JPH01123605A - Method for recovering energy in brine desalting plant using reverse-osmosis membrane - Google Patents

Method for recovering energy in brine desalting plant using reverse-osmosis membrane

Info

Publication number
JPH01123605A
JPH01123605A JP62280642A JP28064287A JPH01123605A JP H01123605 A JPH01123605 A JP H01123605A JP 62280642 A JP62280642 A JP 62280642A JP 28064287 A JP28064287 A JP 28064287A JP H01123605 A JPH01123605 A JP H01123605A
Authority
JP
Japan
Prior art keywords
seawater
piston
pressure
cylinder
salt water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62280642A
Other languages
Japanese (ja)
Inventor
Shoichi Suda
昇一 須田
Yuji Yoshii
吉井 裕二
Kazuyuki Egashira
和幸 江頭
Kiyoshi Uyama
清 宇山
Toshio Yamatani
山谷 俊雄
Kazunari Katagiri
片桐 一成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP62280642A priority Critical patent/JPH01123605A/en
Publication of JPH01123605A publication Critical patent/JPH01123605A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/06Energy recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

PURPOSE:To efficiently recover the pressure energy of concd. brine by driving the piston of the main booster of a desalting equipment by the reverse-osmosis membrane concd. brine to pressurize the brine. CONSTITUTION:The seawater stored in a seawater tank 1 is pressurized by a high-pressure pump 2, and supplied to the desalting equipment 3. The fresh water generated by reverse osmosis is discharged from a pipeline 6, and the concd. seawater retaining high residual pressure is introduced into an energy conversion train from a pipeline 8. Namely, the seawater is sent into a cylinder 13 from a change-over valve 14a, and discharged from a change-over valve 14b. The piston 12 is moved to the left and to the right by switching the change- over valves 14a and 14b to the left and to the right, and the seawater is moved to the left and to the right in the cylinder 13. The piston 17 of the booster cylinder 18 is reciprocated by the movement of the piston, and the seawater supplied into the cylinder from pipelines 16a and 16b is pressurized, discharged, and supplied to the desalting equipment 3 along with the seawater supplied from the high-pressure pump 2.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は逆浸透膜を利用した淡水化装置で塩水を淡水化
する設備における濃縮塩水の圧力エネルギーの回収方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for recovering pressure energy of concentrated salt water in equipment for desalinating salt water using a desalination apparatus using a reverse osmosis membrane.

[従来技術] 海水等の塩水の逆浸透法による淡水化は他の方法に比ベ
エネルギーの消費が非常に少ないため、注目されている
方法である。逆浸透法は水溶液中の水だけを透過させる
いわゆる半透膜の作用を逆に利用した脱塩方法であり、
逆浸透膜で隔離された水溶液側に、水溶液の浸透圧以上
の機械的圧力を与えれば、水だけが膜を通過して淡水が
得られると言う原理に基づいた方法である。この際に、
淡水と共に濃縮された塩水が排出されるが、実際の淡水
化設備においては、塩水を高圧にして逆浸透膜を通過さ
せるため、濃縮塩水は高い残圧を保有したまま排出され
、エネルギーが無駄に消費されている。このため、濃縮
塩水の残圧エネルギーをいかに効率よく回収するかが電
力消費量の減少、ひいては淡水製造コストの低減につな
がる大きな要素となっている。
[Prior Art] Desalination of salt water such as seawater by reverse osmosis is a method that is attracting attention because it consumes very little energy compared to other methods. Reverse osmosis is a desalination method that reversely utilizes the action of a so-called semipermeable membrane that only allows water in an aqueous solution to pass through.
This method is based on the principle that if a mechanical pressure higher than the osmotic pressure of the aqueous solution is applied to the aqueous solution side isolated by a reverse osmosis membrane, only water will pass through the membrane and fresh water will be obtained. At this time,
Concentrated salt water is discharged along with fresh water, but in actual desalination facilities, the salt water is put under high pressure and passed through a reverse osmosis membrane, so the concentrated salt water is discharged with a high residual pressure, wasting energy. being consumed. For this reason, how efficiently the residual pressure energy of concentrated salt water can be recovered is a major factor in reducing power consumption and, by extension, freshwater production costs.

このような必要性から濃縮塩水の残圧エネルギーの回収
を実施した技術の紹介がある(遣水技術−水処理のすべ
て一379〜380頁 財団法人造水促進センター発行
 昭和58年)、この技術は濃縮塩水の残圧エネルギー
でタービンを回転させ、塩水を昇圧にする高圧ポンプの
補助動力として回収する方法である。第2図はその従来
技術においてエネルギー回収実験を実施した装置の説明
図であり、前記文献に記載されている図面の要部のみを
記した図である。第2図において、高圧ポンプ2はモー
ター30およびタービン31と一連に配置されており、
連結された一体のシャフトで回転するようになっている
。また、この実験装置においては、淡水化装置は備えて
いないが、塩水の流量および圧力が塩水淡水化設備と同
一になるようになっている。塩水槽1に貯留された塩水
は高圧ポンプ2によって昇圧にされる。高圧ポンプ2か
ら吐出した塩水は塩水淡水化設備における淡水と濃縮塩
水の生成比率になるように、流量計32および調節弁3
3によって分流され、一方は淡水相当の流量にして直接
塩水槽1に戻され、他方は濃縮塩水相当の流量に調節さ
れてタービン31に送られ、タービン31を回転させる
。このタービン31の回転による回転エネルギーは高圧
ポンプ1の補助動力となっている。このように、濃縮塩
水の圧力エネルギーはタービン31によって回転エネル
ギーに変えられてエネルギーの回収なされている。この
際のエネルギー回収率は高圧ポンプが消費する動力の1
8%となっている。
In response to this need, there is an introduction to a technology that recovers the residual pressure energy of concentrated salt water (Water Supply Technology - All About Water Treatment, pp. 379-380, published by the Water Desalination Promotion Center, 1981). This method uses the residual pressure energy of concentrated salt water to rotate a turbine and recovers it as auxiliary power for a high-pressure pump that boosts the pressure of salt water. FIG. 2 is an explanatory diagram of an apparatus in which an energy recovery experiment was conducted in the prior art, and is a diagram showing only the main parts of the drawing described in the above-mentioned document. In FIG. 2, the high-pressure pump 2 is arranged in series with a motor 30 and a turbine 31,
It is designed to rotate by a single, connected shaft. Although this experimental device does not include a desalination device, the flow rate and pressure of salt water are the same as those of the desalination equipment. Salt water stored in a salt water tank 1 is pressurized by a high pressure pump 2. The salt water discharged from the high-pressure pump 2 is controlled by a flow meter 32 and a control valve 3 so that the production ratio of fresh water and concentrated salt water in the salt water desalination equipment is maintained.
3, one is made into a flow rate equivalent to fresh water and directly returned to the salt water tank 1, and the other is adjusted to a flow rate equivalent to concentrated salt water and sent to the turbine 31, which rotates the turbine 31. The rotational energy generated by the rotation of the turbine 31 serves as auxiliary power for the high-pressure pump 1. In this way, the pressure energy of the concentrated salt water is converted into rotational energy by the turbine 31 and the energy is recovered. The energy recovery rate in this case is 1 of the power consumed by the high-pressure pump.
It is 8%.

[発明が解決しようとする問題点] しかしながら、前記の従来技術においては、エネルギー
回収の手段としてタービンを使用しているが、エネルギ
ー変換時の損失が大きく、そのエネルギー回収率は十分
とは言えず、未だ回収率向上の余地が大いに残されてい
る。
[Problems to be solved by the invention] However, in the above-mentioned conventional technology, a turbine is used as a means of energy recovery, but the loss during energy conversion is large, and the energy recovery rate cannot be said to be sufficient. However, there is still much room for improvement in recovery rates.

本発明は、このような従来技術の問題点を解決するため
になされたもめであり、エネルギー回収率が極めて高い
塩水淡水化設備のエネルギー回収方法を提供することを
目的とする。
The present invention was made in order to solve the problems of the prior art, and it is an object of the present invention to provide an energy recovery method for a salt water desalination facility that has an extremely high energy recovery rate.

[問題点を解決するな、めの手段] 前記問題点は、前記淡水化装置の逆浸透膜濃縮塩水によ
りピストンを駆動し、前記ピストンにより駆動される昇
圧ピストンにより塩水を昇圧し、主昇圧装置より供給さ
れる塩水と共に前記淡水化装置に供給することにより解
決される。
[Measures to Avoid Solving Problems] The problem is that a piston is driven by the reverse osmosis membrane concentrated salt water of the desalination equipment, and the pressure of the salt water is increased by a booster piston driven by the piston, and the main pressure booster is This problem can be solved by supplying the desalination device together with salt water supplied by the above desalination apparatus.

[作用] 本発明のエネルギー回収方法は濃縮塩水の残圧によって
ピストンを駆動するものであり、このピストンの駆動に
より塩水を昇圧して、高圧ポンプから吐出する塩水と同
じ圧力の塩水とし、この塩水を淡水化装置に供給する方
法である。このため、高圧ポンプの負荷はピストンで昇
圧して供給する塩水量の分だけ軽減され、エネルギーが
節減される。ピストンによるエネルギー回収におけるエ
ネルギー損失はピストンの機械的摩擦抵抗、塩水流路の
圧力損失等だけであって非常に少ないので従来のタービ
ンによるものより効率がよい。
[Operation] In the energy recovery method of the present invention, a piston is driven by the residual pressure of concentrated salt water, and the driving of this piston increases the pressure of the salt water to make it the same pressure as the salt water discharged from the high-pressure pump. This is a method of supplying the water to the desalination equipment. Therefore, the load on the high-pressure pump is reduced by the amount of salt water supplied by increasing the pressure with the piston, and energy is saved. The energy loss in energy recovery by the piston is only due to mechanical frictional resistance of the piston, pressure loss in the salt water flow path, etc., and is very small, so it is more efficient than the conventional turbine.

[発明の実施例] 以下、本発明の実施例を図面に基づいて説明する。第1
図は本発明の方法を実施するための設備の一実施例を示
す説明図である。第1図において、1は海水槽であり、
この海水槽1に連設されて主昇圧装置である高圧ポンプ
2、逆浸透膜が組み込まれた淡水化装置3がある。これ
らは配管4、配管5で直列に接続されて海水淡水化設備
の主要部である淡水製造工程を構成してい葛、配管5に
は、後述するエネルギー回収工程から供給される海水が
高圧ポンプ2の方向に逆流しないように逆止弁7が配置
されている。淡水化装置3には淡水を排出する配管6お
よび濃縮海水を排出する配管8が設けられており、配管
8はエネルギー回収工程に接続されている。
[Embodiments of the Invention] Hereinafter, embodiments of the present invention will be described based on the drawings. 1st
The figure is an explanatory diagram showing an example of equipment for carrying out the method of the present invention. In Figure 1, 1 is a seawater tank;
Connected to the seawater tank 1 are a high-pressure pump 2 as a main pressure booster and a desalination device 3 incorporating a reverse osmosis membrane. These are connected in series by piping 4 and piping 5 to constitute the fresh water production process, which is the main part of the seawater desalination equipment.The piping 5 is connected to the high-pressure pump 2, where seawater is supplied from the energy recovery process, which will be described later. A check valve 7 is arranged to prevent backflow in the direction. The desalination device 3 is provided with a pipe 6 for discharging fresh water and a pipe 8 for discharging concentrated seawater, and the pipe 8 is connected to an energy recovery process.

エネルギー回収工程は高圧ポンプ2とは別系列で海水を
昇圧して淡水化装置3へ供給する一連の装置を指し、濃
縮海水の圧力エネルギーを運動エネルギーに変えるため
のエネルギー変換系列と、変換されたエネルギーによっ
て海水を淡水化装置3に供給する海水昇圧系列とに分け
られる。
The energy recovery process refers to a series of devices that boost the pressure of seawater in a separate system from the high-pressure pump 2 and supply it to the desalination device 3, and an energy conversion system that converts the pressure energy of concentrated seawater into kinetic energy. It is divided into a seawater pressurization system that supplies seawater to the desalination device 3 depending on energy.

エネルギー変換系列は配管8の経路に配置され、絞り9
.アキュームレータ10等よりなる平滑手段11と、濃
縮海水の圧力エネルギーを運動エネルギーに変換する装
置であるピストン12が内蔵されているシリンダー13
と、このシリンダー13の前後に配置されている切換え
弁14a、14bおよびピストン12の位置を検出する
ストローク検出器15.15で構成されている。平滑手
段11はピストン12のストロークエンドで発生する衝
撃を緩和し、淡水化装置3の逆浸透膜を機械的ショック
から保護するために配置されている。配管8はシリンダ
ー13の前後すなわち切換え弁14aと14bの間で8
aおよび8bに分岐されており、それぞれシリンダー1
3のピストン12の両側に接続している。この配管8a
、8bに導入する濃縮海水を切り換えるために、電磁式
、空気圧式等の切換え弁14a。
The energy conversion series is arranged in the path of the pipe 8, and the aperture 9
.. A cylinder 13 in which a smoothing means 11 consisting of an accumulator 10 etc. and a piston 12 which is a device for converting pressure energy of concentrated seawater into kinetic energy are built-in.
, switching valves 14a and 14b arranged before and after the cylinder 13, and stroke detectors 15 and 15 for detecting the position of the piston 12. The smoothing means 11 is arranged to reduce the impact generated at the stroke end of the piston 12 and to protect the reverse osmosis membrane of the desalination device 3 from mechanical shock. The pipe 8 is connected between the front and rear of the cylinder 13, that is, between the switching valves 14a and 14b.
a and 8b, each with cylinder 1
It is connected to both sides of the piston 12 of No. 3. This piping 8a
, 8b, a switching valve 14a, such as an electromagnetic type or a pneumatic type, is used to switch the concentrated seawater introduced into the ports 8b.

14bが配置されている。この切換え弁14a。14b is arranged. This switching valve 14a.

bは2個の弁機構を簡略化して示しである。切換え弁1
4a、14bの操作はストローク検出器15.15らの
信号によって行われ、濃縮海水を配管8aと8bに交互
に導入するようにしである。海水昇圧系列は、配管4か
ら分岐した配管16の経路に配置され、海水昇圧装置で
ある昇圧ピストン17を内蔵した昇圧シリンダー18と
、昇圧シリンダー18の前後に配置された逆止弁19a
、19aおよび19b、19bと、絞り20、アキュー
ムレータ21等よりなる平滑手段22で構成されている
。配管16はシリンダー18の前後で16aおよび16
bに分岐されており、シリンダー18のピストン17の
両側に接続している。この配管16a、16bには昇圧
シリンダー18の前後にそれぞれ逆止弁19a。
b is a simplified illustration of two valve mechanisms. Switching valve 1
4a and 14b are operated by signals from stroke detectors 15, 15, etc., so as to alternately introduce concentrated seawater into pipes 8a and 8b. The seawater boosting system is arranged in a route of a pipe 16 branched from the pipe 4, and includes a pressure boosting cylinder 18 containing a pressure boosting piston 17, which is a seawater boosting device, and check valves 19a arranged before and after the pressure boosting cylinder 18.
, 19a, 19b, 19b, and smoothing means 22 consisting of a diaphragm 20, an accumulator 21, and the like. The piping 16 is connected to 16a and 16 before and after the cylinder 18.
b, and is connected to both sides of the piston 17 of the cylinder 18. The pipes 16a and 16b are provided with check valves 19a before and after the booster cylinder 18, respectively.

19aそして19b、19bが配置されており、海水を
配管16aと16bに交互に導入するようにしである。
19a, 19b, and 19b are arranged so as to alternately introduce seawater into the pipes 16a and 16b.

平滑手段22はエネルギー変換系列の平滑手段11・と
同様の目的で配置しである。
The smoothing means 22 is arranged for the same purpose as the smoothing means 11 of the energy conversion series.

次に、昇圧ピストン17を内蔵した昇圧シリンダー18
について更に詳しく説明する。昇圧シリンダー18はシ
リンダー13に隣接して直列に配置されており、内蔵さ
れている昇圧ピストン17のロッド23はピストン12
のロッドと連結されて一体となっている。このため、昇
圧ピストン17はピストン12を作動させることにより
駆動するようになっている。また、昇圧シリンダー18
の断面積はシリンダー13の断面積より小さくしてあり
、濃縮海水がシリンダー13に導入される圧力よりも昇
圧シリンダー18から吐出する海水の圧力の方が高くな
るようにしである。これにより、淡水化装置3や配管経
路における圧力損失分の圧力が補われ、昇圧シリンダー
18から供給される海水の圧力は主昇圧装置である高圧
ポンプ2から吐出する海水の圧力と同じに出来るように
なっている。
Next, a boost cylinder 18 containing a boost piston 17
will be explained in more detail. The boost cylinder 18 is arranged in series adjacent to the cylinder 13, and the built-in rod 23 of the boost piston 17 is connected to the piston 12.
It is connected to the rod to form a single unit. Therefore, the boosting piston 17 is driven by operating the piston 12. In addition, the boost cylinder 18
The cross-sectional area of the cylinder 13 is smaller than that of the cylinder 13 so that the pressure of the seawater discharged from the pressurizing cylinder 18 is higher than the pressure at which the concentrated seawater is introduced into the cylinder 13. This compensates for the pressure loss in the desalination device 3 and the piping route, so that the pressure of seawater supplied from the booster cylinder 18 can be made equal to the pressure of seawater discharged from the high-pressure pump 2, which is the main booster. It has become.

上記のように構成された設備において、海水槽1に貯留
され、逆浸透膜の性能を阻害しない条件に調整された海
水は主昇圧装置である高圧ポンプ2で昇圧され、淡水化
装置3に供給される。淡水化装置3においては逆浸透膜
の作用により淡水が生成して配管6から排出し、同時に
高い残圧を保有したままの濃縮海水が配管8から排出し
、エネルギー変換系列に導入される。
In the equipment configured as described above, seawater stored in a seawater tank 1 and adjusted to conditions that do not inhibit the performance of the reverse osmosis membrane is pressurized by a high-pressure pump 2, which is the main pressure booster, and then supplied to a desalination device 3. be done. In the desalination device 3, fresh water is generated by the action of the reverse osmosis membrane and discharged from the pipe 6, and at the same time concentrated seawater, which still retains a high residual pressure, is discharged from the pipe 8 and introduced into the energy conversion train.

エネルギー変換系列においては、配管8の濃縮海水は平
滑手段11、切換え弁14aを経てシリンダー13に流
入し切換え弁14bを経て排出する。この際、濃縮海水
は切換え弁14a、14bによってに流路を定められ、
配管8aまたは8bの何れかを流れる0例えば、濃縮海
水が配管8aに流れる場合の切換え弁14a、14bの
作動は、切換え弁14aにおいては配管8a側は開、配
管8b側は閉であり、切換え弁14bにおいては配管8
a側は閉、配管8b側は開となる。このようにして濃縮
海水が配管8aのラインを流れると、シリンダー13に
供給される濃縮海水は図の表示におけるピストン12の
右側に流入する。しかし切換え弁14bの配管8a側は
閉ざされているので、濃縮海水の圧力によってピストン
12は左側に移動する。ピストン12がストロークエン
ドに達すると、ストローク検出器15.15の信号によ
り、切換え弁14a、14bを前述と逆の開閉状態にし
、シリンダー13に供給する濃縮海水の流れをピストン
12の左側に切り換える。この場合には、ピストン12
は右側に移動し、配管8aによってシリンダー13の右
側に供給された濃縮海水は切換え弁14bを経て排出す
る。このような動作が繰り返され、ピストン12の往復
運動が行われる。
In the energy conversion series, concentrated seawater in the pipe 8 flows into the cylinder 13 via the smoothing means 11 and the switching valve 14a, and is discharged via the switching valve 14b. At this time, the flow path of the concentrated seawater is determined by the switching valves 14a and 14b,
For example, when concentrated seawater flows through either piping 8a or 8b, the operation of the switching valves 14a and 14b is such that the switching valve 14a is open on the piping 8a side and closed on the piping 8b side. In the valve 14b, the pipe 8
The a side is closed and the piping 8b side is open. When the concentrated seawater flows through the line of the piping 8a in this manner, the concentrated seawater supplied to the cylinder 13 flows to the right side of the piston 12 in the representation of the figure. However, since the piping 8a side of the switching valve 14b is closed, the piston 12 moves to the left due to the pressure of the concentrated seawater. When the piston 12 reaches the end of its stroke, the switching valves 14a and 14b are opened and closed in the opposite manner to the above, and the flow of concentrated seawater supplied to the cylinder 13 is switched to the left side of the piston 12 according to the signal from the stroke detector 15.15. In this case, the piston 12
moves to the right side, and the concentrated seawater supplied to the right side of the cylinder 13 through the pipe 8a is discharged via the switching valve 14b. Such operations are repeated, and the piston 12 reciprocates.

次に海水昇圧系列について説明すると、配管16の海水
は昇圧シリンダー18に導入される。
Next, the seawater pressurization series will be explained. Seawater in the pipe 16 is introduced into the pressure increase cylinder 18.

この際、昇圧ピストン17はピストン12によって駆動
され、往復運動をしているので、昇圧シリンダー18の
図中昇圧ピストン17の右側と左側はそれぞれ吸入域ま
たは圧縮域となる0例えば、昇圧ピストン17が左側に
移動する場合は右側が吸入域、左側が圧縮域となり、海
水は配管16aを通って昇圧シリンダー18に流入する
。昇圧ピストン17が右側に移動する場合は右側が圧縮
域、左側が吸入域となり、海水は配管16bを通っで昇
圧シリンダー18に流入する。これと同時に、先に昇圧
シリンダー18の右側に流入した海水は昇圧されて吐出
し、平滑手段22を経て高圧ポンプ2から供給される海
水と共に淡水化装置3に供給される。
At this time, the boost piston 17 is driven by the piston 12 and is reciprocating, so the right and left sides of the boost piston 17 in the figure of the boost cylinder 18 are respectively suction areas and compression areas. When moving to the left, the right side becomes the suction area and the left side becomes the compression area, and the seawater flows into the pressure boosting cylinder 18 through the pipe 16a. When the boost piston 17 moves to the right, the right side becomes the compression area and the left side becomes the suction area, and seawater flows into the boost cylinder 18 through the pipe 16b. At the same time, the seawater that previously flowed into the right side of the pressurizing cylinder 18 is pressurized and discharged, and is supplied to the desalination device 3 along with the seawater supplied from the high-pressure pump 2 via the smoothing means 22.

なお、本発明は上述の実施態様に限定されることはなく
、例えば、エネルギー回収工程を複数列備える方法を採
用すれば、海水の流れの脈動が少なくなり、円滑な運転
ができる。
Note that the present invention is not limited to the above-described embodiments. For example, if a method of providing multiple rows of energy recovery steps is adopted, the pulsation of the seawater flow will be reduced and smooth operation will be possible.

第1図の構成による装置を使用して海水淡水化実験を実
施した結果について説明する。海水を高圧ポンプ2で5
6 k g / c m 2に 昇 圧 し 、0.4
8m’/時の流量で淡水化装置3に供給した。排出する
濃縮海水は54 k g / c m 2であった。こ
の濃縮海水によってピストン12を駆動し、昇圧ピスト
ン17によって海水を56K g / c m 2に昇
圧して0.52m’/時の流量で高圧ポンプ2から供給
される海水と共に淡水化装置3に供給し、合計1m3/
時の海水を処理した。この際の高圧ポンプ2の電力消費
量はi、28KWHであった。なお、エネルギー回収を
しない場合の高圧ポンプ2の電力消費量は2.24KW
Hであり、電力消費量は約43%の節減となった。
The results of a seawater desalination experiment using the apparatus configured as shown in FIG. 1 will be described. 5. Seawater with high pressure pump 2
Pressure increased to 6 kg/cm2 and 0.4
It was supplied to the desalination device 3 at a flow rate of 8 m'/hour. The amount of concentrated seawater discharged was 54 kg/cm2. This concentrated seawater drives the piston 12, pressurizes the seawater to 56K g/cm2 by the booster piston 17, and supplies it to the desalination device 3 together with the seawater supplied from the high-pressure pump 2 at a flow rate of 0.52 m'/hour. and total 1m3/
The seawater of the time was treated. The power consumption of the high pressure pump 2 at this time was i, 28 KWH. In addition, the power consumption of high pressure pump 2 without energy recovery is 2.24KW.
H, and the power consumption was reduced by about 43%.

[発明の効果] 本発明は濃縮塩水によりピストンを駆動し、このピスト
ンにより駆動される昇圧ピストンで塩水を昇圧して、主
昇圧装置から供給される塩水と共に淡水化装置に供給す
ることにより、濃縮塩水の圧力エネルギーを回収する方
法であるので、エネルギー回収率が非常に高い、エネル
ギー回収率は従来技術の約2.4倍であり、淡−水製造
コストが低減できる極めて経済的な方法である。
[Effects of the Invention] The present invention drives a piston with concentrated salt water, increases the pressure of the salt water with a booster piston driven by the piston, and supplies the salt water to the desalination equipment together with the salt water supplied from the main pressure booster. Since this method recovers the pressure energy of salt water, the energy recovery rate is extremely high.The energy recovery rate is approximately 2.4 times that of conventional technology, making it an extremely economical method that can reduce freshwater production costs. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施するための設備の一実施例
を示す説明図、第2図は従来方法の説明図である。 2・・・高圧ポンプ、3・・・淡水化装置、12・・・
ピストン、13・・・シリンダー、17・・・昇圧ピス
トン。 18・・・昇圧シリンダー、23・・・ロッド。 出願°大  日本鋼管株式会社 第1図
FIG. 1 is an explanatory diagram showing an example of equipment for carrying out the method of the present invention, and FIG. 2 is an explanatory diagram of a conventional method. 2... High pressure pump, 3... Desalination equipment, 12...
Piston, 13... cylinder, 17... booster piston. 18... Boost cylinder, 23... Rod. Application° Large Nippon Kokan Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 塩水を主昇圧装置を通して逆浸透膜を利用した淡水化装
置で淡水化する設備における濃縮塩水の圧力エネルギー
の回収方法において、前記淡水化装置の逆浸透膜濃縮塩
水によりピストンを駆動し、前記ピストンにより駆動さ
れる昇圧ピストンにより塩水を昇圧し、主昇圧装置より
供給される塩水と共に前記淡水化装置に供給することを
特徴とする塩水淡水化設備のエネルギー回収方法。
In a method for recovering pressure energy of concentrated salt water in a facility where salt water is desalinated by a desalination device using a reverse osmosis membrane through a main pressure booster, a piston is driven by the reverse osmosis membrane concentrated salt water of the desalination device; An energy recovery method for a salt water desalination facility, characterized in that salt water is pressurized by a driven pressure boosting piston and is supplied to the desalination device together with salt water supplied from a main pressure boosting device.
JP62280642A 1987-11-06 1987-11-06 Method for recovering energy in brine desalting plant using reverse-osmosis membrane Pending JPH01123605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62280642A JPH01123605A (en) 1987-11-06 1987-11-06 Method for recovering energy in brine desalting plant using reverse-osmosis membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62280642A JPH01123605A (en) 1987-11-06 1987-11-06 Method for recovering energy in brine desalting plant using reverse-osmosis membrane

Publications (1)

Publication Number Publication Date
JPH01123605A true JPH01123605A (en) 1989-05-16

Family

ID=17627897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62280642A Pending JPH01123605A (en) 1987-11-06 1987-11-06 Method for recovering energy in brine desalting plant using reverse-osmosis membrane

Country Status (1)

Country Link
JP (1) JPH01123605A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996034678A1 (en) * 1995-05-04 1996-11-07 Bernard Marinzet Fluid-actuated pressurisation device for a sea water or briny water desalination plant
FR2774309A1 (en) * 1998-01-30 1999-08-06 Bernard Marinzet Desalination by reverse osmosis, with reduced energy use
JP2009103109A (en) * 2007-10-25 2009-05-14 Ebara Corp Power recovery system
WO2010004819A1 (en) * 2008-07-09 2010-01-14 東レ株式会社 Salt water desalination equipment using reverse osmosis membrane, and method for producing desalinated water using salt water desalination equipment
JP2011056480A (en) * 2009-09-14 2011-03-24 Toshiba Corp Apparatus for recovering power
JP2011056439A (en) * 2009-09-11 2011-03-24 Toshiba Corp Apparatus for recovering power
WO2012002263A1 (en) * 2010-06-28 2012-01-05 協和機電工業株式会社 Hollow fiber forward osmosis membrane
WO2012073693A1 (en) * 2010-12-02 2012-06-07 東レ株式会社 Reverse osmosis membrane separator, start-up method therefor, and method for producing permeate
JP2013173146A (en) * 2009-05-15 2013-09-05 Ebara Corp Seawater desalination system and energy exchange chamber
CN103449588A (en) * 2013-09-22 2013-12-18 苏州问鼎环保科技有限公司 Detachable pilot plant test experimental device for sewage treatment
WO2014162763A1 (en) * 2013-04-02 2014-10-09 協和機電工業株式会社 Salt water desalination device
CN107701389A (en) * 2017-10-31 2018-02-16 舟山梅朋水处理有限公司 Fluid pressure pick-up device and equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794306A (en) * 1980-10-20 1982-06-11 Stanford Res Inst Int Method of recovering energy and fluid motor pump device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794306A (en) * 1980-10-20 1982-06-11 Stanford Res Inst Int Method of recovering energy and fluid motor pump device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2733698A1 (en) * 1995-05-04 1996-11-08 Marinzet Bernard LIQUID-OPERATING PRESSURE DEVICE FOR A DESALINATION PLANT OF SEA WATER OR BRINE WATER
WO1996034678A1 (en) * 1995-05-04 1996-11-07 Bernard Marinzet Fluid-actuated pressurisation device for a sea water or briny water desalination plant
FR2774309A1 (en) * 1998-01-30 1999-08-06 Bernard Marinzet Desalination by reverse osmosis, with reduced energy use
JP2009103109A (en) * 2007-10-25 2009-05-14 Ebara Corp Power recovery system
WO2010004819A1 (en) * 2008-07-09 2010-01-14 東レ株式会社 Salt water desalination equipment using reverse osmosis membrane, and method for producing desalinated water using salt water desalination equipment
JP2013173146A (en) * 2009-05-15 2013-09-05 Ebara Corp Seawater desalination system and energy exchange chamber
JP2011056439A (en) * 2009-09-11 2011-03-24 Toshiba Corp Apparatus for recovering power
CN102019144A (en) * 2009-09-11 2011-04-20 株式会社东芝 Power recovery apparatus
JP2011056480A (en) * 2009-09-14 2011-03-24 Toshiba Corp Apparatus for recovering power
CN102020339A (en) * 2009-09-14 2011-04-20 株式会社东芝 Power recovery apparatus
WO2012002263A1 (en) * 2010-06-28 2012-01-05 協和機電工業株式会社 Hollow fiber forward osmosis membrane
AU2011271943B2 (en) * 2010-06-28 2013-09-05 Kyowakiden Industry Co., Ltd. Hollow fiber forward osmosis membrane
WO2012073693A1 (en) * 2010-12-02 2012-06-07 東レ株式会社 Reverse osmosis membrane separator, start-up method therefor, and method for producing permeate
CN103237592A (en) * 2010-12-02 2013-08-07 东丽株式会社 Reverse osmosis membrane separator, start-p method therefor, and method for producing permeate
CN103237592B (en) * 2010-12-02 2015-10-14 东丽株式会社 The production method of reverse osmosis membrane separator, its starting method and permeate
JP5974484B2 (en) * 2010-12-02 2016-08-23 東レ株式会社 Reverse osmosis membrane separation device, its startup method, and permeated water production method
WO2014162763A1 (en) * 2013-04-02 2014-10-09 協和機電工業株式会社 Salt water desalination device
JP2014200708A (en) * 2013-04-02 2014-10-27 協和機電工業株式会社 Salt water desalinator
US9751046B2 (en) 2013-04-02 2017-09-05 Kyowakiden Industry Co., Ltd. Salt water desalination equipment
CN103449588A (en) * 2013-09-22 2013-12-18 苏州问鼎环保科技有限公司 Detachable pilot plant test experimental device for sewage treatment
CN107701389A (en) * 2017-10-31 2018-02-16 舟山梅朋水处理有限公司 Fluid pressure pick-up device and equipment

Similar Documents

Publication Publication Date Title
US5306428A (en) Method of recovering energy from reverse osmosis waste streams
US4637783A (en) Fluid motor-pumping apparatus and method for energy recovery
US7563375B2 (en) Direct osmosis cleaning
US6017200A (en) Integrated pumping and/or energy recovery system
Zhu et al. Reverse osmosis desalination with high permeability membranes—cost optimization and research needs
US4756830A (en) Pumping apparatus
JPH01123605A (en) Method for recovering energy in brine desalting plant using reverse-osmosis membrane
JP4990867B2 (en) Self-reciprocating energy recovery device
US10758869B2 (en) Fluid purification by forward osmosis, ion exchange and re-concentration
US8650869B1 (en) Automatic hydraulic/pneumatic flow rectifier for bi-directional pumps
WO2009151174A1 (en) Energy recovery apparatus driven by rotary plate valve
CA1176572A (en) Reverse osmosis apparatus and method using integral valve
JP3888898B2 (en) Water desalination method and apparatus
JP2010518304A (en) Energy recovery apparatus and method
CN101125693A (en) Hydraulic pressure type double-piston single-cylinder pressure exchange energy reclaiming device
CN1156334C (en) Valve controlled residual pressure recovering equipment for impervious desalination system
US20040164022A1 (en) Reverse osmosis system
Mo et al. Semi-closed reverse osmosis (SCRO): A concise, flexible, and energy-efficient desalination process
Stover et al. Low-energy consumption with closed-circuit desalination
CN109626509A (en) Membrane seawater desalination energy recycle device and the pump integrated system of energy lift
CN101805042A (en) Energy-storage manual seawater desalting device
CN105883977A (en) Energy recycling small seawater desalting plant matched with plunger pumps
CN107686145B (en) Seawater desalination boosting energy recovery device
US9644761B2 (en) Desalination system with energy recovery and related pumps, valves and controller
JP2000051663A5 (en)