JPH0112519Y2 - - Google Patents

Info

Publication number
JPH0112519Y2
JPH0112519Y2 JP1982194603U JP19460382U JPH0112519Y2 JP H0112519 Y2 JPH0112519 Y2 JP H0112519Y2 JP 1982194603 U JP1982194603 U JP 1982194603U JP 19460382 U JP19460382 U JP 19460382U JP H0112519 Y2 JPH0112519 Y2 JP H0112519Y2
Authority
JP
Japan
Prior art keywords
blade
shaft
welded
toe
iron core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982194603U
Other languages
Japanese (ja)
Other versions
JPS5999644U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19460382U priority Critical patent/JPS5999644U/en
Publication of JPS5999644U publication Critical patent/JPS5999644U/en
Application granted granted Critical
Publication of JPH0112519Y2 publication Critical patent/JPH0112519Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)

Description

【考案の詳細な説明】 本考案は回転電機電機子の羽根付き溶接構造シ
ヤフトの構成の改良に関するものである。
[Detailed Description of the Invention] The present invention relates to an improvement in the configuration of a bladed welded structure shaft of an armature of a rotating electric machine.

回転電機電機子を構成する羽根付き溶接構造シ
ヤフトは、電機子の冷却通風効果、低慣性化、軽
量化を図るため、軸方向に通風孔を有する構成と
なつている。従来の構成を第1図(図の右側を電
動機の場合の出力側とする)及び第2図について
説明する。両図において、1はシヤフト、2は羽
根、3は鉄心で、シヤフト1の半径方向に複数枚
の羽根2をすみ肉溶接して取付け、その外周に鉄
心3を嵌着する。両図においては、説明の便宜
上、鉄心3を取除いた状態を示している。上記の
ような構成において、鉄心3の外周に作用するト
ルクによる接線力Tは羽根2を経てシヤフト1に
伝達される。
The bladed welded structure shaft that constitutes the armature of a rotating electric machine has a ventilation hole in the axial direction in order to achieve cooling ventilation effects, lower inertia, and weight reduction of the armature. A conventional configuration will be described with reference to FIG. 1 (the right side of the figure is the output side in the case of an electric motor) and FIG. 2. In both figures, 1 is a shaft, 2 is a blade, and 3 is an iron core. A plurality of blades 2 are attached to the shaft 1 by fillet welding in the radial direction, and the iron core 3 is fitted on the outer periphery of the shaft 1. In both figures, for convenience of explanation, the state in which the iron core 3 is removed is shown. In the above configuration, the tangential force T due to the torque acting on the outer periphery of the iron core 3 is transmitted to the shaft 1 via the blades 2.

ところで、上記のように接線力Tをシヤフト1
に伝達する構成において、強度上の弱点として、
繰返し応力に対する疲労が原因でき裂を生ずるの
は、主として溶接したビードの止端部である。こ
れの一例として第3図に、シヤフト1と羽根2と
を溶接したビードBの羽根側止端部Cからき裂D
を生じた場合を示している。
By the way, as mentioned above, the tangential force T is
As a weak point in strength in the structure that transmits
It is mainly the toe of the welded bead that cracks due to fatigue due to repeated stress. As an example of this, Fig. 3 shows a crack D from the blade side toe C of the bead B where the shaft 1 and the blade 2 are welded.
This shows the case where this occurs.

次に、このような疲労強度の面から問題となる
位置を検討する。鉄心3の外周に接線力Tが作用
することによつて、羽根2の受ける曲げ変形は、
第2図に破線で示すような曲げ変形を受ける。問
題は、この曲げ変形が軸方向に沿つて一様ではな
く羽根端において最大となるところにある。この
様子を第4図及び第5図について簡単に説明す
る。両図において、羽根の数は2枚で、羽根2の
外周を固定とし、シヤフト1がトルクT1を受け
るときの羽根の曲げ変形を模擬的に示したもので
ある。シヤフト1はトルクT1を受けることによ
つて、ある角度ねじられ、これによつて羽根は破
線で示すような曲げ変形を生じる。この際シヤフ
トがねじり変形することから、羽根2の軸方向寸
法が大きくなるにしたがつて、トルクは反トルク
側の羽根端4までは伝達されにくくなる。第6図
に示すように、鉄心3の外周に接線力Tを受ける
羽根付き溶接構造シヤフトの羽根側止端部5にお
ける曲げ応力を有限要素法によつて解析した結果
の一例として、第7図に示す曲線が得られた。す
なわち、第7図において、横軸は羽根側止端部5
の羽根端よりの軸方向位置lを、縦軸は平均値を
1とした場合の曲げ応力比率を示す。この結果に
よれば、曲げ応力の軸方向分布は一様ではなく、
羽根端に向かつて集中する傾向が見受けられ、そ
の最大値は平均値に対して約3倍の値であつた。
この構造的応力集中は、羽根側止端部における疲
労強度に対してかなり有害であることが分かる。
Next, we will examine the locations that pose problems from the perspective of fatigue strength. The bending deformation that the blade 2 undergoes due to the tangential force T acting on the outer periphery of the iron core 3 is as follows:
It undergoes bending deformation as shown by the broken line in FIG. The problem is that this bending deformation is not uniform along the axial direction, but is greatest at the blade ends. This situation will be briefly explained with reference to FIGS. 4 and 5. In both figures, the number of blades is two, the outer periphery of blade 2 is fixed, and the bending deformation of the blade when shaft 1 receives torque T 1 is simulated. The shaft 1 is twisted through a certain angle by being subjected to a torque T 1 , which causes the blade to undergo a bending deformation as shown by the dashed line. At this time, since the shaft is torsionally deformed, as the axial dimension of the blade 2 increases, it becomes difficult for torque to be transmitted to the blade end 4 on the anti-torque side. As shown in FIG. 6, as an example of the results of an analysis using the finite element method of the bending stress at the blade-side toe 5 of a welded shaft with blades that receives a tangential force T on the outer periphery of the iron core 3, FIG. The curve shown in was obtained. That is, in FIG. 7, the horizontal axis represents the blade side toe 5.
The vertical axis shows the bending stress ratio when the average value is set to 1, and the axial position l from the blade end is taken as the vertical axis. According to this result, the axial distribution of bending stress is not uniform;
A tendency to concentrate toward the blade tip was observed, and the maximum value was about three times the average value.
It can be seen that this structural stress concentration is quite detrimental to the fatigue strength at the vane side toe.

上記のように疲労強度の面から問題となる位置
は、羽根端にあることが分かつたので、この点に
ついて上記の従来例について検討する。第1図及
び第2図において、6は羽根2の出力側端部、7
は羽根端6とシヤフト1とを溶接した円周方向ビ
ード、8はビード7の軸側止端部、9は羽根2と
シヤフト1とを溶接した長手方向ビード、10は
ビード9の羽根側止端部、11aは羽根2とシヤ
フト1とを溶接する際に、溶接されない部分が残
つた場合の不溶着部、そして11bはその不溶着
部先端とすれば、上記のように疲労強度の面から
問題となる位置は、主として羽根端6の円周方向
ビード7の軸側止端部8、長手方向ビード9の羽
根側止端部10、及び不溶着部先端11bである
と考えられる。
As mentioned above, it has been found that the location that poses a problem in terms of fatigue strength is at the blade end, so the above-mentioned conventional example will be discussed in this regard. In FIGS. 1 and 2, 6 is the output side end of the blade 2, 7
8 is the circumferential bead where the blade end 6 and the shaft 1 are welded, 8 is the shaft side toe of the bead 7, 9 is the longitudinal bead where the blade 2 and the shaft 1 are welded, and 10 is the blade side stop of the bead 9. Assuming that the end portion 11a is the unwelded part that remains when the blade 2 and the shaft 1 are welded, and 11b is the tip of the unwelded part, from the viewpoint of fatigue strength as described above. It is thought that the problematic positions are mainly the shaft-side toe 8 of the circumferential bead 7 of the blade end 6, the blade-side toe 10 of the longitudinal bead 9, and the unwelded portion tip 11b.

本考案は、羽根端における構造的応力集中を緩
和した構成を採用することによつて、長手方向ビ
ード9の羽根側止端部10に関する疲労強度の改
善を主目的とする。なお、羽根2とシヤフト1と
の不溶着部11aが残つた場合は、不溶着部先端
11bの疲労強度の改善をも目的とするものであ
る。
The main purpose of the present invention is to improve the fatigue strength of the blade toe 10 of the longitudinal bead 9 by adopting a configuration that alleviates the structural stress concentration at the blade end. In addition, when the unwelded part 11a between the blade 2 and the shaft 1 remains, the purpose is also to improve the fatigue strength of the unwelded part tip 11b.

以下、本考案を図示する一実施例について説明
する。
An embodiment illustrating the present invention will be described below.

第8図及び第9図において、1〜3,6,9,
10は第1図及び第2図に示す部材と同一又は同
等の部材を示している。12はセクタであり、羽
根端6において、例えば図示のように溶接により
シヤフト1及び羽根2と結合した構成とする。な
お、セクタ12は中心に円孔をもつ円板として羽
根端6に溶接する形でもよい。
In Figures 8 and 9, 1 to 3, 6, 9,
Reference numeral 10 indicates a member that is the same as or equivalent to the member shown in FIGS. 1 and 2. A sector 12 is connected to the shaft 1 and the blade 2 at the blade end 6 by, for example, welding as shown in the figure. Note that the sector 12 may be welded to the blade end 6 as a disk having a circular hole in the center.

本実施例によるトルク伝達は、従来例と同様に
行われる。ただし、本実施例においては、羽根端
6近傍における羽根2の曲げ変形がセクタ12に
よつて拘束されるため、羽根2の曲げ応力が従来
構成のものより小さくなる。
Torque transmission according to this embodiment is performed in the same manner as in the conventional example. However, in this embodiment, since the bending deformation of the blade 2 near the blade end 6 is restrained by the sector 12, the bending stress of the blade 2 is smaller than that of the conventional structure.

以上述べたように、本考案に係る回転電機電機
子の羽根付き溶接構造シヤフトは、羽根端6近傍
での曲げ応力が低減されるので、羽根側止端部1
0における疲労強度が改善され、第2図に符号1
1bで示す不溶着部先端における疲労強度も改善
されるという極めて優れた効果がある。
As described above, in the bladed welded structure shaft of the rotary electric machine armature according to the present invention, the bending stress in the vicinity of the blade end 6 is reduced, so that the blade side toe 1
The fatigue strength at 0 was improved, and the number 1 is shown in Fig.
This has an extremely excellent effect in that the fatigue strength at the tip of the unwelded portion shown by 1b is also improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の羽根付き溶接構造シ
ヤフトの構成を鉄心を取除いて示すもので、第1
図は正面図、第2図は第1図のA−A′断面側面
図である。第3図は羽根側止端部にき裂を生じた
状態を示す断面側面図、第4図及び第5図はシヤ
フトがトルクを受けることにより羽根の受ける曲
げ変形を模擬的に示すもので、第4図は斜視図、
第5図は側面図である。第6図は鉄心の外周に接
線力Tを受ける羽根付き溶接構造シヤフトの羽根
側止端部における曲げ応力を有限要素法によつて
解析するための斜視図、第7図は有限要素法によ
つて得られた曲げ応力比率曲線図、第8図及び第
9図は本考案の一実施例を示すもので、第8図は
正面図、第9図は第8図のA−A′断面側面図で
ある。 1:シヤフト、2:羽根、6:羽根端、12:
セクタ。
Figures 1 and 2 show the configuration of a conventional bladed welded shaft with the iron core removed.
The figure is a front view, and FIG. 2 is a cross-sectional side view taken along line A-A' in FIG. Figure 3 is a cross-sectional side view showing a state in which a crack has occurred at the toe of the blade, and Figures 4 and 5 are simulations of the bending deformation that the blade undergoes when the shaft receives torque. Figure 4 is a perspective view;
FIG. 5 is a side view. Figure 6 is a perspective view for analyzing the bending stress at the blade-side toe of a welded shaft with blades that receives a tangential force T on the outer periphery of the iron core, and Figure 7 is a perspective view for analyzing the bending stress at the blade-side toe of a shaft that receives a tangential force T on the outer periphery of the iron core. The bending stress ratio curve diagrams obtained in this manner, FIGS. 8 and 9 show one embodiment of the present invention. FIG. 8 is a front view, and FIG. It is a diagram. 1: Shaft, 2: Blade, 6: Blade end, 12:
sector.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 羽根端6近傍において、羽根2とシヤフト1と
をセクタ12で結合したことを特徴とする回転電
機電機子の羽根付き溶接構造シヤフト。
A shaft with a bladed welded structure for an armature of a rotating electric machine, characterized in that a blade 2 and a shaft 1 are connected by a sector 12 in the vicinity of a blade end 6.
JP19460382U 1982-12-22 1982-12-22 Welded structure shaft with vanes for rotating electric machine armature Granted JPS5999644U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19460382U JPS5999644U (en) 1982-12-22 1982-12-22 Welded structure shaft with vanes for rotating electric machine armature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19460382U JPS5999644U (en) 1982-12-22 1982-12-22 Welded structure shaft with vanes for rotating electric machine armature

Publications (2)

Publication Number Publication Date
JPS5999644U JPS5999644U (en) 1984-07-05
JPH0112519Y2 true JPH0112519Y2 (en) 1989-04-12

Family

ID=30418232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19460382U Granted JPS5999644U (en) 1982-12-22 1982-12-22 Welded structure shaft with vanes for rotating electric machine armature

Country Status (1)

Country Link
JP (1) JPS5999644U (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441914B2 (en) * 1972-03-01 1979-12-11
JPS5532442A (en) * 1978-08-28 1980-03-07 Hitachi Ltd Rotor for rotary electric machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441914U (en) * 1977-08-31 1979-03-20
JPS57118645U (en) * 1981-01-13 1982-07-23

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441914B2 (en) * 1972-03-01 1979-12-11
JPS5532442A (en) * 1978-08-28 1980-03-07 Hitachi Ltd Rotor for rotary electric machine

Also Published As

Publication number Publication date
JPS5999644U (en) 1984-07-05

Similar Documents

Publication Publication Date Title
JP2005325839A (en) Hollow vane-shaped part joined by friction stirring and method for it
JPH0112519Y2 (en)
JPH019249Y2 (en)
JPH019248Y2 (en)
JP3236981B2 (en) Motor cooling fan
JP3468642B2 (en) Drive plate structure made of sheet metal
US4025232A (en) Turbomachine rotor assembly
JPS6232201A (en) Structure of cascade of rotary blades in axial flow rotary machine
EP0781928A1 (en) A method of balancing fan rotors, particularly electric fans for use in motor vehicles
JPH03279699A (en) Delta wing propeller fan
US2986375A (en) Bladed wheels for compressors, turbines and the like
JPS6256663A (en) Spoke for driving spoke car of liquid torque converter, which divide output thereof and operate
JPS63124806A (en) Radial flow turbo machine
JPH0141842Y2 (en)
JPH0648898B2 (en) Rotor of salient pole rotating electric machine
JPH04314693A (en) Rotary wing
JPH0622083Y2 (en) Stub damper
JPS61154438A (en) Rotor of rotary electric machine
JP3588076B2 (en) Bag filter fan
JPS60111001A (en) Integral stub blade for turbine
JPH046482Y2 (en)
JPS5943902A (en) Structure of vane having crack at its root
JPS62142806A (en) Connecting device for turbine moving blade
US1862207A (en) Airplane propeller
JPS5943903A (en) Method for generating crack at root of each vane