JPH01123607A - Production of composite separation membrane - Google Patents

Production of composite separation membrane

Info

Publication number
JPH01123607A
JPH01123607A JP62280037A JP28003787A JPH01123607A JP H01123607 A JPH01123607 A JP H01123607A JP 62280037 A JP62280037 A JP 62280037A JP 28003787 A JP28003787 A JP 28003787A JP H01123607 A JPH01123607 A JP H01123607A
Authority
JP
Japan
Prior art keywords
membrane
copolyimide
aromatic
imide
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62280037A
Other languages
Japanese (ja)
Other versions
JP2506837B2 (en
Inventor
Yukio Yanaga
弥永 幸雄
Shizue Sakai
酒井 静枝
Tooru Imanara
今奈良 徹
Tetsuo Kasai
鉄夫 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP62280037A priority Critical patent/JP2506837B2/en
Publication of JPH01123607A publication Critical patent/JPH01123607A/en
Application granted granted Critical
Publication of JP2506837B2 publication Critical patent/JP2506837B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • B01D71/641Polyamide-imides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)

Abstract

PURPOSE:To improve the separation performance of the above membrane by applying a soln. of aromatic polyimide or amido-imide in dioxane as the main solvent on a porous membrane obtained by forming the membrane of the aromatic copolyimide or amido-imide having a specified composition by a wet process, drying the soln., and heat-treating the obtained material. CONSTITUTION:The aromatic copolyimide consisting of the materials shown by formulas I and II in 90-70/10-30 molar ratio or the aromatic copolyamido- imide consisting of the materials shown by formulas III and IV in 70-90/30-10 molar ratio is formed into a membrane by a wet process. A soln. of 0.05-10pts. wt. of the copolyimide or amido-imide in the mixed solvent consisting of 100pts. wt. of dioxane and 5-50pts.wt. of the other polar solvents such as DMF and DMSO is applied on the obtained porous membrane, dried, and heat-treated. By this method, a more stable composite membrane having excellent separation performance and permeability than the conventional one not added with dioxane can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は良好な分離性能を有する複合分離膜の製造方法
に関する。詳しくは製造が容易で耐熱性、耐薬品性に優
れ、透過速度が速く分離性能の大きい複合分離膜の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a composite separation membrane having good separation performance. Specifically, the present invention relates to a method for manufacturing a composite separation membrane that is easy to manufacture, has excellent heat resistance and chemical resistance, has a high permeation rate, and has high separation performance.

〔従来の技術〕[Conventional technology]

ガス分離膜としてはポリスルホンとシリコン系ポリマー
とを複合化した複合膜が知られている(特開昭&、7−
gAAざダ)。この膜に用いられているシリコン系ポリ
マーは耐熱性が低く高温での分離性能の低下が大きく、
さらにトルエン等の芳香族炭化水素に対する耐薬品性が
悪(限られた用途でしか適用されない。
Composite membranes made of polysulfone and silicone polymers are known as gas separation membranes (Japanese Unexamined Patent Application Publication No. 2002-120011 and 7-7).
gAAzada). The silicone-based polymer used in this membrane has low heat resistance and its separation performance decreases significantly at high temperatures.
Furthermore, it has poor chemical resistance to aromatic hydrocarbons such as toluene (applicable only in limited applications).

そこで耐熱性、耐薬品性、耐圧密性に優れた分離膜とし
て芳香族ポリイミド系分離膜、芳香族ポリアミド系分離
膜などが提案されている。
Therefore, aromatic polyimide-based separation membranes, aromatic polyamide-based separation membranes, and the like have been proposed as separation membranes with excellent heat resistance, chemical resistance, and compaction resistance.

特に、芳香族ポリイミド系分離膜は非常に優れた耐熱性
を有し、さらに機械的性質および耐薬品性にも優れてい
るので、分離膜としてかなり期待されて(・るものであ
る。
In particular, aromatic polyimide separation membranes have very good heat resistance, as well as excellent mechanical properties and chemical resistance, so they are highly expected to be used as separation membranes.

しかしながら、公知のポリイミドの多孔質膜の製造方法
である、テトラカルボン酸二無水物と芳香族ジアミンの
重合反応によって得られたポリアミック酸の溶液を使用
してその薄膜を凝固液中でイミド化しながら凝固させて
芳香族ポリイミド膜を製造するという方法では、ポリア
ミック酸の溶液からの製膜、凝固、イミド化という操作
が必要であるので非常にコントロールの難しい複雑な方
法となっており、品質の安定した優れた性能のポリイミ
ド分離膜を安定的に製造することができないという欠点
があった。
However, in a known method for producing porous polyimide membranes, a solution of polyamic acid obtained by a polymerization reaction of tetracarboxylic dianhydride and aromatic diamine is used to imidize the thin membrane in a coagulating solution. The method of producing aromatic polyimide membranes by coagulation requires operations such as film formation from a solution of polyamic acid, coagulation, and imidization, making it a complicated method that is extremely difficult to control. However, the disadvantage is that it is not possible to stably produce polyimide separation membranes with excellent performance.

又、p−クロルフェノール等のフェノール化合物の融解
液中に溶解したビフェニルテトラカルボン酸二無水物と
芳香族ジアミンの重合反応によりて得られた芳香族ポリ
イミドを凝固させて分離膜を製造する方法では、フェノ
ール化合物融解液中に溶解した芳香族ポリイミドを凝固
液で凝固して、−度に緻密相と多孔質層とを形成した凝
固膜を作らなければならないので操作が極めて難しく、
再現よく安定した性能の分離膜を作ることが困難であっ
たり、かつ凝固液として無公害である水を主成分とする
溶媒を使用した場合には、凝固速度が遅いため多孔質層
が充分に発達せず緻密層が発達してしまう傾向があり、
極端な場合には凝固自体が長時間を要したり、得られた
ポリイミド分離膜が充1分な透過性能を有していなかり
たすする場合があった。
In addition, in a method of manufacturing a separation membrane by coagulating aromatic polyimide obtained by a polymerization reaction of biphenyltetracarboxylic dianhydride and aromatic diamine dissolved in a melt of a phenol compound such as p-chlorophenol, The operation is extremely difficult because the aromatic polyimide dissolved in the phenolic compound melt must be coagulated with a coagulating liquid to form a coagulated film that simultaneously forms a dense phase and a porous layer.
If it is difficult to create a separation membrane with stable performance that is reproducible, or if a solvent whose main component is water, which is non-polluting, is used as the coagulation liquid, the coagulation rate is slow and the porous layer cannot be formed sufficiently. There is a tendency for the compact layer to develop without developing.
In extreme cases, coagulation itself may take a long time, or the resulting polyimide separation membrane may not have sufficient permeability.

そこでガスの透過速度の早いポリイミド多孔質膜に更に
ポリイミドを塗布したポリイミド系複合膜が提案されて
いる(特開昭3ざ−ざ!/J。
Therefore, a polyimide-based composite membrane has been proposed, which is a porous polyimide membrane that has a high gas permeation rate and is further coated with polyimide (Japanese Patent Application Laid-Open No. 3-1-2012).

同3ざ−/1006)。3rd edition/1006).

しかしながらこの複合膜の製造法においてはハロゲン炭
化水素/フェノール系化合物の混合溶媒を使用するため
に環境性に著しい問題がありた。又ポリイミド多孔質膜
の製造法として乾式製膜法によるために中空糸状の多孔
質膜を製造するには複雑な操作を必要とし再現よく安定
した中空糸形状及び透過性能を得ることが困難でありた
However, this method for producing a composite membrane has significant environmental problems because it uses a mixed solvent of halogen hydrocarbon/phenol compound. In addition, since the polyimide porous membrane is manufactured using a dry membrane forming method, manufacturing a hollow fiber-like porous membrane requires complicated operations, and it is difficult to obtain a stable hollow fiber shape and permeation performance with good reproducibility. Ta.

〔発明の目的〕[Purpose of the invention]

本発明者らは前記ポリイミドの良好な性質を保ちながら
更に優れた分離性能を有する分離膜を容易に製造する方
法につき鋭意検討した結果、特定の芳香族コポリイミド
又は芳香族コポリアミドイミドの多孔質膜に特定の貧溶
媒を加えた特定の芳香族コポリイミド又は芳香族コボI
J 7ミドイミド希薄溶液を塗布、乾燥し更に熱処理し
た複合分離膜が良好な耐熱性、耐薬品性、製膜性を保ち
ながら、分離性能が著しく向上することを見い出し本発
明に達した。
The present inventors conducted intensive studies on a method for easily manufacturing a separation membrane having even better separation performance while maintaining the good properties of the polyimide, and found that the porous Specific aromatic copolyimide or aromatic cobo I with specific anti-solvent added to the membrane
The present inventors have discovered that a composite separation membrane coated with a dilute solution of J7 midimide, dried, and further heat-treated has significantly improved separation performance while maintaining good heat resistance, chemical resistance, and film formability.

本発明の要旨は、繰返し単位の90〜70モル%が式(
I) で表わされる構造を有し、かつ繰返し単位の10〜30
モル%が式(n) ・・・・・・(I[) で表わされる構造を有する芳香族コポリイミド、又は繰
返し単位の70−90モル%が式(I[T)で表わされ
る構造を有し、かつ繰返し単位の30%10モル%が式
(IV) で表わされる構造を有する芳香族コポリアミドイミドか
ら湿式製膜法にて製造された多孔質膜上に、ジオキサン
100重景部に対し池の有機極性溶媒3〜50重量部を
含有する混合溶媒に前記芳香族コポリイミドまたはコポ
リアミドイミドを0.03〜IO重量部溶解した溶液を
塗布し乾燥し熱処理することを特徴とする複合分離膜の
製造方法である。
The gist of the present invention is that 90 to 70 mol% of the repeating units are of the formula (
I) has a structure represented by and has 10 to 30 repeating units
An aromatic copolyimide in which mol% has a structure represented by formula (n) (I[), or 70-90 mol% of repeating units has a structure represented by formula (I[T)]. and 30% to 10 mol% of the repeating units were formed by a wet film forming method from an aromatic copolyamideimide having a structure represented by the formula (IV). Composite separation characterized by applying a solution of 0.03 to IO parts by weight of the aromatic copolyimide or copolyamideimide dissolved in a mixed solvent containing 3 to 50 parts by weight of an organic polar solvent, followed by drying and heat treatment. This is a method for manufacturing a membrane.

〔発明の構成〕[Structure of the invention]

以下、本発明の方法についてさらに詳しく説明する。 The method of the present invention will be explained in more detail below.

本発明において使用される芳香族コポリイミドは一般式 の繰返し単位の存在を特徴とするコポリイミドであり、
ここで上記繰り返し単位の70〜30モル%はRが−Q
−CH2−o−を表わすものであこのコポリイミドはU
E3F3.7θぺ14号にも記載されているように、j
、 J′、lI、 4/−ベンゾフェノンテトラカルボ
ン酸二無水物を適当なモル比のp、lI’−メチレンビ
スフェニルインシアネート(lI、lI′−ジフェニル
メタンジイソシアネート)およびトリレンジイソシアネ
ート(2,弘−異性体、あるいはコツ6−異性体、ある
いはそれらの混合物)とともに極性溶媒の存在下で反応
させることにより容易に得ることができる。
The aromatic copolyimide used in the present invention is a copolyimide characterized by the presence of repeating units of the general formula,
Here, in 70 to 30 mol% of the above repeating units, R is -Q
-CH2-o-, and this copolyimide is U
As stated in E3F3.7θPe No. 14, j
, J', lI, 4/-benzophenonetetracarboxylic dianhydride in an appropriate molar ratio of p, lI'-methylenebisphenyl incyanate (lI, lI'-diphenylmethane diisocyanate) and tolylene diisocyanate (2, Hiroshi- It can be easily obtained by reacting with the isomer (or the isomer, or a mixture thereof) in the presence of a polar solvent.

また、本発明において使用される芳香族コポリアミドイ
ミドは繰り返し単位の70〜90モル%が式(III) で表わされる構造を有し、かつ繰り返し単位の30−1
0モル%が式(IV) で表わされる構造を有するコポリアミドイミドである。
Further, in the aromatic copolyamideimide used in the present invention, 70 to 90 mol% of the repeating units have a structure represented by formula (III), and 30-1 of the repeating units are
0 mol % is a copolyamideimide having a structure represented by formula (IV).

このコポリアミドイミドは米国特許第3、929!A 
9 /号に教示の方法により容易に製造される。このよ
うなコポリアミドイミドは、前記特許に記載の操作を用
いて約70モル%から約90モル%対約30モル%から
約70モル%の割合のトリメリット酸無水物とイソフタ
ル酸の混合物とほぼ等量の/θθモル%割合のp、 4
t’−メチレンビスフェニルイソシアナートの反応から
容易に得ることができる。
This copolyamideimide is described in US Pat. No. 3,929! A
It is easily produced by the method taught in No. 9/. Such copolyamideimides can be prepared with a mixture of trimellitic anhydride and isophthalic acid in proportions of about 70 mole % to about 90 mole % to about 30 mole % to about 70 mole % using the procedures described in the aforementioned patents. Approximately equal amounts of /θθ mol% of p, 4
It can be easily obtained from the reaction of t'-methylenebisphenyl isocyanate.

前記芳香族コポリイミド、コポリアミドイミドから湿式
製膜法にて多孔質膜を製造するには、コポリイミド又は
コポリアミドイミドをジメチルホルムアミド等の極性有
機溶媒に溶解させた溶液をドープ液としそのドープ液の
薄膜を形成し、水等の貧溶媒中で凝固させついでその薄
膜を加熱、乾燥することによって製造される。
In order to produce a porous membrane from the aromatic copolyimide or copolyamideimide by a wet film forming method, a solution of the copolyimide or copolyamideimide dissolved in a polar organic solvent such as dimethylformamide is used as a dope solution. It is produced by forming a thin film of liquid, coagulating it in a poor solvent such as water, and then heating and drying the thin film.

コポリイミド、コポリアミドイミドの多孔質膜の湿式製
膜については、本出願人による特願昭A/−6qlI7
/号、同A2−231IO号、同62−isot号等の
分離膜の製造法に従って、製)造しうる。
Regarding wet film formation of porous membranes of copolyimide and copolyamideimide, patent application No. A/-6qlI7 filed by the present applicant
It can be manufactured according to the method for manufacturing separation membranes such as A2-231IO, A2-231IO, and A62-isot.

多孔質膜の形態は平膜状、中空糸状であるがガス分離に
おいては耐圧性の面で中空糸形状が好ましい。又、膜厚
、中空糸径は使用される圧力によって決まるが、膜厚は
io〜SOOμ、中空糸外径は100−2000μ程度
であることが好ましい。
Porous membranes can be in the form of flat membranes or hollow fibers, but in gas separation, hollow fibers are preferred from the viewpoint of pressure resistance. Although the membrane thickness and hollow fiber diameter are determined by the pressure used, it is preferable that the membrane thickness is io to SOOμ and the hollow fiber outer diameter is about 100 to 2000μ.

多孔質膜の透過性能は水素と窒素との透過速度Qの比(
QH2/QN2)が3〜100程度であって、水素の透
過速度が/×10−6〜/×IO″″1ari” /c
rrr’、 sec、crnHg 1好ましくは/×1
0−’〜/X/θ−2(crrr3 /d、 S 13
 C−ellHg )であればよい。
The permeation performance of a porous membrane is determined by the ratio of the permeation rate Q of hydrogen and nitrogen (
QH2/QN2) is about 3 to 100, and the hydrogen permeation rate is /x10-6 to /xIO""1ari"/c
rrr', sec, crnHg 1 preferably /×1
0-'~/X/θ-2(crrr3/d, S 13
C-ellHg).

この芳香族コポリイミド、コポリアミドイミドの多孔質
膜上に塗布する希薄溶液は、(a)  ジオキサン 1
00重量部 (b)  極性有機溶媒 5〜30重量部(C)  芳
香族コポリイミド、または芳香族コポリアミドイミド 
0.05〜10重量部 からなる希薄溶液である。
The dilute solution to be applied onto the porous membrane of aromatic copolyimide or copolyamideimide is (a) dioxane 1
00 parts by weight (b) Polar organic solvent 5 to 30 parts by weight (C) Aromatic copolyimide or aromatic copolyamideimide
It is a dilute solution consisting of 0.05 to 10 parts by weight.

極性有機溶媒をt前記コポリイミド、コポリアミドイミ
ドを溶解するものであればよいが特にジメチルホルムア
ミド、ジメチルアセトアミド、N−メチルピロリドン、
ジメチルスルホキシドが好ましいコポリイミド、コポリ
アミドイミドが析出しない範囲で池の溶媒、例えば芳香
族炭化水素、エーテル等を適量、希薄溶液に加えてもよ
い。
The polar organic solvent may be any solvent as long as it can dissolve the copolyimide or copolyamideimide, but in particular dimethylformamide, dimethylacetamide, N-methylpyrrolidone,
An appropriate amount of a solvent such as an aromatic hydrocarbon, ether, etc. may be added to the dilute solution as long as the copolyimide or copolyamideimide, preferably dimethyl sulfoxide, does not precipitate.

この発明による塗布用希薄溶液は、ジオキサンの含有量
が少ないとコポリイミド又はコポリアミドイミド多孔質
膜が極性溶媒に侵され高い分離性能が得られず又ジオキ
サンの含有量が多いと希薄溶液中のコポリイミド、コポ
リアミドイミドが析出するので好ましくない。好ましく
はジオキサンと極性溶媒との割合がジオキサン100重
量部に対し有機極性溶媒&−、2&重量部である。
In the dilute solution for coating according to the present invention, if the dioxane content is low, the copolyimide or copolyamideimide porous membrane will be attacked by the polar solvent, making it impossible to obtain high separation performance. This is not preferred because copolyimide and copolyamideimide precipitate. Preferably, the ratio of dioxane and polar solvent is &-, 2& parts by weight of the organic polar solvent per 100 parts by weight of dioxane.

希薄溶液中のコポリイミド、コポリアミドイミドの含有
量が少ないと分離性能の高い複合膜が得られず逆に多い
と透過速度が低下するので好ましくない。コポリイミド
、コポリアミドイミドの特に好ましい含有量は、ジオキ
サン100重量部に対し0. / −1重量部である。
If the content of copolyimide or copolyamide-imide in the dilute solution is low, a composite membrane with high separation performance cannot be obtained, whereas if the content is high, the permeation rate will decrease, which is not preferable. A particularly preferable content of copolyimide and copolyamideimide is 0.00 parts by weight per 100 parts by weight of dioxane. /-1 part by weight.

複合分離膜の透過速度と分離性能は湿式製膜法にて製造
された多孔質膜の透過性能とこれに塗布するコポリイミ
ド又はコポリアミドイミドの濃度によって変えることが
出来る。
The permeation rate and separation performance of a composite separation membrane can be changed by the permeation performance of a porous membrane manufactured by a wet membrane forming method and the concentration of copolyimide or copolyamide-imide coated thereon.

次に多孔質膜の表面に塗布する方法としては、浸漬法、
ドクターブレード、バーコーター、ロール転写法、スプ
レー法等の方法が用いられる。
Next, methods for coating the surface of the porous membrane include dipping,
Methods such as a doctor blade, bar coater, roll transfer method, and spray method are used.

中空糸への塗布は浸漬法が特に好ましい。中空糸内表面
、外表面、両方又は片面に行うことが出来る。
A dipping method is particularly preferred for coating the hollow fibers. It can be applied to the inner surface, outer surface, both or one side of the hollow fiber.

次に塗布層の熱処理は一〇℃〜/ 00℃で溶媒の大多
数を蒸発した後に110〜330℃で熱処理を行うこと
が好ましい。
Next, the coating layer is preferably heat-treated at 110-330°C after evaporating the majority of the solvent at 10°C to 100°C.

熱処理温度が低いと溶媒の残留が多くガス分離膜におい
て透過性能の安定性が悪く一方熱処理温度が高すぎると
透過速度が低下するために〔発明の効果〕 本発明の製造法による複合膜のガス透過性能は例えば水
素とメタンの分離性能が30以上と高く水素ガス透過速
度がt X / 0−’ crrr”/d、sec。
If the heat treatment temperature is too low, a large amount of solvent will remain, resulting in poor stability of permeation performance in the gas separation membrane.On the other hand, if the heat treatment temperature is too high, the permeation rate will decrease. The permeation performance is high, for example, with a hydrogen and methane separation performance of 30 or higher, and a hydrogen gas permeation rate of tX/0-'crrr''/d, sec.

cm)Ig以上である。cm) Ig or higher.

本発明の方法は複合分離膜の製造が容易でありその複合
分離膜は分離性能が高(、透過速度に優れた透過性能を
有する。また複合膜全体がコポリイミド、又はコポリア
ミドイミド系で構成されているために耐熱性、耐薬品性
が要求されている化学工業における水素の分離、天然ガ
スの脱湿、水性有機物の脱水等の分野に特に好適である
The method of the present invention makes it easy to manufacture a composite separation membrane, and the composite separation membrane has high separation performance (and has excellent permeation performance and permeation rate. Also, the entire composite membrane is made of copolyimide or copolyamide-imide). Therefore, it is particularly suitable for fields such as hydrogen separation in the chemical industry, dehumidification of natural gas, and dehydration of aqueous organic substances, which require heat resistance and chemical resistance.

本発明において可溶性の芳香族コポリイミド、コポリア
ミドイミド多孔質膜にその溶媒からなる希薄溶液を塗布
しても高い分離性能は得られないが塗布する希薄溶液に
ジオキサンを特定量加えることによって、きわだった分
離性能の向上がおこる。
In the present invention, even if a dilute solution of the solvent is applied to a soluble aromatic copolyimide or copolyamide-imide porous membrane, high separation performance cannot be obtained. This results in an improvement in separation performance.

この原因として可溶性の多孔質膜に溶解性の高い極性溶
媒に溶解したコポリイミド又はコポリアミドイミドの希
薄溶液を塗布すると多孔質膜が膨潤し、変形したり表面
の機密層が溶解されピンホール等が発生し分離性能が向
上せず塗布の効果が失なわれると思われるのに対し、多
(の貧溶媒の中でも本発明で見い出だした特定のジオキ
サンを特定量添加した希薄溶液では多孔質膜が侵されに
くくなるために安定なしかもきわだった分離性能からな
る複合分離膜が得られたと考えられる。
The cause of this is that when a dilute solution of copolyimide or copolyamideimide dissolved in a highly soluble polar solvent is applied to a soluble porous membrane, the porous membrane swells and deforms, and the confidential layer on the surface is dissolved, causing pinholes etc. On the other hand, in a dilute solution containing a specific amount of the specific dioxane discovered in this invention among the poor solvents found in the present invention, porous It is thought that a composite separation membrane with excellent separation performance, although stable, was obtained because the membrane was less susceptible to attack.

〔実施例〕〔Example〕

以下に実施例を挙げて本発明を具体的に説明する。 The present invention will be specifically described below with reference to Examples.

製造参考例−7 米国特許第370g’l!;ざ号の実施例−l中に述べ
られている手順に準拠し、J、 j’、 !、 4(’
ベンゾフェノンテトラカルボン酸無水物IOθモル%と
トルレンジイソシアナートざ0モル%、および+、 l
I’ジフェニルメタンジイソシアナート20モル%を含
む混合物よりコポリイミドを重合した。
Manufacturing Reference Example-7 US Patent No. 370g'l! ;J, j', ! , 4('
Benzophenone tetracarboxylic anhydride IOθ mol% and tolulene diisocyanate 0 mol%, and +, l
A copolyimide was polymerized from a mixture containing 20 mol% of I'diphenylmethane diisocyanate.

重合溶媒はN、 N’ジメチルホルムアミドを使用し樹
脂濃度を43wt%どなるようにした。
N, N' dimethylformamide was used as the polymerization solvent, and the resin concentration was adjusted to 43 wt%.

製造参考例−コ 製造参考例−7で得たコポリイミド溶液を中空糸製造用
ノズルから一定流量で押しだし同時に空気を中空内に一
定流量で押出し、直接水からなる凝固浴中(、y0℃)
へ導き約70秒間浸漬した後グm/分で水中で巻き取っ
た。この後水中で洗浄し一昼夜風乾した後、ioo℃−
30分、300℃−,717分乾燥・熱処理した。
Production Reference Example - Production Reference Example - The copolyimide solution obtained in Production Example 7 was extruded at a constant flow rate from a nozzle for manufacturing hollow fibers, and at the same time air was extruded into the hollow at a constant flow rate, and the copolyimide solution was directly placed in a coagulation bath consisting of water (, y0°C).
After being immersed in water for about 70 seconds, it was wound up in water at a speed of 100 g/min. After that, it was washed in water and air-dried for a day and night, and then the ioo℃-
Drying and heat treatment were performed for 30 minutes at 300°C and for 717 minutes.

中空糸の外径はり!θμ、内径は350μであった。Hollow fiber outer diameter beam! θμ and inner diameter were 350μ.

得られた多孔膜のN2の透過速度はコ×/θ″″5ar
t”/ari’、 sec、mHgでN2とN2の透過
速度の比(QHz/QNz )はitであった。
The N2 permeation rate of the obtained porous membrane was ko×/θ″″5ar
The ratio of N2 to N2 permeation rates (QHz/QNz) was it at t''/ari', sec, mHg.

製造参考例3 製造参考例−7で得たコポリイミド溶液にジオキサン、
N、Nジメチルホルムアミドを適当量加えてジオキサン
10重量部、N、 Nジメチルホルムアミ″ドlり重量
部、ポリイミド/重量部からなる希薄溶液を調製した。
Production Reference Example 3 Dioxane,
A suitable amount of N,N dimethylformamide was added to prepare a dilute solution consisting of 10 parts by weight of dioxane, 1 part by weight of N,N dimethylformamide, and 1 part by weight of polyimide.

実施例−1 参考製造例−のコポリイミド中空糸状多孔質膜を参考例
(3)で調製されたコポリイミド希薄溶液中に約30秒
間浸漬して多孔質膜に塗布し一昼夜風乾し次いで100
℃で30分間乾燥し、さらに−30℃で30分加熱処理
して複合分離膜を製造した。
Example-1 The copolyimide hollow fiber porous membrane of Reference Production Example- was immersed in the dilute copolyimide solution prepared in Reference Example (3) for about 30 seconds, applied to the porous membrane, air-dried overnight, and then
A composite separation membrane was produced by drying at ℃ for 30 minutes and further heating at -30 ℃ for 30 minutes.

その複合分離膜をガス透過テストした結果を第1表に示
す 製造参考例−ダ Aj℃の水から成る凝固浴で製膜した以外は製造参考例
−コと同条件でコポリイミド多孔中空糸を製造した。
The results of the gas permeation test for the composite separation membrane are shown in Table 1.Reference production example - Copolyimide porous hollow fibers were prepared under the same conditions as in Reference production example - except that the film was formed in a coagulation bath consisting of water at dAj℃. Manufactured.

ガスの透過性能、及び浸透気化法(10℃)による水と
エタノール(/ 0/90wt%)の透過性能な聚−7
に示す。
Gas permeation performance and water and ethanol (/0/90wt%) permeation performance by pervaporation method (10℃) -7
Shown below.

実施例−2 製造参考例−弘のコポリイミド中空糸状多孔膜を参考例
−3で調製されたコポリイミド希薄溶液中に約7分間浸
漬して塗布し一昼夜風乾し゛次いでioo℃で3Q分間
乾燥しさらに300℃で30分加熱処理して複合分離膜
を製造した。
Example 2 Manufacture Reference Example - Hiro's copolyimide hollow fiber porous membrane was coated by immersing it in the dilute copolyimide solution prepared in Reference Example 3 for about 7 minutes, air-dried overnight, and then dried at IOO°C for 3Q minutes. Further, a composite separation membrane was produced by heat treatment at 300° C. for 30 minutes.

その複合分離膜のガス及び浸透気化法による水/エタノ
ールの透過性能を表−Iに示す。
Table I shows the gas and water/ethanol permeation performance of the composite separation membrane by the pervaporation method.

製造参考例−3 予備乾燥した1073の反応器に61ダ、ざ2g(j、
4モル)のトリメリット酸無水物および/3コ、り09
(0,10モル)のイソフタル酸を装入したこの反応機
は温度計、凝縮器、攪拌器、及び窒素入口を備えていた
Production reference example-3 61 da, 2 g (j,
4 mol) of trimellitic anhydride and /3 co, Ri09
The reactor, charged with (0.10 mol) of isophthalic acid, was equipped with a thermometer, a condenser, a stirrer, and a nitrogen inlet.

Slの乾燥したびん中に7000.96g(4,0モル
)のo、 4!’ジフエニルメタンジイソシアナート(
以下MDIと略称)をはかり取り、次いでダ3ダゴのN
−′メチルピロリド/(以下NMPと略称)をはかり取
ってMDIを溶解した。このMDI溶液を反応器に加え
、次いでMDIをはかり取りたびんをすすぐために3b
sorrtのNMPを加えた。
7000.96 g (4,0 mol) o in a dry bottle of Sl, 4! 'Diphenylmethane diisocyanate (
(hereinafter abbreviated as MDI), then measure the N of D3 Dago.
-'Methylpyrrolid/(hereinafter abbreviated as NMP) was weighed out and MDI was dissolved. Add this MDI solution to the reactor, then weigh out the MDI and rinse the bottle using step 3b.
Sort of NMP was added.

& !r rpmの攪拌速度および窒素雰囲気の下でこ
の溶液を3時間tio分にわたって33℃から170℃
まで加熱した。
&! The solution was heated from 33° C. to 170° C. for 3 h tio min under a stirring speed of r rpm and a nitrogen atmosphere.
heated to.

こQコポリアミドイミドの30℃における対数粘度(η
inh)(NMP中o、sg’)は0.1.03di/
iであった。
The logarithmic viscosity (η
inh) (o, sg' in NMP) is 0.1.03di/
It was i.

この溶液をメタノール中に加えポリマーを析出させた後
lSO℃で3時間乾燥しコボリアミトイミド粉末を得た
This solution was added to methanol to precipitate a polymer, which was then dried at lSO°C for 3 hours to obtain cobolyamitoimide powder.

lり重量%固型分濃度となるようKDMFで溶解したコ
ポリアミドイミド溶液を調製した。
A copolyamide-imide solution was prepared by dissolving it in KDMF to a solid content of 1% by weight.

製造参考例−6 製造参考例−ダで得られたコポリアミドイミド溶液を中
空糸製造用ノズルから一定流量で押し出し同時に水を中
空糸内に一定流量で押し出し、直接3℃の水からなる凝
固浴中へ導き約i。
Production Reference Example-6 Production Reference Example-The copolyamide-imide solution obtained in DA is extruded at a constant flow rate through a nozzle for manufacturing hollow fibers, and at the same time, water is extruded into the hollow fibers at a constant flow rate to directly create a coagulation bath consisting of water at 3°C. Lead inside about i.

秒間浸漬した後4’m/分で水中で巻き取った。After being immersed for a second, it was wound up in water at 4'm/min.

この後水中で洗浄し一昼夜風乾した後100’C−30
分間、次いで2SO℃−30分乾燥熱処理した。
After washing in water and air drying for a day and night, 100'C-30
2 minutes and then a dry heat treatment at 2SO° C. for 30 minutes.

得られたコポリアミドイミドの多孔膜の透過性能を表−
lに示す。
The permeation performance of the obtained porous membrane of copolyamideimide is shown below.
Shown in l.

製造参考例−7 製造参考例−3で得られたコポリアミドイミド溶液にジ
オキサン、N、Nジメチルホルムアミドを適当量加えて
ジオキサン73重量部、N、Nジメチルホルムアミドλ
ダ重量部、ポリイミド1重量部からなる希薄液を調製し
た。
Production Reference Example-7 Appropriate amounts of dioxane and N,N dimethylformamide were added to the copolyamide-imide solution obtained in Production Reference Example-3 to obtain 73 parts by weight of dioxane and N,N dimethylformamide λ.
A dilute solution containing 1 part by weight of polyimide and 1 part by weight of polyimide was prepared.

実施例−3 参考製造例−6のコポリアミドイミド中空糸状多孔膜を
参考例−7で調整されたコポリアミドイミド希薄溶液を
使用した以外は実施例−7と同条件で複合分離膜を製造
した。
Example-3 A composite separation membrane was manufactured under the same conditions as Example-7 except that the copolyamide-imide hollow fiber porous membrane of Reference Production Example-6 was used with the copolyamide-imide dilute solution prepared in Reference Example-7. .

その複合分離膜のガス透過テストした結果を第1表に示
す。
Table 1 shows the results of a gas permeation test for the composite separation membrane.

比較例−l 製造参考例−2のコポリイミド中空糸状多孔膜に製造参
考例−/で得られたコポリイミド溶液を固型分濃度/重
量部になるようにN−Nジメチルホルムアミドで希薄し
た溶液を実施例−7と同方法で複合分離膜を製造した。
Comparative Example-l A solution obtained by diluting the copolyimide solution obtained in Production Reference Example-/ with N-N dimethylformamide to the solid content/parts by weight on the copolyimide hollow fiber porous membrane of Production Reference Example-2. A composite separation membrane was manufactured in the same manner as in Example-7.

その複合分離膜のガス透過した結果を第1表に示す。Table 1 shows the results of gas permeation through the composite separation membrane.

比較例−一 製造参考例−2のコポリイミド中空糸状多孔膜に参考例
−1で得られたコポリイミド溶液を固型分濃度1重量部
になるようにパラクロルフェノール/クロロホルム= 
(/ 0 重ft m / ? 。
Comparative Example - 1 Manufacture The copolyimide solution obtained in Reference Example 1 was added to the copolyimide hollow fiber porous membrane of Reference Example 2 at a solid content of 1 part by weight, parachlorophenol/chloroform =
(/0 heavy ft m/?.

重量部)で希薄溶液を調製し実施例−7と同方法で複合
分離膜を製造した。
(parts by weight) to prepare a dilute solution and produce a composite separation membrane in the same manner as in Example-7.

その複合分離膜のガス透過した結果を第1表に示す。Table 1 shows the results of gas permeation through the composite separation membrane.

比較例−3 希薄溶液の調製においてN−Nジメチルホルムアミド/
トルエン=70重量部/、70重量部にした以外は比較
例−一と同方法で複合分離膜を製造した。
Comparative Example-3 N-N dimethylformamide/
A composite separation membrane was produced in the same manner as in Comparative Example-1 except that toluene was 70 parts by weight.

その複合分離膜のガス透過した結果を表−1に示す。Table 1 shows the results of gas permeation through the composite separation membrane.

Claims (2)

【特許請求の範囲】[Claims] (1)繰り返し単位の90〜70モル%が式( I )▲
数式、化学式、表等があります▼………( I ) で表わされる構造を有し、かつ繰り返し単位の10〜3
0モル%が式(II) ▲数式、化学式、表等があります▼ ………(II) で表わされる構造を有する芳香族コポリイミド、又は繰
り返し単位の70〜90モル%が式(III) ▲数式、化学式、表等があります▼………(III) で表わされる構造を有し、かつ繰り返し単位の30〜1
0モル%が式(IV) ▲数式、化学式、表等があります▼………(IV) で表わされる構造を有する芳香族コポリアミドイミドか
ら湿式製膜法にて製造された多孔質膜上に、ジオキサン
100重量部に対し他の有機極性溶媒5〜50重量部を
含有する混合溶媒に前記芳香族コポリイミドまたはコポ
リアミドイミドを0.05〜10重量部溶解した溶液を
塗布し乾燥し熱処理することを特徴とする複合分離膜の
製造方法。
(1) 90 to 70 mol% of repeating units are of the formula (I) ▲
There are mathematical formulas, chemical formulas, tables, etc. ▼……Has a structure represented by (I) and has 10 to 3 repeating units
0 mol% is formula (II) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ ………(II) An aromatic copolyimide having the structure represented by, or 70 to 90 mol% of the repeating units is formula (III) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼......(III) It has a structure represented by and has a repeating unit of 30 to 1
0 mol% is the formula (IV) ▲There are mathematical formulas, chemical formulas, tables, etc.▼......(IV) , A solution of 0.05 to 10 parts by weight of the aromatic copolyimide or copolyamideimide dissolved in a mixed solvent containing 100 parts by weight of dioxane and 5 to 50 parts by weight of another organic polar solvent is applied, dried, and heat treated. A method for producing a composite separation membrane characterized by the following.
(2)有機極性溶媒がジメチルホルムアミド、ジメチル
スルホキシド、ジメチルアセトアミドまたはN−メチル
ピロリドンから選ばれる溶媒である特許請求の範囲第1
項記載の製造方法。
(2) Claim 1, wherein the organic polar solvent is a solvent selected from dimethylformamide, dimethylsulfoxide, dimethylacetamide, or N-methylpyrrolidone.
Manufacturing method described in section.
JP62280037A 1987-11-05 1987-11-05 Method for manufacturing composite separation membrane Expired - Lifetime JP2506837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62280037A JP2506837B2 (en) 1987-11-05 1987-11-05 Method for manufacturing composite separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62280037A JP2506837B2 (en) 1987-11-05 1987-11-05 Method for manufacturing composite separation membrane

Publications (2)

Publication Number Publication Date
JPH01123607A true JPH01123607A (en) 1989-05-16
JP2506837B2 JP2506837B2 (en) 1996-06-12

Family

ID=17619416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62280037A Expired - Lifetime JP2506837B2 (en) 1987-11-05 1987-11-05 Method for manufacturing composite separation membrane

Country Status (1)

Country Link
JP (1) JP2506837B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09136985A (en) * 1995-08-21 1997-05-27 Korea Advanced Inst Of Sci Technol Polymer solution for asymmetrical single film, asymmetrical single film made thereof and production thereof
JP2005162885A (en) * 2003-12-03 2005-06-23 Daicel Chem Ind Ltd Polyamide-imide-based porous film excellent in chemical resistance and method for producing the same
JP2008285316A (en) * 2007-05-21 2008-11-27 Shin Meiwa Ind Co Ltd Garbage throw-in box for garbage collection truck
WO2016136294A1 (en) * 2015-02-27 2016-09-01 富士フイルム株式会社 Gas separation membrane, gas separation module, gas separation device, gas separation method, and method for producing gas separation asymmetric membrane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274411A (en) * 1985-09-30 1987-04-06 Mitsubishi Chem Ind Ltd Production process for separating membrane
JPS62114611A (en) * 1985-11-12 1987-05-26 Mitsubishi Chem Ind Ltd Method for producing separation membrane
JPS62163712A (en) * 1986-01-14 1987-07-20 Mitsubishi Chem Ind Ltd Dope for producing separation membrane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274411A (en) * 1985-09-30 1987-04-06 Mitsubishi Chem Ind Ltd Production process for separating membrane
JPS62114611A (en) * 1985-11-12 1987-05-26 Mitsubishi Chem Ind Ltd Method for producing separation membrane
JPS62163712A (en) * 1986-01-14 1987-07-20 Mitsubishi Chem Ind Ltd Dope for producing separation membrane

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09136985A (en) * 1995-08-21 1997-05-27 Korea Advanced Inst Of Sci Technol Polymer solution for asymmetrical single film, asymmetrical single film made thereof and production thereof
JP2005162885A (en) * 2003-12-03 2005-06-23 Daicel Chem Ind Ltd Polyamide-imide-based porous film excellent in chemical resistance and method for producing the same
JP4530652B2 (en) * 2003-12-03 2010-08-25 ダイセル化学工業株式会社 Polyamideimide porous film with excellent chemical resistance and method for producing the same
JP2008285316A (en) * 2007-05-21 2008-11-27 Shin Meiwa Ind Co Ltd Garbage throw-in box for garbage collection truck
WO2016136294A1 (en) * 2015-02-27 2016-09-01 富士フイルム株式会社 Gas separation membrane, gas separation module, gas separation device, gas separation method, and method for producing gas separation asymmetric membrane
JPWO2016136294A1 (en) * 2015-02-27 2017-07-27 富士フイルム株式会社 Gas separation membrane, gas separation module, gas separation apparatus, gas separation method, and method for producing gas separation asymmetric membrane
US10543455B2 (en) 2015-02-27 2020-01-28 Fujifilm Corporation Gas separation membrane, gas separation module, gas separation apparatus, gas separation method, and method for producing asymmetric gas separation membrane

Also Published As

Publication number Publication date
JP2506837B2 (en) 1996-06-12

Similar Documents

Publication Publication Date Title
JP2855668B2 (en) Polyimide separation membrane
US5286539A (en) Gas separating asymmetric membrane
JP6023329B2 (en) Polymer, polymer film and production method thereof
JPH08501977A (en) Gas separation membranes made from aromatic polyimide, polyamide or blends of polyamide-imide polymers
JPS6355974B2 (en)
EP0446947A2 (en) Gas separating asymmetric membrane
US5969087A (en) Polyimide, a method for manufacturing the same, a gas separation membrane using the polyimide and a method for manufacturing the same
BR112016013236B1 (en) COPOLYIMIDE IN BLOCK, PROCESS FOR PREPARATION OF A COPOLYIMIDE IN BLOCK, ASIMETRICLY INTEGRAL HOLLOW FIBER MEMBRANE OR ASIMETRICLY INTEGRAL FLAT SHEET MEMBRANE, HOLLOW FIBER MEMBRANE MODULES, SEAMLESS ELEMENT FOR SEPARATION AND SEPARATION GASES OF GASES
JPH01159024A (en) Gas separation membrane
JPH07251050A (en) Blend of aromatic polyimide, polyamide or polyamide-imide with polyether sulfone and gas separation membrane made of it
US5939520A (en) Gas separation membranes based on regiospecific polyamide-imides
JPH01194905A (en) Separation membrane of polyimide
JPH05146651A (en) Manufacture of gas separation membrane
JPH01194904A (en) Separation membrane of polyalylate
JPH0685858B2 (en) Method for manufacturing separation membrane
JPH01123607A (en) Production of composite separation membrane
JPH0685859B2 (en) Separation membrane manufacturing method
JPH0852332A (en) Composite gas separation membrane and production thereof
JPH0342026A (en) Production of polyimide separation film
JPS62163712A (en) Dope for producing separation membrane
JPH0685860B2 (en) Separation membrane manufacturing method
US4598099A (en) Process for the production of polybenzimidazole foams
JPS63209730A (en) Process for separating steam
JP2001040089A (en) Polyimide resin, its production and gas separation membrane composed thereof
JP2827212B2 (en) Polyamideimide separation membrane