油等の鉱油に切換える。この
鉱油への切換後、反応器7内の油を適宜サンプリ
ングし、完全に軽油等の鉱油に切換わつたことを
確認し、全系のリサイクル運転を行う。即ち、蒸
留塔17の塔底液抜出配管19に接続された塔底
液次工程供給配管22の開閉弁21を閉止すると
ともに、塔底液循環配管24の開閉弁23を開
き、塔底液抜出配管19から抜出される液体を塔
底液循環配管24を介して供給配管1に戻し、こ
のリサイクル運転を1乃至60時間継続する。
Before starting the operation shutdown operation, the heating temperature of the heating furnace 4 is lowered, and the temperature of the reactor 7 is gradually lowered to about 200°C. Next, the on-off valve 2 of the supply pipe 1 is closed, and the on-off valve 25 of the coating liquid supply pipe 26 is opened to switch from raw oil to mineral oil such as light oil. After switching to mineral oil, the oil in the reactor 7 is appropriately sampled to confirm that the switch has been completely switched to mineral oil such as light oil, and the entire system is operated for recycling. That is, the on-off valve 21 of the bottom liquid next process supply pipe 22 connected to the bottom liquid withdrawal pipe 19 of the distillation column 17 is closed, and the on-off valve 23 of the bottom liquid circulation pipe 24 is opened to remove the bottom liquid. The liquid extracted from the extraction pipe 19 is returned to the supply pipe 1 via the bottom liquid circulation pipe 24, and this recycling operation is continued for 1 to 60 hours.

リサイクル運転の完了と同時に、被覆液供給配
管26の開閉弁25を閉じ、軽油等の鉱油の供給
を停止する。この鉱油の供給停止後、ガス循環配
管14内を流通するリサイクル水素ガスで加熱炉
4、出口配管5、反応器7および塔底配管8内に
存在する余分の鉱油を排除するいわゆるオイルパ
ージを行い、かつ、加熱炉4をシヤツトダウンし
て反応器7の温度を常温近くまで下げる。この
後、フレア配管13の開閉弁12を開いて系内の
水素ガスの排出を行い、かつ、不活性ガス(通常
窒素ガス)で系内を置換し、また、系内圧力を大
気圧近くまで下げる。大気圧近くになつたら、反
応器7の前後の出口配管5および塔底配管8にそ
れぞれ設けられた仕切弁6および仕切弁9に盲板
を投入し、反応器7の前後の縁切りを行う。
At the same time as the recycling operation is completed, the on-off valve 25 of the coating liquid supply pipe 26 is closed, and the supply of mineral oil such as light oil is stopped. After the supply of mineral oil is stopped, a so-called oil purge is performed to remove excess mineral oil present in the heating furnace 4, outlet piping 5, reactor 7, and tower bottom piping 8 using recycled hydrogen gas flowing through the gas circulation piping 14. , and the heating furnace 4 is shut down to lower the temperature of the reactor 7 to near room temperature. After that, open the on-off valve 12 of the flare pipe 13 to discharge the hydrogen gas in the system, replace the system with inert gas (usually nitrogen gas), and bring the pressure in the system to near atmospheric pressure. Lower it. When the pressure becomes close to atmospheric pressure, blind plates are introduced into the gate valves 6 and 9 provided in the outlet pipe 5 and the bottom pipe 8 of the reactor 7, respectively, to cut off the front and rear edges of the reactor 7.

次いで、第2図にも示されるように、反応器7
の塔頂にあるマンホールを開放し、発泡装置28
を駆動して原液収納タンク29内の原液31を原
液供給配管27を介して反応器7内に発泡させた
状態で注入する。この発泡状態の原液31の注入
により、反応器7の触媒層33の上面に所定の厚
さの泡層34が形成されたら、注入作業を完了す
る。この後、空気雰囲気下で、反応器7のマンホ
ールから作業員が入り、反応器7内の触媒を外部
に搬出することとなる。この搬出作業中に泡層3
4の厚さが薄くなつたら、適宜発泡した原液31
の供給追加を行う。
Then, as also shown in FIG.
The manhole at the top of the tower was opened and the foaming device 28
is driven to inject the stock solution 31 in the stock solution storage tank 29 into the reactor 7 through the stock solution supply pipe 27 in a foamed state. When a foam layer 34 of a predetermined thickness is formed on the upper surface of the catalyst layer 33 of the reactor 7 by injection of the foamed stock solution 31, the injection operation is completed. After this, a worker enters through the manhole of the reactor 7 under an air atmosphere and carries out the catalyst inside the reactor 7 to the outside. During this unloading process, the foam layer 3
When the thickness of 4 becomes thinner, foam the stock solution 31 as appropriate.
Additional supply will be made.

なお、搬出作業中に、万一、反応器7の内部の
温度上昇があつたときは、前記操作の内、軽油等
の鉱油の供給からの操作を繰返し、一連に操作が
終つた後に再度触媒の搬出を行う。
If the temperature inside the reactor 7 rises during the unloading operation, repeat the above operations starting from supplying mineral oil such as light oil, and after completing the series of operations, restart the catalyst again. will be carried out.

上述のような本実施によれば、触媒は軽油等の
鉱油により第一次的に湿潤され、触媒内はこの鉱
油で満たされ、この後、この鉱油で満たされた触
媒からなる触媒層33の表面に泡層34が形成さ
れて第二次的に触媒層33の表面が空気から遮断
されるから、触媒の酸化が完全に防止され、触媒
の搬出交換作業時に発熱を生ずることがない。ま
た、この触媒の湿潤および泡被覆操作は、比較的
短時間で行なえるから、作業能率がよく、極めて
経済的である。更に、触媒を湿潤させる軽油等の
鉱油および泡層34の形成用原液31はその量も
比較的少なく、かつ、価格も安価であるから、大
量の窒素ガスを用いる従来法に比べてこの点から
も経済的である。また、触媒を燃焼させるもので
ないから、触媒の燃焼に伴なう公害の発生等を生
じることもなく、かつ、湿潤状態で触媒の抜取り
を行うから粉塵等の発生もなく、安全かつ衛生的
である。更に、空気雰囲気下で作業を行うもので
あるから、酸欠事故等を発生することもなく、こ
の点からも安全な作業環境を確保できる。
According to the present implementation as described above, the catalyst is first wetted with mineral oil such as light oil, the interior of the catalyst is filled with this mineral oil, and then the catalyst layer 33 made of the catalyst filled with this mineral oil is wetted. Since the foam layer 34 is formed on the surface and the surface of the catalyst layer 33 is secondarily shielded from the air, oxidation of the catalyst is completely prevented and no heat is generated during the work of carrying out and replacing the catalyst. Further, since the wetting and foam coating operations of the catalyst can be carried out in a relatively short time, the work efficiency is high and it is extremely economical. Furthermore, since the amount of mineral oil such as light oil that wets the catalyst and the stock solution 31 for forming the foam layer 34 is relatively small and the price is low, it is advantageous from this point of view compared to the conventional method that uses a large amount of nitrogen gas. It is also economical. In addition, since the catalyst does not burn, there is no pollution caused by the combustion of the catalyst, and since the catalyst is removed in a wet state, there is no generation of dust, making it safe and sanitary. be. Furthermore, since the work is carried out in an air atmosphere, accidents such as oxygen deficiency do not occur, and from this point of view as well, a safe work environment can be ensured.

なお、本発明は、前記実施例に示すような水添
脱硫用の反応器等を含むプラントに限らず、他の
形式のプラントにおける触媒の交換作業にも適用
できる。
Note that the present invention is not limited to a plant including a reactor for hydrodesulfurization as shown in the above embodiment, but can also be applied to catalyst replacement work in other types of plants.

[発明の効果] 上述のように本発明によれば、触媒の交換にあ
たり、発熱等を生じることがなく、かつ、安全に
作業を行える触媒の交換方法を提供できるという
効果がある。
[Effects of the Invention] As described above, according to the present invention, it is possible to provide a catalyst replacement method that does not generate heat or the like when replacing the catalyst and can be carried out safely.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施する化学プラント
の一例を示す系統図、第2図はその要部の作動状
態を示す断面図である。 1……供給配管、4……加熱炉、5……出口配
管、6,9……仕切弁、7……反応器、8……塔
底配管、11……分離器、17……蒸留塔、19
……塔底液抜出配管、24……塔底循環配管、2
6……被覆液供給配管、28……発泡装置、29
……原液収納タンク、31……泡層形成用原液、
33……触媒層、34……泡層。
FIG. 1 is a system diagram showing an example of a chemical plant that implements the method of the present invention, and FIG. 2 is a sectional view showing the operating state of the main parts thereof. 1... Supply piping, 4... Heating furnace, 5... Outlet piping, 6, 9... Gate valve, 7... Reactor, 8... Bottom piping, 11... Separator, 17... Distillation column , 19
... Tower bottom liquid extraction piping, 24 ... Tower bottom circulation piping, 2
6... Coating liquid supply piping, 28... Foaming device, 29
...Standard solution storage tank, 31...Standard solution for foam layer formation,
33... Catalyst layer, 34... Foam layer.

Claims (1)

【特許請求の範囲】[Claims] 1 化学プラントの塔槽類内の触媒を鉱油により
第一次的に湿潤させた後、この鉱油で湿潤された
触媒の表面を泡層で第二次的に被覆した状態で触
媒を塔槽類から抜出すことを特徴とする触媒の交
換方法。
1 After first moistening the catalyst in the columns and vessels of a chemical plant with mineral oil, the catalyst is transferred to the columns and vessels with the surface of the catalyst moistened with this mineral oil being secondarily coated with a foam layer. A method for replacing a catalyst, characterized by removing it from a catalyst.
JP15952584A 1984-07-30 1984-07-30 Replacement of catalyst Granted JPS6135840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15952584A JPS6135840A (en) 1984-07-30 1984-07-30 Replacement of catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15952584A JPS6135840A (en) 1984-07-30 1984-07-30 Replacement of catalyst

Publications (2)

Publication Number Publication Date
JPS6135840A JPS6135840A (en) 1986-02-20
JPH0112536B2 true JPH0112536B2 (en) 1989-03-01

Family

ID=15695670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15952584A Granted JPS6135840A (en) 1984-07-30 1984-07-30 Replacement of catalyst

Country Status (1)

Country Link
JP (1) JPS6135840A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5268293A (en) * 1989-03-30 1993-12-07 Cheil Sugar Co., Ltd. Strain of Corynebacterium glutamicum and method for producing L-lysine
JP2010041920A (en) 2006-12-19 2010-02-25 Ajinomoto Co Inc Method for producing l-amino acid
JP2011067095A (en) 2008-01-10 2011-04-07 Ajinomoto Co Inc Method for producing target substance by fermentation process
CN102348806A (en) 2008-01-23 2012-02-08 味之素株式会社 Method of producing l-amino acid
WO2011013707A1 (en) 2009-07-29 2011-02-03 味の素株式会社 Method for producing l-amino acid
JP2012223091A (en) 2009-08-25 2012-11-15 Ajinomoto Co Inc Method for producing l-amino acid

Also Published As

Publication number Publication date
JPS6135840A (en) 1986-02-20

Similar Documents

Publication Publication Date Title
US6129835A (en) System and method for desulfurizing gasoline or diesel fuel to produce a low sulfur-content fuel for use in an internal combustion engine
JP2685247B2 (en) How to remove ammonia
MY116422A (en) Process for reducing total acid number of crude oil
CN205019943U (en) Integration SOx/NOx control reaction tower
JPH0112536B2 (en)
JP3998815B2 (en) How to repair an oil refinery plant
US20030064270A1 (en) Fuel cell system
JPS6128459A (en) Method for replacement of catalyst
JPH11214024A (en) Power generating device for phosphoric acid type fuel cell
JPH0649469A (en) Desulfurizing apparatus and exchange of catalyst
JPS6135839A (en) Replacement of catalyst
JPH06102144B2 (en) How to remove the catalyst
JP2003010641A (en) Method and apparatus for purifying waste gas in coke oven gas treatment
US1592647A (en) Method and means for deactivation of water
JPH0112537B2 (en)
JPS6135844A (en) Method for withdrawal of catalyst
JPS6317498B2 (en)
CN101003747A (en) Method for controlling concentration of sulfureted hydrogen in circulating hydrogen of hydrogenation unit
CN100425324C (en) Top-push decreasing gas desulfurization at normal-pressure and apparatus thereof
JPH0665602B2 (en) Hydrogen production method for distributed fuel cell
JP2003090227A (en) Generation plant with heavy oil reformer and its operating method
JP2554230B2 (en) Combined cycle power generation method
CN206204252U (en) A kind of marsh gas purifying dust arrester
JPH11262652A (en) Method for drawing catalyst
US4849191A (en) Economical, safe, unsupervised method for in-vessel regeneration of iron-oxide sponge used in wastewater-treatment-plant digester-gas scrubbers