JPH01124903A - Manufacture of thin film solid electrolyte - Google Patents

Manufacture of thin film solid electrolyte

Info

Publication number
JPH01124903A
JPH01124903A JP62283524A JP28352487A JPH01124903A JP H01124903 A JPH01124903 A JP H01124903A JP 62283524 A JP62283524 A JP 62283524A JP 28352487 A JP28352487 A JP 28352487A JP H01124903 A JPH01124903 A JP H01124903A
Authority
JP
Japan
Prior art keywords
solid electrolyte
pattern
thin film
film solid
organic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62283524A
Other languages
Japanese (ja)
Inventor
Shigeo Kondo
繁雄 近藤
Kenichi Takeyama
竹山 健一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62283524A priority Critical patent/JPH01124903A/en
Publication of JPH01124903A publication Critical patent/JPH01124903A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To enable a film solid electrolyte to be made extremely thin and precisely by making a mixture of ion conductive substance and an organic compound which has a pattern forming function into a sheet shape so as to form a pattern by giving energy. CONSTITUTION:A mixture of at least an ion conductive substance and an organic compound having a pattern forming function is made into a film and formed into a pattern by giving energy of light and heat. For example, copper ion conductive solid electrolyte powder (RbCu4I1.75Cl3.255) is used as the ion conductive substance and epoxy resin is used as the organic compound having a pattern forming function, and these mixture is applied to a glass board where a comb-shaped electrode is arranged. Thereafter, only the electrode is hot set to manufacture a pattern-shaped film solid electrolyte. Hereby, patternization of the film solid electrolyte becomes possible, therefore it is effective for thinning, micronization or integration of an electric chemical element.

Description

【発明の詳細な説明】 産業上の利用分野゛ 本発明は、電池、電気二重層キャパシタやエレクトロク
ロミックデイスプレィなどの電気化学的現象を利用した
電気化学素子に用いられる薄膜固体電解質の製造法に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a thin film solid electrolyte used in electrochemical devices that utilize electrochemical phenomena such as batteries, electric double layer capacitors, and electrochromic displays. .

従来の技術 従来、薄膜固体電解質の製造法は固体電解質の粉末を加
圧プレスして層状とする法と、蒸着により薄膜状とする
方法がおこなわれている。
2. Description of the Related Art Conventionally, thin-film solid electrolytes have been produced by pressing solid electrolyte powder into a layered form, or by vapor deposition into a thin film.

発明が解決しようとする問題点 これら製造法で製造された薄膜固体電解質で薄形大形の
電気化学素子を構成しようとした場合、一般に構成要素
は弾性に欠け、機械的衝撃に対して脆く、簡単に破損し
てしまうという問題がある。
Problems to be Solved by the Invention When trying to construct thin and large electrochemical devices using thin film solid electrolytes manufactured by these manufacturing methods, the components generally lack elasticity and are brittle against mechanical shock. The problem is that it is easily damaged.

また、固体電解質は一般に化学的に活性な1価のカチオ
ンが導電種となっており、大気中の酸素。
In addition, in solid electrolytes, chemically active monovalent cations are generally used as conductive species, and oxygen in the atmosphere.

水分に晒されると変質をきたし2価のカチオンに酸化し
たり、酸化物となって結晶内に固定されてしまったりし
て導電の機能を果たさなくなるという問題がある。
When exposed to moisture, it undergoes deterioration and oxidizes into divalent cations, or becomes an oxide that becomes fixed within the crystal, causing it to no longer function as a conductor.

さらに、1つの素子が多数個直列にあるいは並列に接続
された素子群を構成しようとした際、構成素子を単一の
素子毎に電気的・イオン的に分離する必要があるが、電
解質は一般に無秩序なイオン伝導性しか有しておらず、
異方性がないため、ひとつの素子に対して一層の互いに
イオン的に分離嘔れた電解質層が必要である。分離しな
ければ電解質内のイオンの流れがひとつの素子の電極間
のみならず他の素子の電極間にも流れる現象が起こり素
子群として期待する動作が得られない。これは、電気化
学素子を小型化、マイクロ化を計る際の問題となる。す
なわち、素子の分離には、半導体製造に使用されている
、レジストを用いたフォトリソグラフィーやエツチング
が必要となる。
Furthermore, when attempting to construct an element group in which many elements are connected in series or in parallel, it is necessary to electrically and ionically separate each element, but electrolytes are generally It has only disordered ionic conductivity,
Due to the lack of anisotropy, one layer of electrolyte that is ionically separated from each other is required for one device. If they are not separated, ions in the electrolyte will flow not only between the electrodes of one element but also between the electrodes of other elements, and the expected operation of the element group will not be obtained. This becomes a problem when trying to miniaturize and micronize electrochemical elements. That is, to separate the elements, photolithography using a resist and etching, which are used in semiconductor manufacturing, are required.

本発明は上記従来技術にもとづき極めて簡単な薄膜固体
電解質の製造法を提供するものである。
The present invention provides an extremely simple method for producing a thin film solid electrolyte based on the above-mentioned prior art.

問題点を解決するための手段 本発明は、少くなくともイオン伝導性物質とパターン形
成能を有する有機化合物の混合物から薄膜固体電解質を
製造するものである。
SUMMARY OF THE INVENTION The present invention provides for the production of a thin film solid electrolyte from a mixture of at least an ionically conductive material and an organic compound capable of patterning.

作用 本発明においては、イオン伝導性物質とパターン形成機
能を有する有機化合物の混合物を、まずシート状にして
エネルギーを与えてパターン形成しているので、極めて
薄く、かつ精度よくできるので、電気化学素子を小型化
、マイクロ化をできる。
Function In the present invention, a mixture of an ion-conducting substance and an organic compound having a pattern-forming function is first formed into a sheet, and a pattern is formed by applying energy, so that it can be formed extremely thinly and with high precision. It is possible to miniaturize and micronize.

実施例 以下、本発明の詳細な説明する。イオン伝導性物質とし
て銅イオン伝導性固体電解質粉末(Rb”4”1.75
C15,25>を使用し、これを乾燥空気のもとて粉砕
後、1μ以下の粒径のものを選別し用いた。パターン形
成能を有する有機化合物としてエポキシ樹脂を使用した
。薄膜固体電解質の製造法は、これらの材料を重量比で
1=1の割合で混合する。この時、分散を容易にするた
め、トルエンを分散として使用し十分に混合した。この
混合物を、スピンナーで、くし型電極を配置したガラズ
基板に1μの厚みで塗布した後、トルエンを蒸発させた
。その後、電極部のみ加熱硬化させ、未硬化部分をトル
エンで洗い流し、パターン状薄膜固体電解質を製造した
。製造した薄膜固体電解質はイオン伝導に関して異方性
を示しイオン導電率は厚さ方向に対して4.5X10 
 Q  cm  、横方向は乙3 X 10−180−
’cm−1であった。
EXAMPLES The present invention will be described in detail below. Copper ion conductive solid electrolyte powder (Rb"4"1.75
C15,25> was used, and after pulverizing it under dry air, particles with a particle size of 1 μm or less were selected and used. Epoxy resin was used as an organic compound with pattern-forming ability. In the manufacturing method of the thin film solid electrolyte, these materials are mixed in a weight ratio of 1=1. At this time, to facilitate dispersion, toluene was used as a dispersant and thoroughly mixed. This mixture was applied to a thickness of 1 μm on a glass substrate on which interdigitated electrodes were arranged using a spinner, and then the toluene was evaporated. Thereafter, only the electrode portion was heated and cured, and the uncured portion was washed away with toluene to produce a patterned thin film solid electrolyte. The manufactured thin film solid electrolyte exhibits anisotropy regarding ionic conduction, and the ionic conductivity is 4.5×10 in the thickness direction.
Q cm, horizontal direction is Otsu 3 x 10-180-
'cm-1.

次に本発明の他の実施例について説明する。イオン伝導
性物質として粒径1μのH3”12”40 ・29H2
0で表わされるH+イオン伝導性物質を使用し、パター
ン形成能を有する有機化合物としてメタクリロイロカル
コンとメタクリル酸グリシジルの共重合物(3ニア)・
を使用した。これら材料を重量比で1:1の割合で混合
する。前述の理由で、セルソルブアセテートに分散し混
合を十分に行なった。ガラス上に酸化インジュウムを負
極として用い、酸化タングステンを蒸着し、8セグメン
トハターンを形成した基板に、前述の混合物を1μmの
厚みでスピン塗布した。その後、乾燥し、8セグメント
パターン上に、マスクを通して紫外光を露光し、前述の
パターン形成可能有機化合物(メタクリロイロカルコン
ーメタクリル酸グリシジルの共重合物)を硬化した。そ
の後、未硬化部分を溶材で溶解し、酸化タングステン上
に、薄膜固体電解質を形成した。その後、正極を配置し
、固体エレクトロクロミンク表示素子を組み立てた。
Next, other embodiments of the present invention will be described. H3"12"40 ・29H2 with a particle size of 1μ as an ion conductive material
A copolymer (3-near) of methacryloylochalcone and glycidyl methacrylate is used as an organic compound with pattern-forming ability using an H+ ion conductive substance represented by 0.
It was used. These materials are mixed in a weight ratio of 1:1. For the reasons mentioned above, it was dispersed in Cellsolve Acetate and thoroughly mixed. The above-mentioned mixture was spin-coated to a thickness of 1 μm on a glass substrate on which an 8-segment pattern was formed by vapor-depositing tungsten oxide using indium oxide as a negative electrode. Thereafter, it was dried, and the 8-segment pattern was exposed to ultraviolet light through a mask to harden the pattern-formable organic compound (methacryloylochalcone-glycidyl methacrylate copolymer). Thereafter, the uncured portion was dissolved with a solvent to form a thin film solid electrolyte on the tungsten oxide. Thereafter, a positive electrode was placed and a solid electrochromic display element was assembled.

これに電圧を印加すると青色のエレクトロクロミック現
象を示した。光を露光するかわりに、粒子線として、パ
ターン制御された電子線を照射し現像すると薄膜固体電
解質が形成した。ここで、使用されるイオン伝導性物質
の粒径は1ミクロン以下が良い。さらに、イオン伝導性
物質としては、L1+イオン、五g+イオ7.On+イ
オン、!+イオン。
When a voltage was applied to this, it exhibited a blue electrochromic phenomenon. Instead of exposing to light, a thin film solid electrolyte was formed by irradiating and developing a pattern-controlled electron beam as a particle beam. Here, the particle size of the ion conductive material used is preferably 1 micron or less. Furthermore, as the ion conductive substance, L1+ ion, 5g+ 7. On+ion! + ion.

C5−イオン、F−イオンなどのあらゆるイオン伝導様
を用いることが出来る。また、パターン形成能を有する
有機化合物としては、エポキシ基を有する有機化合物や
重合可能な二重結合を有する化合物などの熱硬化性を有
する化合物を少なくとも一種含有してなる感熱化合物あ
るいはポリメタクレートやポリエチレンオキサイドなど
の熱分解性化合物からなる感熱化合物から構成されてい
る。
Any type of ion conduction such as C5- ions and F- ions can be used. In addition, examples of the organic compound having pattern-forming ability include a thermosensitive compound containing at least one type of thermosetting compound such as an organic compound having an epoxy group or a compound having a polymerizable double bond, or a polymethacrylate. It is composed of a heat-sensitive compound made of a thermally decomposable compound such as polyethylene oxide.

さらに、パターン形成能を有する有機化合物として、光
あるいは加速粒子線によりパターン形成が可能である、
高分子、オリゴマーなどで構成することも問題解決の技
術手段の一つである。
Furthermore, as an organic compound with pattern-forming ability, it is possible to form a pattern with light or accelerated particle beams.
Composition of polymers, oligomers, etc. is also one of the technical means to solve the problem.

なお、上記実施例においては、銅イオン伝導性固体電解
質、水素イオン伝導性固体電解質についてのみ記載した
が、他のイオン伝導性固体電解質を使用しても同様な効
果が存在するのは明白である。
In addition, in the above example, only the copper ion conductive solid electrolyte and the hydrogen ion conductive solid electrolyte were described, but it is obvious that the same effect exists even if other ion conductive solid electrolytes are used. .

発明の効果 本発明では、パターン形成可能な有機化合物にイオン伝
導性粉末を分散した状態になるので、イオン伝導性物質
の安定化をはかれる。また、薄膜固体電解質のパターン
化が可能であるので、電気化学素子を薄形化、マイクロ
化、集積化する際に有効である。
Effects of the Invention In the present invention, since the ion conductive powder is dispersed in the patternable organic compound, the ion conductive material can be stabilized. Furthermore, since the thin film solid electrolyte can be patterned, it is effective in making electrochemical elements thinner, microscopic, and integrated.

Claims (6)

【特許請求の範囲】[Claims] (1)少くなくともイオン伝導性物質とパターン形成能
を有する有機化合物の混合物を薄膜状にし、光や熱のエ
ネルギーを付与しパターンから形成することを特徴とす
る薄膜固体電解質の製造法。
(1) A method for producing a thin film solid electrolyte, which comprises forming a mixture of at least an ion-conductive substance and an organic compound capable of forming a pattern into a thin film, and forming a pattern by applying light or heat energy.
(2)イオン伝導性物質の粒径が1ミクロン以下である
ことを特徴とする特許請求の範囲第1項記載の薄膜固体
電解質の製造法。
(2) The method for producing a thin film solid electrolyte according to claim 1, wherein the particle size of the ion conductive substance is 1 micron or less.
(3)イオン伝導性物質が1価のカチオンであることを
特徴とする特許請求の範囲第1項記載の薄膜固体電解質
の製造法。
(3) The method for producing a thin film solid electrolyte according to claim 1, wherein the ion conductive substance is a monovalent cation.
(4)パターン形成能を有する有機化合物が感熱化合物
であることを特徴とする特許請求の範囲第1項記載の薄
膜固体電解質の製造法。
(4) The method for producing a thin film solid electrolyte according to claim 1, wherein the organic compound having pattern-forming ability is a heat-sensitive compound.
(5)パターン形成能を有する有機化合物が感光化合物
であることを特徴とする特許請求の範囲第1項記載の薄
膜固体電解質の製造法。
(5) The method for producing a thin film solid electrolyte according to claim 1, wherein the organic compound having pattern-forming ability is a photosensitive compound.
(6)パターン形成能を有する有機化合物が粒子線に感
応する化合物であることを特徴とする特許請求の範囲第
1項記載の薄膜固体電解質の製造法。
(6) The method for producing a thin film solid electrolyte according to claim 1, wherein the organic compound having pattern-forming ability is a compound sensitive to particle beams.
JP62283524A 1987-11-10 1987-11-10 Manufacture of thin film solid electrolyte Pending JPH01124903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62283524A JPH01124903A (en) 1987-11-10 1987-11-10 Manufacture of thin film solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62283524A JPH01124903A (en) 1987-11-10 1987-11-10 Manufacture of thin film solid electrolyte

Publications (1)

Publication Number Publication Date
JPH01124903A true JPH01124903A (en) 1989-05-17

Family

ID=17666652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62283524A Pending JPH01124903A (en) 1987-11-10 1987-11-10 Manufacture of thin film solid electrolyte

Country Status (1)

Country Link
JP (1) JPH01124903A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015041311A1 (en) * 2013-09-20 2017-03-02 株式会社クラレ Resin composition and molded product thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875779A (en) * 1981-10-30 1983-05-07 Toshiba Corp Solid electrolyte cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875779A (en) * 1981-10-30 1983-05-07 Toshiba Corp Solid electrolyte cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015041311A1 (en) * 2013-09-20 2017-03-02 株式会社クラレ Resin composition and molded product thereof

Similar Documents

Publication Publication Date Title
Chen et al. Printing 3D gel polymer electrolyte in lithium-ion microbattery using stereolithography
US4977007A (en) Solid electrochemical element and production process therefor
Depre et al. Inorganic–organic proton conductors based on alkylsulfone functionalities and their patterning by photoinduced methods
Agrawal et al. Electrochemical cell performance studies on all-solid-state battery using nano-composite polymer electrolyte membrane
CN111427111A (en) Quantum dot patterning method, device and system
GB2032641A (en) Electrochromic films having improved etch resistance and method for making same
CN108680982B (en) Polarizing device, preparation method thereof, display substrate and display device
JPH01124903A (en) Manufacture of thin film solid electrolyte
KR20190099903A (en) Method of patterning a hybrid transparent electrode
ITMI20001625A1 (en) A LAYER THAT CONTAINS ELECTRICALLY CONDUCTIVE, TRANSPARENT MATERIAL, A PROCEDURE FOR THE PRODUCTION OF SUCH LAYER, AND ITS USE
US7834963B2 (en) Optical integrator
JP2001030501A (en) Manufacture of ceramic device utilizing mixture with photosensitive resin
JPH0821255B2 (en) Method for producing thin film solid electrolyte
JPH0434871A (en) Manufacture of battery
JPS5874086A (en) Stress detecting element
KR100663714B1 (en) Method of forming a composition for synthesizing ito and method of patterning ito synthesized from said composition
JPH02207223A (en) Production of electrochromic element
JPS62255920A (en) Electrochromic display element
CN1320560C (en) Method for preparing conductive material using femtosecond laser double photon
JPH02207224A (en) Electrochromic element and production thereof
JPH02198642A (en) Ion conductor
Ubah et al. High resistivity free-standing crosslinked graphene oxide substrates: hopping conduction mechanism and application to recyclable electronics
Zheng et al. Enhanced light extraction for red organic light emitting diodes via PDMS convex lens based on breath figure method
JPH0495353A (en) Manufacture of thin silver iodide-silver oxiacid salt solid electrolyte film
JPS58199326A (en) Method for forming spacer for cap of liquid crystal display element