JPH01124724A - Infrared detector - Google Patents

Infrared detector

Info

Publication number
JPH01124724A
JPH01124724A JP62160938A JP16093887A JPH01124724A JP H01124724 A JPH01124724 A JP H01124724A JP 62160938 A JP62160938 A JP 62160938A JP 16093887 A JP16093887 A JP 16093887A JP H01124724 A JPH01124724 A JP H01124724A
Authority
JP
Japan
Prior art keywords
type
thermoelectric element
cooling
cooling body
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62160938A
Other languages
Japanese (ja)
Inventor
Takuji Okumura
卓司 奥村
Masao Yamashita
山下 昌夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP62160938A priority Critical patent/JPH01124724A/en
Publication of JPH01124724A publication Critical patent/JPH01124724A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/061Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by controlling the temperature of the apparatus or parts thereof, e.g. using cooling means or thermostats
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N19/00Integrated devices, or assemblies of multiple devices, comprising at least one thermoelectric or thermomagnetic element covered by groups H10N10/00 - H10N15/00
    • H10N19/101Multiple thermocouples connected in a cascade arrangement

Abstract

PURPOSE:To lower cooling temperature and to improve sensitivity by cooling an infrared detecting element by using a cooling body equipped with a thermoelectric element formed by combining p-type and n-type Bi-Te alloy materials with each other and a thermoelectric element formed by combining p-type and n-type Bi-Sb alloy materials with each other. CONSTITUTION:The thermoelectric element 1 formed by combining the p-type and n-type Bi-Te materials and the thermoelectric element 2 formed by combining the p-type and n-type Bi-Sb alloy materials together are used to constitute the cooling body 3 which enables cooling down to -196 deg.C. Then this cooling body 3 is used to cool the infrared ray detecting element 4. This cooling body 3 of this constitution is used to lower the cooling temperature sufficiently as compared with a conventional detector which uses Peltier effect, and the sensitivity of the infrared-ray detector is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、資源探査、医療用サーモグラフ、公害用ガス
検知器、夜間監視装置などに使用される赤外線ディテク
タに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an infrared detector used for resource exploration, medical thermographs, pollution gas detectors, night monitoring devices, and the like.

〔従来の技術〕[Conventional technology]

従来のこの種の赤外線ディテクタとして、Bi−Te合
金を有する熱電素子のペルチェ効果を利用した冷却体に
より赤外検出素子を冷却するようにしたものがあった。
As a conventional infrared detector of this kind, there is one in which an infrared detection element is cooled by a cooling body that utilizes the Peltier effect of a thermoelectric element having a Bi-Te alloy.

また冷却体に液体ヘリウムや液体窒素を用いたものや、
コンプレッサ付ガスヘリウムポンプ、ガスボンベ付ジュ
ールトムソンポンプを具備したものがあった。
There are also those that use liquid helium or liquid nitrogen as a cooling body,
Some were equipped with gas helium pumps with compressors and Joule-Thomson pumps with gas cylinders.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記熱電素子のペルチェ効果を利用したものでは冷却温
度が一105℃程度であって冷却温度不足になっていた
し、液体ヘリウム、液体窒素を用いたものやコンプレッ
サ付ガスヘリウムポンプ、ガスボンベ付ジュールトムソ
ンポンプを具備したものは大型で重量があり、連続運転
が不可能であった。
The cooling temperature of the thermoelectric element that utilizes the Peltier effect is around 1105 degrees Celsius, which is insufficient, while the cooling temperature of the thermoelectric element is around 1105 degrees Celsius, which is insufficient.Therefore, there are systems that use liquid helium or liquid nitrogen, gas helium pumps with compressors, and Joule-Thomson pumps with gas cylinders. Those equipped with this were large and heavy and could not be operated continuously.

〔発明の目的〕[Purpose of the invention]

本発明は上記の事情に鑑みなされたものであって、その
目的とするところは、冷却温度が十分にあって感度が良
好であり且つ低騒音で連続運転が可能でありしかも軽量
でコンパクトな赤外線ディテクタを提供することにある
The present invention was made in view of the above circumstances, and its purpose is to provide an infrared ray that has sufficient cooling temperature, good sensitivity, low noise, continuous operation, and is lightweight and compact. The purpose is to provide a detector.

〔問題点を解決するための手段及び作用〕上記の目的を
達成するために本発明は、p型とn型のB 1−Te合
金を組合せた熱電素子とp型とn型のBi−3b合金を
組合せた熱電素子とを備えた冷却体を用いて赤外検出素
子を冷却するようにした。
[Means and effects for solving the problems] In order to achieve the above objects, the present invention provides a thermoelectric element that combines p-type and n-type B1-Te alloys, and a thermoelectric element that combines p-type and n-type Bi-3b. The infrared detection element is cooled using a cooling body equipped with a thermoelectric element made of a combination of alloys.

〔実 施 例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

本発明に係る赤外線ディテクタは、p型とn型のBi−
Te合金を組合わせた熱電素子1とp型とn型のBi−
3b合金を組合わせた熱電素子2を用いて一196℃ま
で冷却可能な冷却体3を構成しこの冷却体3を赤外検出
素子4の冷却に用いて成るものである。
The infrared detector according to the present invention has p-type and n-type Bi-
Thermoelectric element 1 combining Te alloy and p-type and n-type Bi-
A thermoelectric element 2 made of a 3b alloy is used to construct a cooling body 3 capable of cooling down to -196° C., and this cooling body 3 is used to cool an infrared detection element 4.

p型とn型のBt−Te合金とn型のBi−5b合金は
ゾーンメルティング法あるいはブリッジマン法で作製す
る。
The p-type and n-type Bt-Te alloys and the n-type Bi-5b alloy are manufactured by the zone melting method or the Bridgman method.

ブリッジマン法の場合を例にとる。B s s Te等
粉末を秤量し混合する。この試料をバイレックスなどの
容器5に入れ、内部をAr雰囲気にし封をする(第2図
(1)参照)。次に高温で熔融しその後冷却し結晶化さ
せる(第2図(2)、(3)参照)。
Take the case of the Bridgman method as an example. Weigh and mix powders such as BssTe. This sample is placed in a container 5 such as Vilex, and the inside is sealed with an Ar atmosphere (see FIG. 2 (1)). Next, it is melted at a high temperature and then cooled to crystallize (see Figure 2 (2) and (3)).

このようにして得られたBi−Te合金のインゴット6
を切り出しn型Bi−Te合金より成る脚部材7とn型
Bi−Te合金より成る脚部材8を作製する。
Bi-Te alloy ingot 6 thus obtained
A leg member 7 made of an n-type Bi-Te alloy and a leg member 8 made of an n-type Bi-Te alloy are prepared by cutting out.

またn型Bi−Sb合金より成る脚部材15も上記の脚
部材7と同様にして作製する。
Further, the leg member 15 made of an n-type Bi-Sb alloy is also produced in the same manner as the leg member 7 described above.

n型Bi−5b合金は本出願人が先に提唱した低温用熱
電材料およびその製造方法(特願昭81−35337号
)に開示した技術を用いる。
For the n-type Bi-5b alloy, the technology disclosed in the low-temperature thermoelectric material and its manufacturing method (Japanese Patent Application No. 81-35337) proposed by the present applicant is used.

すなわち、n型Bi−3b合金は、溶融状態にあるBi
−5b系合金を非平衡相になり得る冷却速度で凝固させ
ることにより得られる。
That is, the n-type Bi-3b alloy contains Bi in a molten state.
It is obtained by solidifying a -5b alloy at a cooling rate that can result in a non-equilibrium phase.

具体的には、第6図に示すような装置において、溶湯溜
9にBi−Sb系合金10を装填し、高周波コイル11
で加熱し、Bi−3b系合金10を溶融状態とする。一
方、金属製のロール12(φ200mm、巾20關程度
)を500〜4000 r pmで回転させ、溶湯溜9
より溶湯をロール12に噴出させて冷却凝固させる。
Specifically, in an apparatus as shown in FIG.
is heated to bring the Bi-3b alloy 10 into a molten state. Meanwhile, a metal roll 12 (φ200 mm, width about 20 mm) is rotated at 500 to 4000 rpm, and the molten metal sump 9
The molten metal is then jetted onto the rolls 12 to be cooled and solidified.

なお、急冷ロール法を用いなくとも、平衡凝固より多量
のp型ドーパントを添加できる急速凝固の方法(例えば
急冷粉末)でn型Bi−Sb合金を作製することは可能
であろう。
Note that even without using the quench roll method, it would be possible to produce an n-type Bi-Sb alloy by a rapid solidification method (for example, quenched powder) that allows addition of a larger amount of p-type dopant than in equilibrium solidification.

また、上記急冷ロール法においては、製造条件をロール
回転数500〜4000rpm、ガス噴射圧0.5〜4
 kg / cdの範囲に設定しない・と、良質な急冷
膜が得られないので、好ましくは上記範囲に設定する。
In addition, in the above-mentioned quench roll method, the manufacturing conditions are a roll rotation speed of 500 to 4000 rpm and a gas injection pressure of 0.5 to 4.
If it is not set within the kg/cd range, a high-quality quenched film cannot be obtained, so it is preferably set within the above range.

このようにして制作したn型Bi−3b合金のインゴッ
トを切り出し脚部材13を作製する。
The leg member 13 is manufactured by cutting out the n-type Bi-3b alloy ingot thus manufactured.

そして、n型Bi−Te合金より成る脚部材7とn型B
i−Te合金より成る脚部材8とを銅板14を用いて互
いに接続して熱電素子1を作製し、またn型Bi−Sb
合金より成る脚部材15とn型Bi−5b合金より成る
脚部材15とを銅板16を用いて互いに接続して熱電素
子2を作製する。
Then, the leg member 7 made of n-type Bi-Te alloy and the n-type B
A thermoelectric element 1 is manufactured by connecting leg members 8 made of an i-Te alloy to each other using a copper plate 14, and an n-type Bi-Sb
The thermoelectric element 2 is manufactured by connecting the leg members 15 made of an alloy and the leg members 15 made of an n-type Bi-5b alloy to each other using a copper plate 16.

そして、前記熱電素子1を下位に熱電素子2を上位にお
いてそれぞれ複数段にセラミックス基板17を用いて多
段カスケードにし、上下の関係の熱雷索子1,2の銅板
14.16間をノ\ンダ等18で接続して冷却体3が構
成されている。そして、この冷却体3の頂部に赤外線検
出索子4が取付けである。
Then, a multi-stage cascade is formed using ceramic substrates 17 in multiple stages, with the thermoelectric element 1 at the lower level and the thermoelectric element 2 at the upper level, and the copper plates 14 and 16 of the thermal lightning cables 1 and 2 in the vertical relationship etc. 18 to form the cooling body 3. An infrared detection cable 4 is attached to the top of the cooling body 3.

冷却体3における熱電素子1,2に電流を流すことによ
ってペルチェ効果を生じさせて一196℃までの冷却が
可能になる。
By passing a current through the thermoelectric elements 1 and 2 in the cooling body 3, a Peltier effect is generated, and cooling to -196° C. is possible.

この冷却体3を用いて赤外検出素子4を冷却する。This cooling body 3 is used to cool the infrared detection element 4.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明に係る赤外線ディテクタは、
p型とn型のB i −T e合金を組合せた熱電素子
とp型とn型のBi−5b合金を組合せた熱電素子とを
備えた冷却体を用いて赤外検出素子を冷却するようにし
たことを特徴とするものである。
As detailed above, the infrared detector according to the present invention includes:
The infrared detection element is cooled using a cooling body equipped with a thermoelectric element that is a combination of p-type and n-type Bi-T e alloys and a thermoelectric element that is a combination of p-type and n-type Bi-5b alloys. It is characterized by the following.

このように冷却体に、p型とn型のBi−Te合金を組
合せた熱雷素子とp型とn型のBi−5b合金を組合せ
た熱雷素子とを備えたから、この冷却体は一196℃ま
で冷却することができる。
Since the cooling body is equipped with a thermal lightning element that is a combination of p-type and n-type Bi-Te alloys and a thermal lightning element that is a combination of p-type and n-type Bi-5b alloys, this cooling body is It can be cooled to 196°C.

したがって、冷却温度が十分にあって感度が良好であり
且つ低騒音で連続運転が可能でありしかも軽量でコンパ
クトな赤外線ディテクタを得ることができる。
Therefore, it is possible to obtain an infrared detector that has a sufficient cooling temperature, has good sensitivity, can be operated continuously with low noise, and is lightweight and compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明一実施例の構成説明図、第2図(1)、
(2)、(3)、(4)は熱電素子の脚部材の作製工程
の説明図、第3図は熱電素子の配線説明図、第4図は熱
電素子カスケードの一部省略した斜視図、第5図は同平
面図、第6図は急冷ロール法におけるp型Bi−3b合
金の作製装置の構成説明図である。 1.2は熱電素子、3は冷却体、4は赤外検出素子。 出願人  株式会社 小 松 製 作 所代理人  弁
理士  米 原 正 章
Fig. 1 is an explanatory diagram of the configuration of one embodiment of the present invention, Fig. 2 (1),
(2), (3), and (4) are explanatory diagrams of the manufacturing process of the leg members of the thermoelectric element, Fig. 3 is an explanatory diagram of the wiring of the thermoelectric element, and Fig. 4 is a partially omitted perspective view of the thermoelectric element cascade. FIG. 5 is a plan view of the same, and FIG. 6 is an explanatory diagram of the configuration of an apparatus for producing p-type Bi-3b alloy using the quench roll method. 1.2 is a thermoelectric element, 3 is a cooling body, and 4 is an infrared detection element. Applicant Komatsu Manufacturing Co., Ltd. Representative Patent Attorney Masaaki Yonehara

Claims (1)

【特許請求の範囲】[Claims] p型とn型のBi−Te合金を組合せた熱電素子とp型
とn型のBi−Sb合金を組合せた熱電素子とを備えた
冷却体を用いて赤外検出素子を冷却するようにしたこと
を特徴とする赤外線ディテクタ。
The infrared detection element is cooled using a cooling body equipped with a thermoelectric element that combines p-type and n-type Bi-Te alloys and a thermoelectric element that combines p-type and n-type Bi-Sb alloys. An infrared detector characterized by:
JP62160938A 1987-06-30 1987-06-30 Infrared detector Pending JPH01124724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62160938A JPH01124724A (en) 1987-06-30 1987-06-30 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62160938A JPH01124724A (en) 1987-06-30 1987-06-30 Infrared detector

Publications (1)

Publication Number Publication Date
JPH01124724A true JPH01124724A (en) 1989-05-17

Family

ID=15725475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62160938A Pending JPH01124724A (en) 1987-06-30 1987-06-30 Infrared detector

Country Status (1)

Country Link
JP (1) JPH01124724A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430322A (en) * 1992-09-08 1995-07-04 Agency Of Industrial Science And Technology Thermoelectric element sheet in which thermoelectric semiconductors are mounted between films
US7205675B2 (en) * 2003-01-29 2007-04-17 Hewlett-Packard Development Company, L.P. Micro-fabricated device with thermoelectric device and method of making

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430322A (en) * 1992-09-08 1995-07-04 Agency Of Industrial Science And Technology Thermoelectric element sheet in which thermoelectric semiconductors are mounted between films
US7205675B2 (en) * 2003-01-29 2007-04-17 Hewlett-Packard Development Company, L.P. Micro-fabricated device with thermoelectric device and method of making

Similar Documents

Publication Publication Date Title
Tavassoli et al. On the Half-Heusler compounds Nb1-x {Ti, Zr, Hf} xFeSb: Phase relations, thermoelectric properties at low and high temperature, and mechanical properties
Yang et al. Effect of processing parameters on thermoelectric properties of p-type (Bi2Te3) 0.25 (Sb2Te3) 0.75 prepared via BMA–HP method
CN106571422A (en) Bismuth telluride based N type thermoelectric material and preparation method thereof
CN108346736A (en) A kind of high-performance silver tellurium compound thermoelectric semiconductor material and preparation method thereof
Koukharenko et al. Thermoelectric properties of Bi2Te3 material obtained by the ultrarapid quenching process route
Yamada et al. Metal carbide-carbon peritectic systems as high-temperature fixed points in thermometry
Yusheng et al. Ultrasonic investigation of lattice instability and superconductivity in high-Tc systems
JPH01124724A (en) Infrared detector
US5444040A (en) Superconductive oxide single crystal and manufacturing method thereof
Koukharenko et al. Electrical properties of Bi2− xSbxTe3 materials obtained by ultrarapid quenching
Greenfield et al. Gallium-Antimony System
CN101613846B (en) Method for preparing Mg-Si-Sn-based thermoelectric material by rapid solidification
RU2157020C2 (en) METHOD FOR PRODUCING THERMOELECTRIC MATERIALS ON THE BASIS OF Bi2(TeSe) 3 HAVING ELECTRON CONDUCTIVITY TYPE
US11629431B2 (en) P-type SnSe crystal capable of being used as thermoelectric refrigeration material and preparation method thereof
Durst et al. Production of alloys of bismuth telluride for solar thermoelectric generators
JPH0684529B2 (en) Low temperature thermoelectric material and method for producing the same
Chiotti et al. Miscibility gap in the Th-ThC system from high-temperature X-ray data
JPH01244259A (en) Method and apparatus for electronic refrigeration
Lakshmikumar et al. Development of a roller quenching apparatus for the production of amorphous phases
Zhang et al. Microstructure of germanium quenched from the undercooled melt at high pressures
Blatt et al. Anomalies in the thermal conductivity and thermopower in Co Cl 2-intercalated graphite at the magnetic phase transition
JPH01149931A (en) Manufacture of thermoelectric material
Youdelis et al. Secondary Supercooling in Binary Eutectic Alloy Systems
Wang A rapid quenching technique for high temperature materials
Sherry et al. The behavior of dislocations in lithium