JPH01123185A - Method for magnetically detecting position of ground embedded object - Google Patents

Method for magnetically detecting position of ground embedded object

Info

Publication number
JPH01123185A
JPH01123185A JP62280740A JP28074087A JPH01123185A JP H01123185 A JPH01123185 A JP H01123185A JP 62280740 A JP62280740 A JP 62280740A JP 28074087 A JP28074087 A JP 28074087A JP H01123185 A JPH01123185 A JP H01123185A
Authority
JP
Japan
Prior art keywords
magnetic field
underground
magnetic
transmitter
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62280740A
Other languages
Japanese (ja)
Other versions
JPH0786533B2 (en
Inventor
Yukinobu Miyamoto
幸展 宮本
Yasuhiro Wasa
泰宏 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Tokyo Gas Co Ltd
Original Assignee
NEC Corp
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Tokyo Gas Co Ltd filed Critical NEC Corp
Priority to JP62280740A priority Critical patent/JPH0786533B2/en
Publication of JPH01123185A publication Critical patent/JPH01123185A/en
Publication of JPH0786533B2 publication Critical patent/JPH0786533B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To detect the position of a ground embedded object with high accuracy, by allowing an induced current to flow to the conductive ground embedded object from a transmitter by electromagnetic induction and eliminating the effect of other ground embedded object close to the ground embedded object to be detected. CONSTITUTION:A pair of coils 3a, 3b whose axes are turned in vertical and horizontal directions with respect to the surface of the ground are provided to a transmitter 2 and, by respectively changing the magnitudes of the AC currents flowing to the coils 3a, 3b, the magnetic flux interlinkage state to a ground embedded object is changed. Herein, magnetic fields are generated from the coil 3a whose axis l1 is turned in the vertical direction and the coil 3b whose axis l2 is turned in the horizontal direction. When these two magnetic fields are superposed each other, a synthetic magnetic field is formed and the axis in this synthetic magnetic field is inclined by an angle theta from the axis l1 (l2) and this angle theta can be changed by changing the currents flowing to the coils 3a, 3b. Next, in a receiver 4, a data transmitting part 7 transmits the signal from a signal processing part 8 to the data receiving control part 6 of the transmitter 2 through a medium 9 such as a radio wave or an optical fiber. A magnetic sensor 6' is constituted of a plurality of sensor parts S1-Sn.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は埋設管等の地中埋設物の位置を磁気的に検知す
る方法、特に該地中埋設物に電@誘導により電流を流し
、この誘導電流により発生する磁場を検知して地中埋設
物の位置を検知する方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for magnetically detecting the position of underground objects such as buried pipes, and in particular, a method of magnetically detecting the position of underground objects such as underground pipes, and in particular, a method of magnetically detecting the position of underground objects such as underground pipes, and in particular, a method for magnetically detecting the position of underground objects such as underground pipes, and in particular, a method of magnetically detecting the position of underground objects such as underground pipes, and in particular, a method of magnetically detecting the position of underground objects such as underground pipes, and in particular, a method of magnetically detecting the position of underground objects such as underground pipes, and in particular, a method of magnetically detecting the position of underground objects such as underground pipes, and in particular, a method of magnetically detecting the position of underground objects such as underground pipes, and in particular, a method of magnetically detecting the position of underground objects such as underground pipes. The present invention relates to a method for detecting the position of underground objects by detecting the magnetic field generated by this induced current.

(従来の技術およびその問題点) ガス管、水道管等の導電性の地中埋設物の位置、即ち地
上対応位置と深さを検知する方法としては、通常は、手
軽で比較的検知精度が良いことから磁気的検知方法が多
く使用されている。そしてかかる磁気的検知方法では、
地中埋設物に交流電流を流し、この交流電流により周囲
に発生する磁場の分布から検知する方法が最も多く採用
されており、この場合、地中埋設物に交流電流を流す方
法としては、その一端に交流電流源を直接に接続して流
す直接法と、送信器からの電11誘導によって流す誘導
法(あるいは間接法)とがある。
(Prior art and its problems) As a method for detecting the position of conductive underground objects such as gas pipes and water pipes, that is, the above-ground corresponding position and depth, there is usually a method that is easy and has relatively low detection accuracy. Magnetic sensing methods are often used due to their good performance. And in such a magnetic sensing method,
The most commonly used method is to flow an alternating current through an underground object and detect it from the distribution of the magnetic field generated around it. There is a direct method in which an alternating current source is directly connected to one end to flow the current, and an induction method (or indirect method) in which the current is flown by an electric current source from a transmitter.

一般に直接法では、検知対象の地中埋設物のみに電流を
流すことができるので間接法に比べて検知精度が良いと
いう長所を有する反面、この地中埋設物に地上露出部が
ないと適用できないという短所を有する。一方、誘導法
では、地中埋設物に地上露出部がない場合にも適用でき
るという長所を有する反面、検知対象の地中埋設物以外
の伯の導電性の地中埋設物が近接して存在する場合には
、該他の地中埋設物にも誘導電流が流れるので、これら
により発生する磁場の分布状態は、単一の地中埋設物に
流れる電流によって発生する円筒状の磁場分布とは異な
ってしまい、検知対象の地中埋設物の検知精度が悪化す
るという短所がある。そこで、これを図に基づいて説明
する。
In general, direct methods have the advantage of higher detection accuracy than indirect methods because current can be applied only to the underground object to be detected, but on the other hand, it cannot be applied if the underground object has no exposed surface above ground. It has the disadvantage of On the other hand, the induction method has the advantage that it can be applied even when there is no exposed part of the underground object, but on the other hand, there are conductive underground objects nearby other than the underground object to be detected. In this case, induced current also flows to the other underground objects, so the distribution of the magnetic field generated by these is different from the cylindrical magnetic field distribution generated by the current flowing to a single underground object. This has the disadvantage that the detection accuracy of the underground object to be detected deteriorates. Therefore, this will be explained based on the drawings.

第6図(a)は検知対象の地中埋設物○以外の他の導電
性の地中埋設物が近接して存在しない場合に於いて、地
中埋設物0に紙面の手前側から奥側方向に流れる誘導電
流によって発生する磁場Mの分布、即ち円筒状磁場分布
を模式的に表わしたもので、第7図(a) 、(b)は
夫々この磁場Mの水平方向、垂直方向成分の分布を、地
中埋設物Oの地上対応位置pを原点とする水平方向く×
方向)距離に対して表わしたものである。この第7図(
a)、(b)かられかるように、磁場Mの水平方向成分
は前記地上対応位2in (x−0)に於いて最大値で
、ここから離れるにつれて低い値となる曲線状の分布と
なり、また垂直方向成分は該位置pに於いて零となる曲
線状の分布となる。そして、かかる曲線の傾きは地中埋
設物0が深い程小さくなる。従つて受信器により、これ
らの成分を測定し、それらの大きざと、傾ぎとから地中
埋設物Oの地上対応位I2pと深さを精度良く検知する
ことができるのである。
Figure 6 (a) shows underground object 0 from the front to the back of the page when there are no other conductive underground objects nearby than the underground object ○ to be detected. This diagram schematically represents the distribution of the magnetic field M generated by the induced current flowing in the direction, that is, the cylindrical magnetic field distribution. Figures 7 (a) and (b) show the horizontal and vertical components of the magnetic field M, respectively. The distribution is plotted in the horizontal direction with the origin at the above-ground corresponding position p of the underground object O.
(direction) expressed relative to distance. This figure 7 (
As can be seen from a) and (b), the horizontal component of the magnetic field M has a maximum value at the ground correspondence position 2 inches (x-0), and has a curved distribution that decreases as it moves away from this point. Further, the vertical component has a curved distribution that becomes zero at the position p. The slope of this curve becomes smaller as the underground object 0 becomes deeper. Therefore, by measuring these components with the receiver, it is possible to accurately detect the ground relative position I2p and depth of the underground object O from their size and inclination.

次に第6図(b)は、検知対象の地中埋設物0に近接し
て他の導電性の地中埋設物O′が存在し、この地中埋設
物O′にも地中埋設物Oと等しい誘導電流が流れている
とした場合に於いて発生ずる磁場M′の分布を模式的に
表わしたもので、また第8図(a) 、(b)は夫々こ
の磁場M′の水平方向、垂直方向成分の分布の一例を、
検知対象の地中埋設物Oの地上対応位置pを原点とする
水平方向く×方向)距離に対して表わしたものである。
Next, in FIG. 6(b), there is another electrically conductive underground object O' in the vicinity of the underground object 0 to be detected, and this underground object O' also has underground objects O'. This diagram schematically represents the distribution of the magnetic field M' generated when an induced current equal to O is flowing, and Figures 8(a) and (b) show the horizontal distribution of this magnetic field M', respectively. An example of the distribution of direction and vertical components is
It is expressed with respect to the distance (horizontal direction x direction) from the ground corresponding position p of the underground object O to be detected as the origin.

かかる図かられかるように、近接した地中埋設物0′に
流れる誘導電流に影響されて、磁場M′の分布は前述の
円筒状の磁場Mの分布から大きく歪んでしまう。例えば
第8図(a) 、(b)の分布に於い′ては、水平方向
成分が最大となる位置及び垂直成分が零となる位置は検
知対象の地中埋設物Oの地4対応p位taからfhた位
U、p’  (x=0.5)となり、従って前述の方法
により位置検知を行なうと、検知誤差を生じ、精度が悪
い。
As can be seen from this figure, the distribution of the magnetic field M' is greatly distorted from the above-mentioned cylindrical distribution of the magnetic field M, due to the influence of the induced current flowing in the nearby underground object 0'. For example, in the distributions shown in Fig. 8(a) and (b), the position where the horizontal component is maximum and the position where the vertical component is zero correspond to the ground 4 corresponding p of the underground object O to be detected. The distance from ta to fh is U, p' (x=0.5). Therefore, if the position is detected by the method described above, a detection error will occur and the accuracy will be poor.

本発明は以上の点に鑑みて創案されたもので、即ち、以
上のように、検知対象の地中埋設物に近接して、他の導
電性の地中埋設物が存在している場合に於いても、誘導
法を適用して高精度に検知対象の地中埋設物を検知し得
る方法を提供することを目的とするものである。
The present invention has been devised in view of the above points, that is, as described above, when there is another electrically conductive underground object in the vicinity of the underground object to be detected. In this case, it is an object of the present invention to provide a method that can detect underground objects to be detected with high precision by applying the guidance method.

(問題点を解決するための手段) 前述の目的を達成するために、本発明は、送信器から電
磁誘導によって導電性の地中埋設物に誘導電流を流し、
この誘導電流により該地中埋設物の周囲に発生するra
mの分布を受信器により検知して該地中埋設物の位置を
検知する方法に於いて、前記送信器は、地中埋設物に対
する磁束鎖交状態を可変に構成し、前記受信器により・
磁場分布を測定して、これと所定の円筒状磁場分布のず
れを検知しながら前記磁束鎖交状態を変化させ、このず
れを最小とするように前記送信器を調節して、この時の
測定磁場分布により対象とする地中埋設物の位置を検知
することを要旨とするものである。
(Means for solving the problems) In order to achieve the above-mentioned object, the present invention causes an induced current to flow from a transmitter to a conductive underground object by electromagnetic induction,
This induced current generates ra around the underground object.
In the method of detecting the position of the underground object by detecting the distribution of
Measure the magnetic field distribution, change the magnetic flux linkage state while detecting the deviation between this and a predetermined cylindrical magnetic field distribution, adjust the transmitter to minimize this deviation, and perform the measurement at this time. The purpose of this method is to detect the location of underground objects based on magnetic field distribution.

(作用) 次に本発明の作用を、基本概念を表わした第1図(a)
 、(b) 、(c)に基づいて説明する。図に於いて
符号1は地面、0は検知対象の地中埋設物、0′は該地
中埋設物Oに近接している他の地中埋設物を示すもので
ある。また符号2は送信器を示すもので、この送信器2
は後述する実施例に示すような各種の構成で地中埋設物
o、o’に対する磁束鎖交状態を可変に構成するのであ
るが、この図に於いては、仮想的に示すコイル3の軸1
の向きを変えて磁束鎖交状態を可変とする構成として表
わしている。次に符号4は受信器を示すもので、この受
信器4は水平方向の各位置の1i11揚の大ぎさを測定
して、磁場分布を測定可能であれば後述する実施例に示
すような各種の構成で良いが、この図に於いては水平方
向に移動して各位置の磁場測定を行なう構成としている
。しかして、第1図(a)に示すようにコイル3の軸1
が地中埋設物0゜0′の図中右側に在る場合、コイル3
からの磁束φは地中埋設物o、o’の両方に同方向に鎖
交して、図示の時点に於いては紙面の手前側から奥側方
向に誘導電流が流れ、そして磁場M′が発生する。図の
状態に於いては地中埋設物0に流れる誘導電流の方が大
きいので磁場M′の分布は歪んだ楕円筒状となり、前記
円筒状磁場分布から大きくずれ、また図中上下方向の適
宜の直線に対して線対称ともならない。
(Function) Next, the function of the present invention is shown in Fig. 1(a), which shows the basic concept.
, (b), and (c). In the figure, reference numeral 1 indicates the ground, 0 indicates an underground object to be detected, and 0' indicates another underground object close to the underground object O. Also, the code 2 indicates a transmitter, and this transmitter 2
The magnetic flux linkage state with respect to the underground objects o and o' is made variable by various configurations as shown in the examples described later, but in this figure, the axis of the coil 3 shown hypothetically is 1
It is shown as a configuration in which the magnetic flux linkage state can be varied by changing the direction of the magnetic flux. Next, reference numeral 4 indicates a receiver, and this receiver 4 measures the magnitude of 1i11 at each position in the horizontal direction, and if it is possible to measure the magnetic field distribution, it can be used in various ways as shown in the examples described later. However, in this figure, the configuration is such that the magnetic field is measured at each position by moving in the horizontal direction. Therefore, as shown in FIG. 1(a), the axis 1 of the coil 3
is on the right side of the underground object 0°0' in the figure, coil 3
The magnetic flux φ from φ interlinks with both underground objects o and o' in the same direction, and at the time shown in the figure, an induced current flows from the front side to the back side of the page, and the magnetic field M' Occur. In the state shown in the figure, the induced current flowing through the underground object 0 is larger, so the distribution of the magnetic field M' becomes a distorted elliptical cylinder shape, which deviates greatly from the cylindrical magnetic field distribution, and also in the vertical direction in the figure. It is not line symmetrical with respect to the straight line.

次に第1図(b)に示すようにコイル3の軸夕が地中埋
設物0,0′間に在る場合、コイル3からの磁束φは、
地中埋設物o、o’ に夫々逆方向に鎖交するので、図
示の時点に於いては、地中埋設物Oには紙面の手前側か
ら奥側方向に、また地中埋設物O′には逆方向に誘導電
流が流れる。従ってかかる誘導電流による磁場M′の分
布はやはり前記円筒状磁場分布から大きくずれる。
Next, as shown in Fig. 1(b), when the axis of the coil 3 is located between the underground objects 0 and 0', the magnetic flux φ from the coil 3 is
Since the underground objects o and o' are interlinked in opposite directions, at the time shown in the figure, the underground objects O are connected from the front side to the back side of the page, and the underground object O' An induced current flows in the opposite direction. Therefore, the distribution of the magnetic field M' due to the induced current deviates greatly from the cylindrical magnetic field distribution.

そこで次に第1図(a)の状態から第1図(b)の状態
の方向に、または第1図(b)の状態から第1図(a)
の状態の方向に磁束鎖交状態を変化させて、第1図(C
)に示すようにコイル3の軸lを地中埋設物O′に向け
ると、この磁束鎖交状態に於いては、地中埋設物0′に
誘導電流が生じず、地中埋設物Oにのみ紙面の手前側か
ら奥側方向の誘導電流が流れる。このため、地中埋設物
0の周囲にのみ磁場Mが発生し、この磁場Mの分布は前
記円筒状磁場分布となる。そして、この円筒状磁場分布
から対象とする地中埋設物0の地上対応位置pと深さを
精度良く検知し得ることは前述した通りである。
Then, from the state of FIG. 1(a) to the state of FIG. 1(b), or from the state of FIG. 1(b) to the state of FIG. 1(a).
By changing the magnetic flux linkage state in the direction of the state shown in Fig. 1 (C
), when the axis l of the coil 3 is directed toward the underground object O', in this state of magnetic flux linkage, no induced current is generated in the underground object O', and no induced current is generated in the underground object O'. An induced current flows from the front side of the page to the back side. Therefore, a magnetic field M is generated only around the underground object 0, and the distribution of this magnetic field M becomes the cylindrical magnetic field distribution described above. As described above, the above-ground corresponding position p and depth of the target underground object 0 can be detected with high accuracy from this cylindrical magnetic field distribution.

従って、受信器4により磁場分布を測定し、この測定磁
場分布と前記円筒状磁場分布のずれを検知しながら、前
記送信器2による地中埋設物0゜0′に対する磁束鎖交
状態を変化させ、このずれを最小とするように前記送信
器2を111iL、、、即ち第1図(C)のような状態
として、この時の測定磁場分布により、対象とする地中
埋設物Oの位置を精度良く検知し得るのである。
Therefore, the receiver 4 measures the magnetic field distribution, and while detecting the deviation between the measured magnetic field distribution and the cylindrical magnetic field distribution, the transmitter 2 changes the magnetic flux linkage state with respect to the underground object 0°0'. , In order to minimize this deviation, the transmitter 2 is set to 111iL, . . . , in a state as shown in FIG. It can be detected with high accuracy.

このように本発明に於いては、測定磁場分布と所rの円
筒状1i111分布のずれを検知する動作が必要である
が、かかるずれの検知は次のような方法で容易に行なう
ことができる。
In this way, the present invention requires an operation to detect the deviation between the measured magnetic field distribution and the cylindrical 1i111 distribution at location r, but such deviation can be easily detected by the following method. .

まず、その−は、水平方向の各位置に於ける水平方向磁
場成分と垂直方向磁場成分の比が、位置に対して直線的
に変化するかどうか測定して検知する方法である。第9
図(a)は、第7図(a)、(b)に夫々示した水平方
向磁場成分と垂直方向磁場成分の比の値を位置に対して
表わしたものであり、また第9図(b)は第8図(a)
 、(b)に関して、同様に比の値を位置に対して表わ
したものである。
First, the second method is to measure and detect whether the ratio of the horizontal magnetic field component to the vertical magnetic field component at each horizontal position changes linearly with the position. 9th
Figure (a) shows the ratio of the horizontal magnetic field component to the vertical magnetic field component shown in Figures 7 (a) and (b), respectively, expressed with respect to position, and Figure 9 (b) ) is shown in Figure 8(a)
, (b), the value of the ratio is similarly expressed with respect to the position.

かかる図かられかるように、円筒状磁場分布に於いては
、前記比の値が位置に対して直線的に変化するのに対し
て、この円筒状磁場分布からずれた磁場分布に於いては
、図中点線で示した直線的変化からずれてしまう。
As can be seen from this figure, in a cylindrical magnetic field distribution, the value of the ratio changes linearly with position, whereas in a magnetic field distribution that deviates from this cylindrical magnetic field distribution, , it deviates from the linear change shown by the dotted line in the figure.

このことから、例えば前記受信器4により測定した測定
磁場分布の水平、垂直方向−成分の比から最小二乗法等
の手法によって直線をあてはめ、近似した直線と測定値
との残差の二乗和を以って円筒状磁場分布からのずれに
対応する量とすることができ、かかるずれに対応する量
を最小とするように前記送信器2を制御することは容易
である。
From this, for example, a straight line is fitted using a method such as the least squares method from the ratio of the horizontal and vertical components of the measured magnetic field distribution measured by the receiver 4, and the sum of squares of the residual between the approximated straight line and the measured value is calculated. Therefore, it is possible to set the amount corresponding to the deviation from the cylindrical magnetic field distribution, and it is easy to control the transmitter 2 so as to minimize the amount corresponding to the deviation.

次に、ずれを検知する他の方法としては、水平方向の各
位置に於ける水平方向または垂直方向磁場成分の絶対値
がある位置に対して線対称であるかどうかを測定して検
知する方法を適用することもできる。これは前述したよ
うに、第1図(a)の状態に於いては、磁場M′の分布
は歪んだ楕円筒状となり、図中上下方向の適宜の直線に
対して線対称とならないのに対して、円筒状に於いては
線対称となることを利用するものである。
Next, another method for detecting deviation is to measure and detect whether the absolute value of the horizontal or vertical magnetic field component at each horizontal position is line symmetrical with respect to a certain position. can also be applied. This is because, as mentioned above, in the state shown in Figure 1(a), the distribution of the magnetic field M' has a distorted elliptical cylinder shape, and is not symmetrical with respect to the appropriate straight line in the vertical direction in the figure. On the other hand, in a cylindrical shape, the line symmetry is utilized.

(実施例) 次に本発明の詳細な説明する。(Example) Next, the present invention will be explained in detail.

まず第2図は本発明に適用する送信器2及び受信器4の
一実施例の構成を模式的に表わしたものである。この実
施例は、送信器2に地表に対して垂直方向と水平方向に
軸を向けた一対のコイル3a、3bを設け、該一対のコ
イル3a、3bに流す交流電流の大きさを夫々変化させ
ることにより、地中埋設物に対する磁束鎖交状態を変化
させるものである。符号5a、5bは電流の大きさを可
変の可変交流電流源で、この可変交流電源5a。
First, FIG. 2 schematically shows the configuration of an embodiment of the transmitter 2 and receiver 4 applied to the present invention. In this embodiment, a transmitter 2 is provided with a pair of coils 3a and 3b whose axes are oriented vertically and horizontally with respect to the earth's surface, and the magnitude of alternating current flowing through the pair of coils 3a and 3b is changed, respectively. This changes the state of magnetic flux linkage to underground objects. Reference numerals 5a and 5b are variable alternating current sources that can vary the magnitude of current, and this variable alternating current power source 5a.

5bは情報受信制御部6により制御する。5b is controlled by the information reception control section 6.

かかる構成に於いて、垂一方向に軸11を向けたコイル
3aからは第3図(a)に示すように磁場が発生し、ま
た水平方向に軸J12を向けたコイル3bからは第3(
b)に示すように磁場が発生する。
In this configuration, a magnetic field is generated from the coil 3a with the axis 11 directed in the vertical direction, as shown in FIG. 3(a), and a magnetic field is generated from the coil 3b with the axis J12 directed in the horizontal direction.
A magnetic field is generated as shown in b).

これら2つの磁場を重ね合わせると、第3図(C)に示
すような合成磁場となり、かかる合成磁場に於ける軸象
は前記軸41(J2)から角度θ傾き、この角度θは各
コイル3a、3bに流す電流を変えることにより変化さ
せることができ、こうして前述したように地中埋設物に
対する磁束鎖交状態を変化させることができるのである
When these two magnetic fields are superimposed, it becomes a composite magnetic field as shown in FIG. , 3b can be changed by changing the current flowing through them, and thus the state of magnetic flux linkage to the underground object can be changed as described above.

次に受信器4には、磁場の大ぎさを測定するための磁気
センサ6と、この磁気センサ6の信号を処理し、測定磁
場分布と所定の円筒状磁場分布とのずれを検知し、これ
を情報送信部7に伝達すると共に、地中埋設物の位置を
算出する信号処理部8を設けている。情報送信部7は信
号処理部8からの信号を電波または光ファイバ等の媒体
9を介して送信器2の情報受信制御部6に送信するもの
である。実施例に於いては磁気センサ6は、水平方向の
複数位置に対応させた複数のセンサ部St 。
Next, the receiver 4 includes a magnetic sensor 6 for measuring the magnitude of the magnetic field, and processes the signal of this magnetic sensor 6 to detect the deviation between the measured magnetic field distribution and a predetermined cylindrical magnetic field distribution. A signal processing section 8 is provided which transmits the information to the information transmitting section 7 and calculates the position of the underground object. The information transmitting section 7 transmits the signal from the signal processing section 8 to the information receiving control section 6 of the transmitter 2 via a medium 9 such as a radio wave or an optical fiber. In the embodiment, the magnetic sensor 6 includes a plurality of sensor sections St corresponding to a plurality of positions in the horizontal direction.

S2.・・・、Snを設けて、この複数のセンサ部によ
り磁場分布を測定しているが、前述したように単一また
は少数のセンサ部を水平方向に移動させて磁場分布を測
定するようにすることもできる。
S2. ..., Sn is provided and the magnetic field distribution is measured by the plurality of sensor sections, but as mentioned above, the magnetic field distribution is measured by moving a single sensor section or a small number of sensor sections in the horizontal direction. You can also do that.

また、前述した各コイル3a、3bへの通電は連続的に
同時に行なう他、間欠的あるいは時分割で行なうことも
でき、この場合の所定の磁場分布の測定は受信器4側で
対応させることができる。
In addition, the above-mentioned energization of each coil 3a, 3b can be carried out continuously and simultaneously, or it can be carried out intermittently or in a time-sharing manner. can.

次に第4図は本発明に適用する送信器2の他の実施例を
示すものであり、この実施例に於いては、送信器2に、
水平方向の軸10の回りに回転5可能なコイル3を設け
、このコイル3を回転させることにより前記軸Aの向ぎ
を変化させて地中J!]!設物に対する磁束鎖交状態を
変化させるものである。
Next, FIG. 4 shows another embodiment of the transmitter 2 applied to the present invention, and in this embodiment, the transmitter 2 includes:
A coil 3 that can be rotated 5 times around a horizontal axis 10 is provided, and by rotating this coil 3, the direction of the axis A is changed and the underground J! ]! This changes the state of magnetic flux linkage to the facility.

このコイル3は、前記情報受信制御部6に制御された回
転装置11により行なうものである。尚、この第4図に
於ける受信器4の構成は第2図の構成と同様であるため
説明は省略する。
This coil 3 is operated by a rotating device 11 controlled by the information reception control section 6. The configuration of the receiver 4 in FIG. 4 is the same as the configuration in FIG. 2, so a description thereof will be omitted.

次に第5図は本発明に適用する送信器2の更に他の実施
例を示すものであり、この実施例に於いては、送信器2
に、地表に対して横方向に移動自在なコイル3を設け、
このコイル3を横方向に移動させることにより、前記軸
Aを移動させ、こうして地中埋設物に対する磁束鎖交状
態を変化させるものである。図に於いてコイル3は、垂
直方向に軸を向けたコイルのみを示しているが、このコ
イル3としては前述の2*施例の構成を適、用しても良
いことは勿論である。図に於いて、コイル3は案内部材
12に沿って移動自在な基体13に設置し、この基体1
3を情報受信制御部6に制御された移動装置14により
移動するものである。
Next, FIG. 5 shows still another embodiment of the transmitter 2 applied to the present invention, and in this embodiment, the transmitter 2
A coil 3 is provided which is movable laterally with respect to the ground surface,
By moving this coil 3 in the lateral direction, the axis A is moved, thereby changing the state of magnetic flux linkage with respect to the underground object. In the figure, only the coil 3 whose axis is oriented in the vertical direction is shown, but it goes without saying that the configuration of the above-mentioned 2* embodiment may be applied to this coil 3. In the figure, the coil 3 is installed on a base 13 that is movable along a guide member 12, and this base 1
3 is moved by a moving device 14 controlled by an information reception control section 6.

(発明の効果) 本発明は以上の通り、送信器からm磁誘導によって導電
性の地中j!!設物に誘導N流を流し、この誘導電流に
より該地中埋設物の周囲に発生する磁場の分布を受信器
により検知して、該地中埋設物の位置を検知する誘導法
を適用しながら、対象とする地中埋設物に近接する他の
地中埋設物の影響をなくすことにより、高精度に対象地
中埋設物の位置を検知することができ、従って、直接法
では困難であった、地上露出部の存在しない地中埋設物
であっても高精度に位置検知を行なえるという効果があ
る。かくして本発明はガス管や水道管等の保守、取換工
事等に於いて作業を効率化し、コストの低減、安全性の
確保を達成し得るものである。
(Effects of the Invention) As described above, the present invention provides electrically conductive underground j! ! While applying the induction method, in which an induced N current is passed through the facility, a receiver detects the distribution of the magnetic field generated around the underground facility due to this induced current, and the position of the underground facility is detected. By eliminating the influence of other underground objects close to the target underground object, it is possible to detect the position of the target underground object with high precision, which was difficult with the direct method. This has the effect of allowing highly accurate position detection even for underground objects with no exposed parts above ground. Thus, the present invention can improve work efficiency, reduce costs, and ensure safety in maintenance and replacement work of gas pipes, water pipes, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、(b) 、(c)は本発明の基本概念
を表わした模式的説明図、第2図は本発明に適用する装
置の一実施例を模式的に表わした系統説明図、第3図(
a) 、(b) 、(c)は第2図の装置に於ける送信
器の動作を模式的に表わした説明図、第4図、第5図は
本発明に適用する装δの他の実施例を模式的に表わした
系統説明図、第6図(a) 、(b)は地中埋設物が単
一の場合、複数の場合に於ける磁場分布の模式的説明図
、第7図(a) 、(b)は第6@(a)のIii場分
重分布々水平方向、垂直方向成分を水平方向位置に対応
して表わした説明図、第8図(a) 、(b) ハlW
6図(b) f)磁jj1分布f)夫々水平方向、垂直
方向成分を水平方向位置に対応して表わした説明図、第
9図(a) 、(b)は、夫々第7図、第8図に示した
磁場分布の水平方向成分と垂直方向成分の比の値を位置
に対して表わした説明図である。 符号0.0′・・・地中埋設物、M、M’・・・磁場、
1・・・地面、2・・・送信器、3・・・コイル、4・
・・受信器、5・・・可変交流電流源、6・・・情報受
信制御部、7・・・情報送信部、8・・・信号処理部、
9・・・媒体、1o・・・軸、11・・・回転装置、1
2・・・案内部材、13・・・基体、14・・・移動装
置。
FIGS. 1(a), (b), and (c) are schematic explanatory diagrams representing the basic concept of the present invention, and FIG. 2 is a system explanation schematically representing an embodiment of the apparatus applied to the present invention. Figure, Figure 3 (
a), (b), and (c) are explanatory diagrams schematically representing the operation of the transmitter in the device of FIG. 2, and FIG. 4 and FIG. Fig. 6 (a) and (b) are system explanatory diagrams schematically representing the embodiment, and Fig. 7 are schematic explanatory diagrams of magnetic field distribution in the case of a single underground object and in the case of multiple underground objects. (a) and (b) are explanatory diagrams showing the horizontal and vertical components of the III field weight distribution of No. 6 @ (a) in correspondence to the horizontal position, and Fig. 8 (a) and (b) HaruW
Figure 6 (b) f) Magnetic jj1 distribution f) An explanatory diagram showing the horizontal and vertical components in correspondence with the horizontal position, Figures 9 (a) and (b) are similar to Figures 7 and 9, respectively. FIG. 9 is an explanatory diagram showing the ratio of the horizontal component to the vertical component of the magnetic field distribution shown in FIG. 8 with respect to position. Code 0.0'...underground object, M, M'...magnetic field,
1... Ground, 2... Transmitter, 3... Coil, 4...
... Receiver, 5... Variable AC current source, 6... Information reception control section, 7... Information transmission section, 8... Signal processing section,
9... Medium, 1o... Shaft, 11... Rotating device, 1
2... Guide member, 13... Base, 14... Moving device.

Claims (7)

【特許請求の範囲】[Claims] (1)送信器から電磁誘導によって導電性の地中埋設物
に誘導電流を流し、この誘導電流により該地中埋設物の
周囲に発生する磁場の分布を受信器により検知して該地
中埋設物の位置を検知する方法に於いて、前記送信器は
、地中埋設物に対する磁束鎖交状態を可変に構成し、前
記受信器により磁場分布を測定して、これと所定の円筒
状磁場分布のずれを検知しながら前記磁束鎖交状態を変
化させ、このずれを最小とするように前記送信器を調節
して、この時の測定磁場分布により対象とする地中埋設
物の位置を検知することを特徴とする地中埋設物の磁気
的位置検知方法
(1) An induced current is sent from a transmitter to a conductive underground object by electromagnetic induction, and a receiver detects the distribution of the magnetic field generated around the underground object due to this induced current, and the underground object is installed. In the method of detecting the position of an object, the transmitter has a variable magnetic flux linkage state with respect to the underground object, measures a magnetic field distribution with the receiver, and compares this with a predetermined cylindrical magnetic field distribution. The magnetic flux linkage state is changed while detecting the deviation, and the transmitter is adjusted to minimize this deviation, and the position of the target underground object is detected from the measured magnetic field distribution at this time. A magnetic position detection method for underground objects characterized by
(2)送信器には、地表に対して垂直方向と水平方向に
軸を向けた一対のコイルと夫々のコイルに電流を流す交
流電流源を設け、該一対のコイルに流す交流電流の大き
さを夫々変化させることにより、地中埋設物に対する磁
束鎖交状態を変化させることを特徴とする特許請求の範
囲第1項記載の地中埋設物の磁気的位置検知方法
(2) The transmitter is equipped with a pair of coils whose axes are oriented perpendicularly and horizontally to the earth's surface, and an alternating current source that flows current through each coil, and determines the magnitude of the alternating current that flows through the pair of coils. The method for detecting the magnetic position of an underground object according to claim 1, characterized in that the state of magnetic flux linkage with respect to the underground object is changed by respectively changing the .
(3)送信器には、水平方向の軸の回わりに回転可能な
コイルと該コイルに電流を流す交流電流源を設け、該コ
イルを回転させることにより、地中埋設物に対する磁束
鎖交状態を変化させることを特徴とする特許請求の範囲
第1項記載の地中埋設物の磁気的位置検知方法
(3) The transmitter is equipped with a coil that can be rotated around a horizontal axis and an alternating current source that supplies current to the coil, and by rotating the coil, magnetic flux linkage with underground objects can be reduced. A method for detecting the magnetic position of an underground object according to claim 1, characterized in that the magnetic position of an underground object is changed.
(4)送信器には、地表に沿って横方向に移動自在なコ
イルと該コイルに電流を流す交流電流源を設け、該コイ
ルを横方向に移動させることにより、地中埋設物に対す
る磁束鎖交状態を変化させることを特徴とする特許請求
の範囲第1項記載の地中埋設物の磁気的位置検知方法
(4) The transmitter is equipped with a coil that can be moved laterally along the ground surface and an alternating current source that supplies current to the coil, and by moving the coil laterally, magnetic flux chains to underground objects can be created. A method for detecting the magnetic position of an underground object according to claim 1, characterized in that the magnetic position of an underground object is changed.
(5)測定磁場分布と所定の円筒状磁場分布のずれは、
水平方向の各位置に於ける水平方向磁場成分と垂直方向
磁場成分の比が、位置に対して直線的に変化するかどう
かを測定して検知することを特徴とする特許請求の範囲
第1項記載の地中埋設物の磁気的位置検知方法
(5) The deviation between the measured magnetic field distribution and the predetermined cylindrical magnetic field distribution is
Claim 1, characterized in that the method detects by measuring whether the ratio of the horizontal magnetic field component to the vertical magnetic field component at each position in the horizontal direction changes linearly with respect to the position. Magnetic position detection method for underground objects described above
(6)測定磁場分布と所定の円筒状磁場分布のずれは、
水平方向の各位置に於ける水平方向または垂直方向磁場
成分の絶対値が、ある位置に対して線対称であるかどう
かを測定して検知することを特徴とする特許請求の範囲
第1項記載の地中埋設物の磁気的位置検知方法
(6) The deviation between the measured magnetic field distribution and the predetermined cylindrical magnetic field distribution is
Claim 1, characterized in that it is detected by measuring whether the absolute value of the horizontal or vertical magnetic field component at each position in the horizontal direction is line symmetrical with respect to a certain position. magnetic position detection method for underground objects
(7)受信器は、地表に対して水平方向と垂直方向の磁
場成分を検知する磁気センサと、その出力信号を処理す
る信号処理回路とから成ることを特徴とする特許請求の
範囲第1項記載の地中埋設物の磁気的位置検知方法
(7) Claim 1, characterized in that the receiver comprises a magnetic sensor that detects magnetic field components in the horizontal and vertical directions with respect to the earth's surface, and a signal processing circuit that processes the output signal. Magnetic position detection method for underground objects described above
JP62280740A 1987-11-06 1987-11-06 Magnetic position detection method for underground buried objects Expired - Lifetime JPH0786533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62280740A JPH0786533B2 (en) 1987-11-06 1987-11-06 Magnetic position detection method for underground buried objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62280740A JPH0786533B2 (en) 1987-11-06 1987-11-06 Magnetic position detection method for underground buried objects

Publications (2)

Publication Number Publication Date
JPH01123185A true JPH01123185A (en) 1989-05-16
JPH0786533B2 JPH0786533B2 (en) 1995-09-20

Family

ID=17629291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62280740A Expired - Lifetime JPH0786533B2 (en) 1987-11-06 1987-11-06 Magnetic position detection method for underground buried objects

Country Status (1)

Country Link
JP (1) JPH0786533B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221289A (en) * 1988-07-09 1990-01-24 Tokyo Gas Co Ltd Detection of buried pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221289A (en) * 1988-07-09 1990-01-24 Tokyo Gas Co Ltd Detection of buried pipe
JPH0555833B2 (en) * 1988-07-09 1993-08-18 Tokyo Gas Co Ltd

Also Published As

Publication number Publication date
JPH0786533B2 (en) 1995-09-20

Similar Documents

Publication Publication Date Title
US5646524A (en) Three dimensional tracking system employing a rotating field
Paperno et al. A new method for magnetic position and orientation tracking
KR100258006B1 (en) Vehicle position determining apparatus
EP0898719B1 (en) Locator of electrically conductive objects
US6107801A (en) Locating an inaccessible object by detecting horizontal and vertical components of a magnetic field
US11519752B2 (en) Coupler element shapes for inductive position sensors
US5554934A (en) Method and apparatus for locating a buried element of inductive material using probe with detector coils
GB2338557A (en) Detecting underground objects
KR100408120B1 (en) Process for stabilising the direction indicated by magnetic compasses
US5528141A (en) Eccentricity gauge for a conductor including two inductors having opposed fields
GB2175096A (en) Electromagnetic transducer assemblies and means for determining relative speed and/or configuration using such assemblies
JPH01123185A (en) Method for magnetically detecting position of ground embedded object
JP3352550B2 (en) Position detection method
US7068359B2 (en) Contactless system for measuring centricity and diameter
US5136225A (en) Device for guiding vehicles on a virtual track
US6906528B2 (en) Electronic non-contacting linear position measuring system
US20180180757A1 (en) Device and method for detecting an article
JP3035724B2 (en) Metal detection method
Wang et al. Accurate offset angle detection strategy for wireless charging coils based on electronic compasses
JPH033011A (en) Guide apparatus for car in lane non-section driveway
AU700553B2 (en) Method and apparatus for guiding a driverless vehicle using a sensor tracking a cable emitting an electromagnetic field
US5532588A (en) Cable eccentricity gauge including an E-shaped core and a sensor coil disposed between an outer tip of the central limb and the cable
RU2136035C1 (en) Method and device for vehicle control
Zhang et al. 1D-MV Position Detection Method for Wireless Power Transfer System of Electric Vehicle
KR100287834B1 (en) Method and Apparatus for Guiding a Driverless Vehicle Using a Sensor Tracking a Cable Emitting and Electromagnetic Field